Volume 8, Issue 3, 2025 (pp. 43-49)

MAJOR EDIBLE INSECT SPECIES IN EAST AFRICA: A REVIEW

Byamukama Mwanika¹, Ssengozi Jerome Bagenda², Kansiime Cecilia³,

Mulokozi Jackson⁴, and Jackson Kusiima⁵

^{1,2,5}Faculty of Technologies for Rural Transformation, African Rural University, Kagadi 24, Uganda.

³Faculty of Agriculture, Department of Agricultural Extension and Community Engagement, Mountains of the Moon University, 837, Fort Portal, Uganda.

⁴Faculty of Education and Languages, Department of Sciences, Kumi University, Uganda.

Cite this article:

Byamukama, M., Ssengozi, J. B., Kansiime, C., Mulokozi, J., Kusiima, J. (2025), Major Edible Insect Species in East Africa: A Review. African Journal of Agriculture and Food Science 8(3), 43-49. DOI: 10.52589/AJAFS-5JBQQ8PV

Manuscript History

Received: 18 Aug 2025 Accepted: 24 Sep 2025 Published: 8 Oct 2025

Copyright © 2025 The Author(s). This is an Open Access article distributed under the terms of Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), which permits anyone to share, use, reproduce and redistribute in any medium, provided the original author and source are credited.

ABSTRACT: Edible insects are increasingly recognized as a sustainable solution to food insecurity, a source of income, and a solution to some environmental challenges. East Africa, home to nearly 100 edible insect species, provides a rich diversity of insects that are deeply embedded in local diets and cultures. This review highlights the major edible insects consumed in Uganda, Kenya, Tanzania, Rwanda, and Burundi, including termites (Macrotermes spp., Pseudacanthotermes spp.), grasshoppers differens). caterpillars (Cirina (Ruspolia butvrospermi, Dactyloceras lucina), and crickets (Acheta spp., Brachytrupes spp.). Common preparation methods include roasting, frying, and boiling, reflecting traditional practices and cultural preferences. Beyond nutrition, edible insects support livelihoods and contribute to ecological sustainability by recycling organic waste. However, overharvesting and habitat loss pose threats to their availability. This review underscores the potential of edible insects in East Africa to enhance nutrition and livelihoods, while calling for research, conservation, and supportive policies to promote their sustainable utilization.

KEYWORDS: Entomophagy, East Africa, Insects.

Volume 8, Issue 3, 2025 (pp. 43-49)

INTRODUCTION

Entomophagy, the consumption of insects by humans, is an environmentally friendly approach to increasing food for consumption, and enhancing food security across the world (Huis, 2016). Beyond food and feed, many individuals across East Africa take this as a source of income, further contributing to their livelihoods (Guiné et al., 2021). Some edible insects are valuable in that they can convert solid waste into useful outputs, for example, organic matter (Moruzzo et al., 2021). Located in the tropics, the eastern region of Africa is home for approximately 100 tropical edible insect species (Kelemu et al., 2015a). Studying these species will provide necessary information for identification and conservation of these delicacies, which face challenges of climate change and overexploitation by human beings. This review presents the insect species, commonly eaten in East Africa.

Across cultures, edible insects are mostly consumed as a relish or as snacks after a main meal, and roasting, cooking and frying are some of their common preparation methods. However, some households prepare edible insects by steaming, smoking, stewing, and sometimes toasting.

METHODOLOGY

Peer-reviewed literature was obtained using a search from Google Scholar (https://scholar.google.com) looking for publications on insect eating in Africa and edible insects. Key terms used include "entomophagy in East Africa", and "edible insects in East Africa". Only original articles and review articles published in the last 10 years were included in this study. Screening of references for selected articles also increased the number of articles considered. Based on these criteria, a total of 21 articles were screened to obtain the required data.

RESULTS

The major edible insects consumed in East Africa are presented in Table 1. The table shows that Uganda has the highest edible insects followed by Kenya, Tanzania, Burundi, and Rwanda, in that order.

Table 1: Major edible insect species consumed in East Africa

Country	Order	Scientific name	Common name	References
Uganda	Hemiptera	Ugada limbalis	Cicada	Okia et al., (2017)
Uganda	Blattodea	Macrotermes nigeriensis	Termite	Igwe et al., (2011)
Uganda	Blattodea	Syntermes soldiers	Termite	Akullo et al., (2018)
Uganda	Blattodea	Pseudacanthotermes militaris	Termite	Okia et al., (2017)
Uganda	Blattodea	Pseudacanthotermes spiniger	Termite	Okia et al., (2017)

Article DOI: 10.52589/AJAFS-5JBQQ8PV

DOI URL: https://doi.org/10.52589/AJAFS-5JBQQ8PV

Volume 8, Issue 3, 2025 (pp. 43-49)

Uganda	Blattodea	Odontotermes	Termite	Okia et al., (2017)
Uganda	Blattodea	kibarensis Pseudacanthotermes	Termite	Okia et al., (2017)
Uganda	Blattodea	sp.1 Pseudacanthotermes sp.2	Termite	Okia et al., (2017)
Uganda	Blattodea	Pseudacanthotermes sp.3	Termite	Okia et al., (2017)
Uganda	Blattodea	Pseudacanthotermes sp.4	Termite	Okia et al., (2017)
Uganda	Blattodea	Odontotermes spp.	Termite	Okia et al., (2017)
Uganda	Mantodea	Mantis religiosa	African mantis	Illgner & Nel,
98	1/10/11/05 00 5 00	17107776	1 111100111 111011011	(2000)
Uganda	Orthoptera	Gryllotalpa africana	Mole cricket	Illgner & Nel, (2000)
Uganda	Orthoptera	Ruspolia differens	Grasshopper	Odongo et al., (2018)
Uganda	Orthoptera	Cytacanthacris	Short horned	Hlongwane et al.,
_	_	naeruginosus	Grasshopper	(2020)
Uganda	Orthoptera	Ruspolia nitidula	Grasshopper	Agea et al., (2008)
Uganda	Orthoptera	Ruspolia differens	Grasshopper	Okia et al., (2017)
Uganda	Orthoptera	Normadacris septemfasciata	Red locust	Okia et al., (2017)
Uganda	Orthoptera	Brachytrupes spp.	Cricket	Akullo et al., (2017)
Uganda	Orthoptera	Cyrtacanthacris aeruginosa unicolor	Grasshopper	Akullo et al., (2017)
Uganda	Orthoptera	Acanthoplus discoidalis	Cricket	Hlongwane et al., (2020)
Uganda	Orthoptera	Homorocoryphus vicinus	Cricket	Illgner & Nel, (2000)
Uganda	Orthoptera	Ruspolia Differens	Long horned grasshoper	Odongo et al., (2018)
Uganda	Lepidoptera	Cirina butyrospermi	Caterpillars	Matandirotya et al., (2022)
Uganda	Orthoptera	(G.bima-culatus)	Crickets	Tanga et al., (2021)
Uganda	Coleoptera	Palm weevil	Rhynchophorus phoenicis	Okia et al., (2017)
Kenya	Blattodea	Macrotermes	Termites	Igwe et al., (2011)
J		nigeriensis		
Kenya	Blattodea	Macrotermes subhyalinus	Termites	Kinyuru et al., (2013)
Kenya	Blattodea	Pseudacathotermes spinige	Termites	Christensen et al., 2006; Kinyuru et al., (2013)
Kenya	Blattodea	Pseudacanthotermes militaris	Termites	Kinyuru et al., (2013)

DOI URL: https://doi.org/10.52589/AJAFS-5JBQQ8PV

Volume 8, Issue 3, 2025 (pp. 43-49)

Kenya	Blattodea	Macrotermes spp.	Termites	Christensen et al., (2006)
Kenya	Blattodea	Macrotermes subhylanus	Termites	Kinyuru et al., (2013)
Kenya	Hymenoptera	Crematogaster mimosa	Termites	Christensen et al., (2006)
Kenya	Hymenoptera	Carebara vidua	Black ant Smith	Ayieko et al., (2012)
Kenya	Hymenoptera	Apis mellifera	Honey bees	Kelemu et al., (2015b)
Kenya	Orthoptera	Gryllus campestris	Field cricket	Kinyuru et al., (2015)
Kenya	Orthoptera	Kraussaria angulifera	Grasshopper	Matandirotya et al., (2022)
Kenya	Orthoptera	Acheta spp.	Cricket	Kelemu et al., (2015a)
Kenya	Orthoptera	(Ruspolia differens)	Bush cricket	Van Huis, (2020)
Tanzania	Hymenoptera	Apis mellifera	Honey bee	Kelemu et al., (2015b)
Tanzania	Lepidoptera	Bunaea alcinoe	Emperor moth	Kelemu et al., (2015b)
Tanzania	Blattodea	Macrotermes natalensis	Soldier termites	Musundire et al., (2021)
Tanzania	Orthoptera	Normadacris septemfasciata	Red locust	Okia et al., (2017)
Tanzania	Orthoptera	Brachytrupes membranaceus	Giant African cricket	Hlongwane et al., (2020)
Tanzania	Orthoptera	Gryllotalpa africana	Mole cricket	Illgner & Nel, (2000)
Tanzania	Orthoptera	Ruspolia differens	Bush cricket	Van Huis, (2020)
Burundi	Hymenoptera	Apis mellifera	Honey bee	Kelemu et al., (2015b)
Burundi	Blattodea	Macrotermes bellicosus	Termites	Kelemu et al., (2015b)
Burundi	Blattodea	Pseudacanthotermes sp. 4	Termite	Okia et al., (2017)
Burundi	Lepidoptera	Eumeta cervina	Caterpillar	Kelemu et al., (2015b)
Burundi	Lepidoptera	Platysphinx stigmatica	Caterpillar	Kelemu et al., (2015b)
Rwanda	Blattodea	Macrotermes subhyalinus	Termites	Kelemu et al., (2015b)
Rwanda	Orthoptera	Ruspolia differens	Grasshopper	Van Huis, (2020)
Rwanda	Lepidoptera	Dactyloceras lucina	Caterpillar	Kelemu et al.,
		·	•	(2015b)
Rwanda	Lepidoptera	Eumeta cervina	Caterpillar	Kelemu et al., (2015b)

Major insect orders of edible importance in East Africa

From the 52 insect species enumerated in Table 1, the proportional representation of insect orders, expressed as percentage consumption, was derived, and the results are presented in Figure 1.

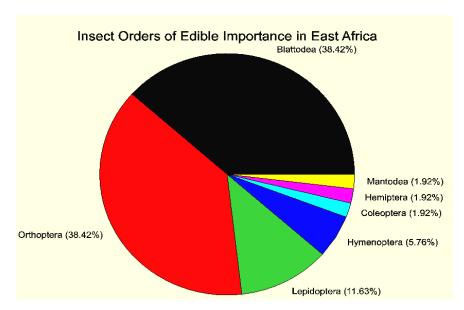


Figure 1: Orders of edible importance in East Africa

CONCLUSION

In East Africa, Uganda consumes the highest number of insect orders, followed by Kenya, Tanzania, Burundi and Rwanda. The major insect delicacies are found in the Blattodea and Orthoptera orders.

FUTURE RESEARCH

This review highlights only the common edible insects reported in the five countries. However, further investigation is needed to determine the extent to which these species are actually incorporated into local diets, since their presence does not necessarily imply consumption. Notably, Uganda, despite its relatively small geographical size compared to Kenya and Tanzania, hosts the largest number of edible insect species. This observation calls for deeper research to establish whether environmental factors such as vegetation types, the extent of vegetation cover, and the proportion of water bodies relative to total land area contribute to this pattern.

REFERENCES

- Agea, J. G., Biryomumaisho, D., Buyinza, M., & Nabanoga, G. N. (2008). Commercialization of Ruspolia nitidula (nsenene grasshoppers) in Central Uganda. *African Journal of Food, Agriculture, Nutrition and Development*, 8(3), 319–332.
- Akullo, J., Agea, J. G., Obaa, B. B., Okwee-Acai, J., & Nakimbugwe, D. (2018). Nutrient composition of commonly consumed edible insects in the Lango sub-region of northern Uganda. *International Food Research Journal*, 25(1), 159.
- Akullo, J., Obaa, B. B., Acai, J. O., Nakimbugwe, D., & Agea, J. G. (2017). Knowledge, attitudes and practices on edible insects in Lango sub-region, northern Uganda. *Journal of Insects as Food and Feed*, 3(2), 73–82.
- Ayieko, M. A., Kinyuru, J. N., Ndong'a, M. F., & Kenji, G. M. (2012). Nutritional value and consumption of black ants (Carebara vidua Smith) from the Lake Victoria region in Kenya. *Advance Journal of Food Science and Technology*, 4(1), 39–45.
- Christensen, D. L., Orech, F. O., Mungai, M. N., Larsen, T., Friis, H., & Aagaard-Hansen, J. (2006). Entomophagy among the Luo of Kenya: A potential mineral source? *International Journal of Food Sciences and Nutrition*, *57*(3–4), 198–203. https://doi.org/10.1080/09637480600738252
- Guiné, R. P. F., Correia, P., Coelho, C., & Costa, C. A. (2021). The role of edible insects to mitigate challenges for sustainability. *Open Agriculture*, 6(1), 24–36. https://doi.org/10.1515/opag-2020-0206
- Hlongwane, Z. T., Slotow, R., & Munyai, T. C. (2020). Nutritional composition of edible insects consumed in Africa: A systematic review. *Nutrients*, 12(9), 2786.
- Huis, A. van. (2016). Edible insects are the future? *Proceedings of the Nutrition Society*, 75(3), 294–305. https://doi.org/10.1017/S0029665116000069
- Igwe, C. U., Ujowundu, C. O., Nwaogu, L. A., & Okwu, G. N. (2011). Chemical analysis of an edible African termite Macrotermes nigeriensis, a potential antidote to food security problem. *Biochemistry and Analytical Biochemistry*, 1(105), 2161–1009.
- Illgner, P., & Nel, E. (2000). The Geography of Edible Insects in Sub-Saharan Africa: A study of the Mopane Caterpillar. *The Geographical Journal*, *166*(4), 336–351. https://doi.org/10.1111/j.1475-4959.2000.tb00035.x
- Kelemu, S., Niassy, S., Torto, B., Fiaboe, K., Affognon, H., Tonnang, H., Maniania, N. K., & Ekesi, S. (2015a). African edible insects for food and feed: Inventory, diversity, commonalities and contribution to food security. *Journal of Insects as Food and Feed*, *1*(2), 103–119. https://doi.org/10.3920/JIFF2014.0016
- Kelemu, S., Niassy, S., Torto, B., Fiaboe, K., Affognon, H., Tonnang, H., Maniania, N. K., & Ekesi, S. (2015b). African edible insects for food and feed: Inventory, diversity, commonalities and contribution to food security. *Journal of Insects as Food and Feed*, *1*(2), 103–120.
- Kinyuru, J. N., Konyole, S. O., Roos, N., Onyango, C. A., Owino, V. O., Owuor, B. O., Estambale, B. B., Friis, H., Aagaard-Hansen, J., & Kenji, G. M. (2013). Nutrient composition of four species of winged termites consumed in western Kenya. *Journal of Food Composition and Analysis*, 30(2), 120–124.
- Kinyuru, J. N., Mogendi, J. B., Riwa, C. A., & Ndung'u, N. W. (2015). Edible insects—A novel source of essential nutrients for human diet: Learning from traditional knowledge. *Animal Frontiers*, 5(2), 14–19.
- Matandirotya, N. R., Filho, W. L., Mahed, G., Maseko, B., & Murandu, C. V. (2022). Edible insects consumption in Africa towards environmental health and sustainable food

- systems: A bibliometric study. *International Journal of Environmental Research and Public Health*, 19(22), 14823.
- Moruzzo, R., Mancini, S., & Guidi, A. (2021). Edible Insects and Sustainable Development Goals. *Insects*, 12(6), 557. https://doi.org/10.3390/insects12060557
- Musundire, R., Ngonyama, D., Chemura, A., Ngadze, R. T., Jackson, J., Matanda, M. J., Tarakini, T., Langton, M., & Chiwona-Karltun, L. (2021). Stewardship of wild and farmed edible insects as food and feed in Sub-Saharan Africa: A perspective. *Frontiers in Veterinary Science*, *8*, 601386.
- Odongo, W., Okia, C. A., Nalika, N., Nzabamwita, P. H., Ndimubandi, J., & Nyeko, P. (2018). Marketing of edible insects in Lake Victoria basin: The case of Uganda and Burundi. *Journal of Insects as Food and Feed*, 4(4), 285–294. https://doi.org/10.3920/JIFF2017.0071
- Okia, C. A., Odongo, W., Nzabamwita, P., Ndimubandi, J., Nalika, N., & Nyeko, P. (2017). Local knowledge and practices on use and management of edible insects in Lake Victoria basin, East Africa. *Journal of Insects as Food and Feed*, 3(2). https://doi.org/10.3920/JIFF2016.0051
- Tanga, C. M., Egonyu, J. P., Beesigamukama, D., Niassy, S., Emily, K., Magara, H. J., Omuse, E. R., Subramanian, S., & Ekesi, S. (2021). Edible insect farming as an emerging and profitable enterprise in East Africa. *Current Opinion in Insect Science*, 48, 64–71.
- Van Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: A review. *Journal of Insects as Food and Feed*, 6(1), 27–44.