

NGUWOM FARMING COMMUNITY NEEDS ASSESSMENT IN BORNO STATE, NIGERIA

Mustapha S. B.

Department of Agricultural Extension Services, University of Maiduguri, Nigeria. Mobile Phone: +234(0) 7060573884

ABSTRACT: *This study assessed the needs for rain-fed farmers, dairy farmers, fish farmers* and irrigation farmers, so as to guide the support and investment choices for enhancement for sustainable agricultural productivity and profitability in Nguwom community of Borno State, Nigeria. A total of 510 respondents comprising 210 rain-fed farmers, 120 dairy farmers, 60 fish farmers and 120 irrigation farmers which were purposively selected in the project area, supplemented with Focus Group Discussions (FGDs) and Key Informant Interviews (KIIs), reflecting the agricultural enterprises. The needs assessment process consisted of the selection of beneficiaries; semi-structured interviews with leaders and individual members in the conflict affected communities and a final validation of findings with farmer's community leaders. The findings were used to develop plan for input procurement, distribution, monitoring and evaluation for the project. The input needs of the farmers across enterprises indicated that 100% Of the rain-fed farmers needed inputs such as cowpea seeds, inorganic fertilizers, knapsack sprayer and farm tools, while other inputs were needed by up to 60% of the farmers. The dairy farmers needed 100% of goats and feeds, while vaccines are needed by 68.33% of the respondents. The Fish farmers needed for all the identified inputs; fingerlings, fish feeds, vaccines, smoking kiln and pond harvesting nets. The irrigation farmers needed 100% of water pump machines and inorganic fertilizers, pesticides (81.67%), herbicides (66.67%) and 50% for tomato seeds, water melon, onion seeds and knapsack sprayer. In terms of the input provision, particular emphasis should be on supporting the identified most vulnerable but active members of the communities such as widows, orphans, women and youth.

KEYWORDS: Assessment, Community, Farming, Needs, Rain-Fed Farmers, Dairy Farmers, Fish Farmers, Irrigation Farmers, Nigeria

INTRODUCTION

Background

In Borno State, Nigeria, some of the internally displaced persons have returned to their communities after the long insurgency conflict. The returnees and even some members of the local communities lost almost everything including infrastructures. The war-related destruction, theft and loss of most of the communities' possessions such as herds, food stocks, agricultural tools and seed stocks led to very poor livelihoods. The returnees mainly relied on food aid by relief agencies within the first few months of repatriation with the expectation that they would be reintegrated into their communities and eventually fend for themselves. However, they faced mammoth challenges as they lacked the capacity and resources to sustain livelihoods (Olok, 2013; Jacob and George, 2013).

African Journal of Agriculture and Food Science ISSN: 2689-5331 Volume 2, Issue 2, 2019 (pp. 39-52)

This has placed the returnee/returning IDPs in dire need of urgent humanitarian relief and support for livelihoods and rehabilitation. Recognizing the fact that the crisis has led to a new class of poor and vulnerable people struggling to restore livelihoods, the UNDP and MRRR sought to address the needs of the returnee/returning IDP. The needs assessment was conducted in Nguwom communities of Borno State in North Eastern Nigeria. It was intended that this study would give programme a strategic direction on areas of expansion and scale up of humanitarian assistance to the victims of Boko haram insurgency in the study area and the findings of this needs assessment would be used by key stakeholders to make evidenced based decision on the most critical humanitarian needs of the people. That is why, UNDP and the Ministry of Reconstruction, Rehabilitation and Resettlement (MRRR), Borno State, Nigeria is planning to considerably scale up interventions in Borno State to ensure that those who return receive the support they need to sustain themselves and their families. With more than 80 percent of the rural population depending on crop or livestock farming, investing in agriculture now is also critical in restoring livelihoods. In this regard, farmers need to have inputs; seeds, fertilizers & tools and training to involve in their agricultural production. The project is targeting direct support to conflict affected households with multiplier effect among many others in the conflict affected communities of Borno State, Nigeria. The intervention aims to enhance the self-sufficiency of returnees and vulnerable host families, women and youths through the provision of critical inputs support including improved seeds (locally adapted varieties), pesticides and fertilizer for agricultural production, including livestock production (ruminants); sheep and goats (locally adapted breeds).

Needs assessment is a systematic process of establishing priorities and making decisions regarding programme planning, development, and operations. It involves determining if gaps exist between what is and "what should be in terms of extension programmes and then determining the priorities of needs (Nyandat and Owiti, 2013; Kumari *et al.*, 2015). The United Nations Development Programme (UNDP) and Borno State Ministry of Reconstruction, Rehabilitation and Resettlement (MRRR), under the framework of the project "*Empowerment and Livelihood Support for the Victims of Boko Haram Insurgency in Borno State, Nigeria*" undertook a needs assessment mission at four specific farmer's agricultural enterprises in Borno State, Nigeria. The farmers studied were the rain-fed farmers, dairy farmers, fish farmers and irrigation farmers. The assessment focused on input needs by the farmer categories. Thus, the assessment led to the identification of farmers input needs for interventions for the UNDP and Borno State MRRR in the project area.

Many assessments were carried out on farmers' needs in Nigeria. However, no previous farmer needs assessment has been properly documented in the Nguwom communities of Borno State, Nigeria, especially, after the devastating impact of the Boko haram insurgency. Therefore, this study was conducted to assess the needs of farmers across crop, dairy, fish and irrigation. The main objective of the need's assessment was to identify the farmers' needs for inputs among rain-fed farmers, dairy farmers, fish farmers and irrigation farmers in Borno state, Nigeria. The specific objectives were to:

- (i) Identify the socio-economic profile of rain-fed, dairy, fish & irrigation farmers in the project area;
- (ii) Assess the input needs of rain-fed, dairy, fish and irrigation farming in the project area; and
- (iii) Develop action plan for input procurement, distribution and monitoring of the support.

METHODOLOGY

The Study Area

The study was carried out in Nguwom community Borno State, Nigeria. The State has a land area of about 73,273km² and roughly lies between latitudes 11° 09¹ and 11^{0} 45¹ north of the equator and longitudes 09° 10¹ and 14° 20¹ East of the Greenwich Meridian (Ayuba, 2007). The state shares international borders with Niger Republic in the north; Chad Republic in the north - east, and Cameroon Republic in the east. Within the country, Borno State shares borders with Adamawa State to the South, Yobe State to the West and Gombe State to the South - west. The population of Borno State is about 6,411,209 with an annual growth rate of about 3.4 percent (NPC, 2006).

Borno State is made up of 27 Local Government Areas (LGAs) spread over three Agro-Ecological Zones (AEZs), namely: Sahel savannah in the north, Sudan savannah in the middle and the Guinea savannah in the Southern part of the state (Joshua and Teli, 2007). Borno State has a hot climate for most part of the year especially in the Northern part of the state, while the southern part is slightly milder in temperature. The rainy period varies from the extreme north to the southern part of the state with the former having about 250mm per annum while the later records about 1000mm per annum (Daura, 2001; Ayuba, 2007). Agriculture is the main stay of the economy of Borno state. Crops grown reflect the nature of the agro-ecological zones. The major crops cultivated include: millet, sorghum, groundnut, maize, cowpea and vegetables (onion, pepper, tomatoes).

Sources of Data and Sampling Procedure

The needs assessment focused on the need for inputs among rain-fed farmers, dairy farmers, fish farmers and irrigation farmers. Whilst some information was available from secondary sources, the main source was primary data from the farmers themselves through individual interviews, FGD and KII. The approach established needs via group discussions, involving a cross section of key stakeholders and information was validated afterwards through a series of individual interviews with the potential beneficiaries.

Multi-stage sampling techniques were employed to select the respondents for this study. Borno state comprises of 27 LGAs. The first stage of the sampling was a purposive selection of Mafa LGA, as a result of the extent of impact of the Boko haram insurgency and as well for a reason of proximity. At the second stage, two village units were, also purposively selected from the LGA for the same ground of reason. These were Loskuri and Limanti village units. At the third stage, two and five villages from Loskuri (Ngirimari and Nguwom) and Limanti (Kirnari, Jiro, Limanti, Fuguri and Umarari) village units were respectively and purposively selected for accessibility. At the fourth stage, proportionate sampling was employed to select 210 rain-fed farmers, 120 dairy farmers, 60 fish farmers and 120 irrigation farmers in the project area. Therefore, a total of 510 farmers served as the sample size for this assessment. The lists of the villages and farmers for each farm enterprise were obtained from the LGA Headquarters for this assessment.

The Approach

The assessment involved a desk review of available information followed by a rapid/participatory appraisal using semi-structured interviews with groups and individuals

from different interest groups. The interviews were guided by checklists of key questions. The following points outline the main steps of the approach used:

Desk Review: The researcher conducted a three-day desk review in related areas to help guide and focus efforts during the study. The review, guided by key questions, was carried out over two days to provide a better understanding of the task ahead, as well as to focus the mission on the most important issues/areas. A third day was used for consultations with the Borno State MRRR as the implementing partner.

Execution of Field Assessments: The researcher, with help from field assistants, worked together to conduct field surveys. Individual interviews, FGDs and KIIs were held with representative samples of members of the crop, dairy, fish and irrigation farmers in the study area.

Analytical Techniques

Descriptive statistics such as frequency distribution and percentages were used to categorize and summarize the data. These were used to achieve the specific objectives (i) and (ii) of the study.

RESULTS OF THE NEEDS ASSESSMENT

This section presents the main findings of the assessment. It provides an overview of the socio-economic profile of farmers; rain-fed, dairy, fish and irrigation farmers and examined their input needs. It then provided the plan for the purchase and distribution of inputs and monitoring & evaluation of the support.

Socio-Economic Profile of Farmers

Socio-Economic Profile of Rain-Fed Farmers

The result of the Socio-economic characteristics of respondents (Table 1) revealed that 27% and 22% of the respondents were of the age bracket of 31-40 and 41-50 years old respectively. About 27% of the respondents were in their youthful age (31-40) years. Majority (70%) of the respondents were male, which suggests the dominance of male in the area. Farming experience of the respondents revealed that 30% had 5-10years farming experience, 26% had less than 5 years and only 22% had 11-15 and above 15 years farming experiences. Farming experiences denote the skills of farming acquired over a period of time. This enables farmers to improve their production and make effective decision in farming activities.

Result on the educational level of the respondents (Table 1) revealed that 30% of the respondents had Qur'anic education, 25% had primary certificate and 21% had Secondary School Certificate Examination/Teachers College Certificate (SSCE/TC). Education exposes one to modern techniques of farming and enables farmers notice changes in their environment. This also influences farmer decisions in livelihood activities. Household size of the respondents indicated that about 30% of the respondents had 3-6 household size, and 26% had less than 3 members in their households. Majority (61%) of the respondents was married, and this influences their performance in carrying out their farming activities because of their

obligations to carter for their households. Out of the respondents, about 33% hold farm sizes between 3- 6 hectares.

Table 1: Distribution of Rain-FED Farmers by Socio – Economic Characteristics (n = 210)

Socio economic variable	Frequency	Percentage (%)		
Age (years)				
Less than 20	28	13.33		
20-30	41	19.67		
31-40	57	27.00		
41-50	46	22.00		
Above 50	38	18.00		
Sex				
Male	63	30.00		
Female	147	70.00		
Farming Experience in years				
Less than 5	55	26.00		
5-10	63	30.00		
11-15	46	22.00		
Above 15	46	22.00		
Level of Educational Attainm	ent			
No formal education	11	05.33		
Quranic education	63	30.00		
Primary certificate	53	25.33		
SSCE/TC	45	21.33		
ND/NCE	21	10.00		
HND/B.Sc	17	08.00		
Household Size (No.)				
Less than 3	55	26.00		
3-6	62	29.67		
7-10	46	22.00		
Above 10	47	22.33		
Marital Status				
Single	31	15.00		
Married	128	61.00		
Divorced	18	08.67		
Widowed	33	15.33		
Size of Farmland (ha)				
Less than 3	48	22.67		
3-6	69	33.00		
7-10	39	18.67		
Above 10	54	25.67		

Source: Field Survey; 2017

Socio-Economic Profile of Dairy Farmers

Table 2 presents socio-economic characteristics of dairy farmers. Majority (70.5%) of the dairy farmers were below 50 years of age. Dairy farmers were mostly male (81.4%). Most of the dairy farmers were married (85.6%). Most had secondary education (45.2%) followed by those with tertiary education (36.7%). More than half (56.3%) of the dairy farmers had, between 5-10 years of dairy farming experience.

Characteristics	Frequency	Percentage		
Age (Years)				
<30	10	08.20		
30-39	30	24.60		
40-49	45	37.70		
>49	35	29.5		
Sex				
Male	98	81.40		
Female	22	18.60		
Marital status				
Married	102	85.10		
Single	11	09.20		
Divorced	02	01.70		
Widowed	05	04.00		
Household size				
1-3	14	10.90		
4-6	86	72.00		
>6	20	17.10		
Level of education (years)				
No formal education	02	01.70		
Adult education	01	01.00		
Primary education	19	15.40		
Secondary education	54	45.20		
Tertiary education	44	36.70		
Livestock farming experience (years)				
<5	11	08.90		
5-10	68	56.30		
11-16	31	26.10		
>16	10	06.70		

Table 2: Distribution of Dairy Farmers by Socio-Economic Characteristics ($n = 12$

Field survey data, 2017

Socio-Economic Profile of Fish Farmers

Socio-economic characteristics with respect to sex, age, level of education, marital status, household size, fish farming experience and primary occupation were studied. These were presented in Table 3. The study revealed that 30% of the respondents were between the ages of 31 and 40 years. This implies that the fish farmers are in their active age as such they were

expected to supply the labour requirement. Table 3.1.3 also showed that most (58.33%) of the respondents had tertiary education. Most (48.33%) of the respondents were married with respectively. This indicates that fish production could be viewed in the light of income diversification derived for married individuals apparently due to additional household responsibilities that could require extra money to finance.

Socio - Economic Variable	Frequency	Percentage %
Sex		
Male	47	78.33
Female	13	21.67
Age		
Less than 31	15	25.00
31-40	18	30.00
41-50	15	25.00
51 and above	12	20.0
Educational level		
Secondary	04	06.67
Tertiary	35	58.33
No formal education	21	35.00
Marital status		
Married	29	48.33
Single	17	28.33
Widow	14	23.33
House hold size		
1-3	09	15.00
4-6	21	35.00
7-9	30	50.00
Fish farming experience		
1-5	37	61-67
6-10	23	38.33
Primary occupation		
Civil service	46	76.67
Agricultural Business	14	23.33

Table 3:	Distribution	of Fish F	Farmers by	v Socio	o-Economic	Characteristic	s(n = 60))
I upic ci			uniter o lo	, boen		Character istic	$\mathbf{U} = \mathbf{U}$	

Source: Field Survey, 2017

Analysis of household size revealed that 50.00% respondents had household size of 7-9 persons. A relatively large household size in traditional agriculture could mean farm labour availability. The result suggested the availability of family labour at the fish farms. Male dominates (78.33%) in fish farming among the respondents. The male dominancy implies the laborious nature of fish farming operation right from pond construction to management which their female counterparts cannot easily undertake. Majority (61.67%) of the respondents had fish farming. This suggested that the respondents had reasonable years of fish farming experience with only 23.33% of all the respondents had fish farming as their primary occupation. From the result, it can be deduced that majority of the respondents were into fish

farming as an addition source of income. As most of the respondents were civil servants who ventured into fish farming to augment their income and could also being preparatory to retirement from service.

Socio-Economic Profile of Irrigation Farmers

The socio-economic profile of the irrigation farmers is presented in Table 4. The result showed dominance (99%) of male respondents in the study area, while that of female category was only about one percent. The Table also revealed that, majority (76.5%) of the respondents was married, while; only 23.5% were single. The study further revealed that the highest percentage of respondents were those within the age range of 41-50 years representing 33.0%, while those below the age 20 years were the lowest which constituted 4.3%. The mean age of the respondents was 45 years. This suggests that the farmers were within the economically active age.

Table 4: Distribution	of Irrigation Farm	ers Based on Soci	io-Economic Cl	naracteristics (n
- 120)				

Variables	Frequency	Percentage		
Sex				
Male	119	99.00		
Female	01	01.00		
Marital Status				
Married	92	76.50		
Single	28	23.50		
Age (years)				
Less than 20	5	4.30		
20-30	27	22.60		
31-40	30	25.20		
41-50	40	33.00		
Above 50	18	14.80		
Educational level				
No Formal Education	60	49.60		
Primary	36	29.60		
Secondary	20	16.50		
Tertiary	05	04.30		
Household size				
1-2	21	17.40		
3-4	18	14.80		
5-6	42	34.80		
Above 6	28	23.50		
Farm experience (yrs)				
1-10	05	04.30		
11-20	44	36.50		
21-30	67	55.60		
31-40	03	02.60		
Above 40	01	00.90		

Source; Field Survey, 2017

African Journal of Agriculture and Food Science ISSN: 2689-5331 Volume 2, Issue 2, 2019 (pp. 39-52)

Table 4 revealed that 49.6% of the respondents had no formal education, while the remaining percentage of the respondents had formal education from primary, secondary, with tertiary education having the least respondents with only 4.3%. Results also revealed that, the household size of respondents ranged from 5-6 persons having the highest percentage of 34.8%. The average household size was about 5 persons. This showed the preponderance of relatively large household size in the study area. The result on irrigation farming experience revealed that, 21-30 years constituted 55.6%, and those having the experience of 1-10 years recorded the least (4.3%).

Input Needs Across Farmer Categories

The input needs of the farmers across enterprises were studied. These are presented in Tables 5, 6, 7 and 8. The result indicated that 100% of the rain-fed farmers needed inputs such as

Cowpea seeds, inorganic fertilizers, knapsack sprayer and farm tools, while other inputs were needed by up to 60% of the farmers. The dairy farmers needed 100% of goats and feeds, while vaccines are needed by 68.33% of the respondents. The Fish farmers needed for all the identified inputs; fingerlings, fish feeds, vaccines, smoking kiln and pond harvesting nets. The irrigation farmers needed 100% of water pump machines and inorganic fertilizers, pesticides (81.67%), herbicides (66.67%) and 50% for tomato seeds, water melon, onion seeds and knapsack sprayer.

Farm input	Frequency	Percentage
Cowpea seeds	210	100.00
Inorganic Fertilizers (NPK)	210	100.00
Herbicides	210	100.00
Knapsack Sprayer	210	100.00
Farm tools (hoes, cutlasses etc)	210	100.00
Sesame seeds	188	89.50
Millet seeds	184	87.60
Sorghum seeds	168	80.00
Pesticides	140	66.67
Groundnut seeds	130	61.90

Table 5: Distribution of Rain-Fed Farmers by Input Needs (n = 210)

Table 5.1: Distribution of Dairy Farmers by Input Needs (n= 120)

Farm input	Frequency	Percentage
Goats	120	100.00
Feeds	120	100.00
Vaccines	82	68.33

Table 6: Distribution of Fish Farmers by Input Needs (n = 60)

Farm input	Frequency	Percentage
Fingerlings	60	100.00
Fish feeds	60	100.00
Vaccines	60	100.00
Smoking kiln	60	100.00
Pond harvesting nets	60	100.00

Table 7: Distribution of irrigation farmers by input needs (n = 120)

Farm input	Frequency	Percentage
Water pump machines	120	100.00
Inorganic Fertilizers (NPK)	120	100.00
Pesticides	98	81.67
Herbicides	80	66.67
Tomato seeds	60	50.00
Water melon	60	50.00
Onion seeds	60	50.00
Knapsack Sprayer	60	50.00

SUMMARY OF INFORMATION ON FGD: MALE AND FEMALE

Table 8: Community Needs for Inputs

Category of Farmers	Community Needs for Inputs		
	Male Group	Female Group	
	Farm credit	Improved Seeds	
Rain-fed Farmers	Improved Seeds	Inorganic Fertilizers	
	Sesame seeds	Herbicides	
	Millet seeds	Pesticides	
	Sorghum seeds	Farm credit	
	Cowpea seeds		
	Spraying machine		
	Herbicides		
	Farm tools eg hoes, cutlasses etc		
Dairy Farmers	Calves	Kids	
	Farm Credit	Feeds	
	Vaccines	Vaccines	
	Feeds	Calves	
Fish Farmers	Farm Credit	Fish feeds	
	Fngerlings	Vaccines	
	Fish feeds	Harvesting nets	
	Vaccines	Smoking kiln	
	Harvesting nets	Fngerlings	
	Pond harvesting nets	Farm Credit	

African Journal of Agriculture and Food Science ISSN: 2689-5331 Volume 2, Issue 2, 2019 (pp. 39-52)

Irrigation farmers	Farm credit	Improved seeds
	Seedlings	Pesticides
	Improved seeds	Inorganic Fertilizers
	Water pump machines	Herbicides
	Inorganic Fertilizers	Spraying machine
	Spraying machine	Seedlings

THE ACTION PLAN

Work Plan

There is need to monitor the implementation of input procurement; distribution as well as to conduct evaluation of the intervention. It is anticipated that a local private sector organization with the necessary capacity and experience in the sector, would be engaged by UNDP and MRRR to facilitate the procurement and distribution of the inputs. Post input provision monitoring and evaluation would be carried out by the consultant to ascertain from the farmers whether they have been able to increase their production and ultimately their income.

Input Procurement Plan

S/No.	Item/ Description	No. of	Quantity/Unit	Unit	Amount
	-	Farmers		Price(N)	(N)
(A)	Rain-Fed Farming				
1	Millet seeds	184	10kg each 400		736 000
2	Sorghum seeds	168	10kg each	400	672 000
3	Groundnut seeds	130	10kg each	1000	1 300 000
4	Cowpea seeds	210	10kg each	700	1 470 000
5	Sesame seeds	188	5kg each	1000	940 000
6	Inorganic Fertilizers (NPK)	210	1 bag/50kg each	11 000	2 310 000
7	Herbicides	210	7 Litres each	1 700	2 499 000
8	Pesticides	140	5 Litres each	1 200	840 000
9	Knapsack Sprayer	210	1 each	8 000	1 680 000
10	Farm tools (hoes, cutlasses	210	5 each	500	525 000
	etc)				
	Sub Total		-	12 972 000	
(B)	Dairy farming				
1	Goats	120	3 each	17 000	6 120 000
2	Feeds	120	10 bags each	1 000	1 200 000
3	Vaccines	82	Set each	500	41 000
	Sub Total				7 361 000
(C)	Fish farming				
1	Fingerlings	60	300 set each	10 000	600 000
2	Fish feeds	60	4 bags/25Kgs 10 500		2 520 000
			each		
3	Vaccines	60	Set each 1 000		60 000

Table 9: Input Procurement Plan Across Farmer Enterprise

African Journal of Agriculture and Food Science

ISSN: 2689-5331

Volume 2, Issue 2, 2019 (pp. 39-52)

1	Smoking kiln	60	1 each	1000	60,000
4		00		1000	100.000
5	Pond harvesting nets	60	1 each	2000	120 000
	Sub Total				3 360 000
(D)	Irrigation farming				
1	Water pump machines	120	1 each	36 000	4 320 000
2	Tomato seeds	60	3 kgs each	3 000	540 000
3	Water melon	60	3kg each	1300	234 000
4	Onion seeds	60	3 Kgs each	1 700	306 000
5	Pesticides	98	3 Litres each	1 400	411 600
6	Inorganic Fertilizers (NPK)	120	1/2 Bag/50kg	10 000	600 000
			each		
7	Herbicides	80	3 Litres each	1 800	432 200
8	Knapsack Sprayer	60	1 each	8 000	480 000
	Sub Total				
	Grand Total				

Plan of Activities and Budget for Project Implementation

Once the TORs for the proposed input procurement and distribution is approved, there is need to monitor the implementation of inputs procurement and distribution working together with UNDP and MRRR. The plan of activities with the estimated budget is presented in Table 10.

Table 10: Plan of Activities and Budget

Planned Activities		2017				Estimated Cost (N)
		Jul	Aug	Sep	Oct	
Procurement of inputs for rain-fed farmers						12 972 000
Procurement of inputs for dairy farmers						7 361 000
Procurement of inputs for fish farmers						3 360 000
Procurement of inputs for irrigation farmers						7 323 800
Distribution of inputs for rain-fed farmers						300 000
Distribution of inputs for dairy farmers						219 000
Distribution of inputs for fish Farmers						320 000
Distribution of inputs for irrigation farmers						256 200
Monitoring of input procurement and distribution						169 000
for rain-fed farmers						108 000
Monitoring of input procurement and distribution						100.000
for dairy farmers and reporting						100 000
Monitoring of input procurement and distribution						160.000
for fish farmers and reporting						100 000
Monitoring of input procurement and distribution						100.000
for irrigation farmers and reporting						100 000
TOTAL					32 640 000	

CONCLUSION AND RECOMMENDATIONS

Conclusion

The needs assessment established three key issues as follows:

- Farmer input needs established across enterprises in the project area.
- Farmers put forward different suggestions including the extension of affordable credit for financing farm activities across farmer enterprises.
- In terms of the input provision, particular emphasis is being made in supporting the identified most vulnerable but active members of the communities such as widows, orphans, women and youth. These members were found to be faced with the high rate of Boko haram insurgency impact and tend to be wholly dependent on farming.

Recommendations

The following recommendations were therefore, made based on the findings and the need for a successful implementation of the project:

- ✓ The UNDP and MRRR should engage a local private sector individuals/organization with the necessary capacity and experience in the sector to facilitate the procurement and distribution of the inputs.
- \checkmark The UNDP and MRRR should ensure that input procurement plan across farmer enterprise is followed and properly implemented through provision of adequate monitoring.
- \checkmark The plan of activities should be strictly followed in the course of implementation.
- \checkmark Evaluation of the intervention carried out by consultants should be ensured to ascertain the impact of the project.

Acknowledgement

The Nguwom Farming needs assessment for the Empowerment and Livelihood Support for the Victims of Boko Haram Insurgency in Borno State, Nigeria was prepared for United Nations Development Programme (UNDP) and Borno State Ministry of Reconstruction, Rehabilitation and Resettlement (MRRR). I would like to express my sincere appreciation to UNDP and MRRR for funding this assessment and all the other stakeholders who provided their input in terms of experiences and lessons learnt which are included in this article. Special thanks must go to the research assistants, key informants, rain-fed farmers, dairy farmers, fish farmers, irrigation farmers and their families who generously gave their time to take part in the survey and focus group discussions.

REFERENCES

- Ayuba, H. K. (2007): Background on Borno State In Mikloda, P. I. and Joshua, S. D. (editors) Perspectives on the major economic activities in Borno State; Chapter 2, 513pp, Apani/Loud Books Publishers (first edition) ISBN: 9789783761964.
- Borno State Agricultural Development Programme (BOSADP) (2003): Borno State Agricultural Development Programme (BOSADP) Annual Report, Borno State of Nigeria.
- Daura, M. M. (2001): The physical environment and development: A study of Borno region in environment and development issues in Sub - Sahara Africa. Seminar Series, Vol.1. Faculty of Social and Management Sciences, University of Maiduguri, Nigeria, Pp34 -47.
- Jacob, S. K. & George, A. (2013). Assessing the Training Need of Dairy Farmers on Scientific Cattle Management Practices. *International Journal of Scientific Research*, Volume: 2, Issue: 7, pp496-497.
- Joshua, S. D & Teli, I. A. (2007): Food and Cash crops. *In perspectives in the major* economic activities of Borno state by Mikloda, P.S and Joshua, S.D (eds) Pp14-815.
- Kumari, S., Sethi, N., Malik, J. S. & Yogi, V. (2015). Need Assessment of Women Dairy Farmers. *Advances in Social Research*, December, 1(1): 35-42.
- National Population Commission (NPC) (2006): National population commission; provisional census figures; Abuja, Nigeria.
- Nyandat, B. & Owiti, G. O. (2013). Aquaculture needs assessment mission report. Report/Rapport:SF-FAO/2013/24. September/Septembre 2013. FAO-SmartFish Programme of the Indian Ocean Commission, Ebene, Mauritius.
- Olok, O. S. (2013). Mission report: Aquaculture Needs Assessment in Uganda. Report/Rapport: SF-FAO/2013/28. August/Aout 2013. FAO-Smart Fish Programme of the Indian Ocean Commission, Ebene, Mauritius.