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ABSTRACT: In this paper, to comprehend the chemical-biological interactions governing 

their activities toward antitumor activity, QSAR models of 31 derivatives of New imidazo [1, 

2-a] quinoxaline derivatives with inhibitory tumor were developed. The quantitative structure-

activity relationship (QSAR) model was built by using the genetic function algorithm (GFA) 

technique, and the best GFA model has SEE = 0.51748, R2 = 0.73038 cross-validated, R2
adjusted 

= 0.63234, F = 7.44967 (DF: 4, 11), and Q2 = 0.51664 non-cross-validated. The predictive 

ability of the GFA model was further validated by a test set of 8 compounds, giving R2
pred = 

0.73038. Docking studies were used to discover the real conformations of chemicals in the 

active site, as well as the binding mode shape to the binding site in enzyme. Ligand with 

PubChem_CID number 44561182 has the least binding affinity with the enzyme. The 

information provided by the 2D-QSAR model and docking may lead to a better understanding 

of the structural requirements of 31 New imidazo [1, 2-a] quinoxaline derivatives and help to 

design potential anti-tumor molecules. 

KEYWORDS: Tumor, Quinoxalinamine Derivatives, GFA-MLR, QSAR, Applicability 

Domain, Molecular Docking 

 

 

INTRODUCTION 

Regular cells in our bodies follow an organized path of development, separation, and death [1]. 

The tumor is a class of diseases categorized by out-of-control cell development or irregular 

development of the cells with the ability to spread in the other parts of the body which damages 

the body by forming bumps or multitudes of tissue called tumor [1, 2].  Despite increased 

attention to tumor eradication, the disease causes more than a million deaths each year and is 

the second cause of death in the world [3, 4]. In spite of several efforts in the handling of a 

tumor, and the limitations that medications have, this disease became a big problem for the 

health of societies [2]. Extensive laboratory suggestions from chemical, cell culture, and animal 

studies indicate that antioxidants may slow or probably prevent the growth of tumors [5]. 

Quinazoline ring is a versatile lead molecule that has been studied widely which possesses 

analgesic, anti-inflammatory, antitumor, antimicrobial, anticonvulsant, enzyme inhibition 

activity, and many other activities [6, 7]. Several studies have shown that the Quinazoline 

nucleus has potent activity against human cancer particularly by killing the cells in a tumor-

specific manner [8]. The nucleus has also been reported to have potent antioxidant activity [5]. 

Amino acids will reduce the side effects of the metabolite of the parent compound upon 
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metabolism in the body and enhance the solubility of the synthesized candidates when it is 

incorporated into pharmacologically active quinazolinone moiety [9]. These observations gave 

us a great motivation to the search for potential biological active drugs carrying new 

imidazo[1,2-a] quinoxaline analogs which have been synthesized in good yields via a 

bimolecular condensation of 2-imidazole carboxylic acid, followed by a coupling and 

subsequent substitution on the imidazole ring by Suzuki Cross-coupling reaction using 

microwave assistance [10]. Quantitative Structure-Activity Relationship (QSAR) modeling 

and docking has become an extensively used tool [11] in computer-aided drug design (CADD). 

CADD has been used to predictive environmental risk assessment and fate modeling, toxicity 

and property prediction of chemicals and pharmaceuticals [12, 13] as well as in different 

modeling problems in material sciences, analytical chemistry and 

pharmacokinetics/pharmacodynamics profiling of new drug molecules [14]. Computer-aided 

drug design (CADD), is utilized to achieve the desired results. CADD provides appreciated 

perceptions into experimental findings and mechanism of action, new suggestions for 

molecular structures to synthesize, and can help make cost-effective decisions before expensive 

synthesis is started. Quantitative Structure-Activity Relationship (QSAR) modeling is a ligand-

based drug design method for both exploring and exploiting the relationship between chemical 

structure and its biological action [15, 16, and 17]. To predict the activities of anticancer 

compounds, quantum chemical descriptors like molecular orbital, dipole moment, charge, etc. 

and molecular property descriptors like hydrophobic, steric coefficient, etc. have been applied 

to develop 2D QSAR models [18, 19], while docking study is also performed to explore the 

binding pocket in the enzyme and to understand the binding mode pattern for each compounds 

[20]. 

 

MATERIALS AND METHODS 

In the present paper, structure-cytotoxic activity relationships of a series of 31 compounds of 

New imidazo[1,2-a] quinoxaline derivatives against human A375 cells (MTT) reported by 

PubChem [21, 22] have been used for the 2D-QSAR model development. The Marvin Sketch 

and Marvin View software package were used to building the chemical structures. Density 

functional theory was adopted at the level of B3LYP/6-31+G (d, p) [23] to optimize the isolated 

compounds using Spartan'14 version 1.1.4 software. Descriptor generation was performed 

using the PaDel package version 2.20 [24]. DTC Lab (new_Dataset Division GUI v1.2 

Division) software were used to divide the compounds into training and test set. The Kennard-

Stone algorithm was used to split data sets into two distinct subsets with an equal distribution 

such that no sample from one subset should be too far from any sample of the other subset, and 

the coverage should start on the boundary of the factor space [25, 26, 27, and 28], followed by 

the application of statistical methods (GFA-MLR) to determine the main descriptors 

responsible for the cytotoxic activity of the compounds under investigation.  Nowadays, the 

genetic function approximation (GFA) method [29] is considered superior to other variable 

selection methods. It is a powerful optimization method that was inspired by evolutionary 

principles, including survival of the fittest, reproduction, crossover, and mutation. In this study, 

GA-MLR was used to build the QSAR model. The fitness function utilized herein was the 

leave-one-out (LOO) cross-validated correlation coefficient (Q2). Measurement of cytotoxic 

activity is expressed as half-maximal (50%) inhibitory concentration of a substance (IC50) and 

values are expressed in Nano molar (nM – 10-9) levels. The values were converted to the pIC50 

scale (-log IC50) to predict the narrow value wherein higher values indicate exponentially 
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greater potency. The pIC50 values were used as the dependent variables to construct the QSAR 

model. The structures of these compounds and their PubChem_CID numbers are shown in 

Table 1.  

Table 1: Structures of dataset used for GA-MLR QSAR analysis with compound CID, 

IUPAC CAS name and experiment IC50. 

S/

N 

Structure PubChem_CI

D 

IUPAC_CAS_NAME IC50  

1b 

 

57469 1-(2-methylpropyl)-4-

imidazo[4,5-

c]quinolinamine 

70.

3 

 

2a 

 

25253254 N-methyl-1-phenyl-4-

imidazo[1,2-

a]quinoxalinamine 

74.

1 

3c 

 

25253255 1-(2-methoxyphenyl)-N-

methyl-4-imidazo[1,2-

a]quinoxalinamine 

0.6

5 

4b 

 

25253256 1-(3-methoxyphenyl)-N-

methyl-4-imidazo[1,2-

a]quinoxalinamine 

3.4

7 

5a 

 

25253257 1-(4-methoxyphenyl)-N-

methyl-4-imidazo[1,2-

a]quinoxalinamine 

0.3 

6b 

 

44224743 1-(3-ethoxyphenyl)-N-

methyl-4-imidazo[1,2-

a]quinoxalinamine 

0.5

6 
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7a 

 

44224744 3-[4-(methylamino)-1-

imidazo[1,2-

a]quinoxalinyl]phenol 

1.2

8 

8a 

 

44224745 1-(3-bromophenyl)-N-

methyl-4-imidazo[1,2-

a]quinoxalinamine 

173 

9a 

 

44224966 N-methyl-1-[3-

(trifluoromethyl)phenyl]-

4-imidazo[1,2-

a]quinoxalinamine 

122 

10a 

 

44224967 1-(3-chlorophenyl)-N-

methyl-4-imidazo[1,2-

a]quinoxalinamine 

0.2 

11b 

 

44224968 3-[4-(methylamino)-1-

imidazo[1,2-

a]quinoxalinyl]benzoic 

acid 

0.3

7 

12b 

 

44224969 1-(3-fluorophenyl)-N-

methyl-4-imidazo[1,2-

a]quinoxalinamine 

2.1

9 

13a 

 

44224970 3-[4-(methylamino)-1-

imidazo[1,2-

a]quinoxalinyl]benzonitril

e 

24.

9 
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14a 

 

44224971 N-methyl-1-(3-

nitrophenyl)-4-

imidazo[1,2-

a]quinoxalinamine 

27 

15b 

  

44224972 1-(3-furanyl)-N-methyl-4-

imidazo[1,2-

a]quinoxalinamine 

40 

16c 

 

104799 1-(2-chloroethyl)-3-(1-

diethoxyphosphorylethyl)

-1-nitrosourea 

 

 

31.

6 

17a 

 

10244054 N-methyl-1-(2-

methylpropyl)-4-

imidazo[1,2-

a]quinoxalinamine 

 

1.5

7 

18a 

 

24779760 N-methyl-1-(2-

phenylethyl)-4-

imidazo[1,2-

a]quinoxalinamine 

 

2.3

5 

19a 

 

25254189 N,N-dimethyl-1-(2-

phenylethyl)-4-

imidazo[1,2-

a]quinoxalinamine  

 

24 

20a 

 

25254190 1-(2-phenylethyl)-4-

imidazo[1,2-

a]quinoxalinamine 

 

66.

3 
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21b 

 

44561144 4-chloro-1-(2-

phenylethyl)imidazo[1,2-

a]quinoxaline 

 

80.

1 

22a 

 

44561145 N,N-dimethyl-1-(2-

methylpropyl)-4-

imidazo[1,2-

a]quinoxalinamine 

 

47.

8 

23b 

 

44561146 4-methoxy-1-(2-

phenylethyl)imidazo[1,2-

a]quinoxaline 

 

400 

24c 

 

44561181  

N-(2-chloro-6-

methylphenyl)-1-(2-

methylpropyl)-4-

imidazo[1,2-

a]quinoxalinamine 

 

329 

25c 

 

44561182 N-(2-chloro-6-

methylphenyl)-1-(2-

phenylethyl)-4-

imidazo[1,2-

a]quinoxalinamine 

 

85.

3 

26a 

 

44561183 N-methyl-4-imidazo[1,5-

a]quinoxalinamine 

 

121 
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27c 

 

44561184 N,N-dimethyl-4-

imidazo[1,5-

a]quinoxalinamine 

 

400 

28c 

 

44561185 N-methyl-1-phenyl-4-

imidazo[1,5-

a]quinoxalinamine 

 

100 

29a 

 

44561186 N,1-dimethyl-4-

imidazo[1,5-

a]quinoxalinamine 

 

78.

6 

30a 

 

44561225 N-methyl-2-(2-

methylpropyl)-4-

pyrazolo[1,5-

a]quinoxalinamine  

 

101 

31c 

 

44561226 N,N-dimethyl-2-(2-

methylpropyl)-4-

pyrazolo[1,5-

a]quinoxalinamine 

 

173 

Training seta; Test setb; outliersc 

 

The relationship between dependent variable and independent variables was established by 

GFA-multiple regression analysis using Material Studio. Significant descriptors were chosen 

based on the statistical data analysis. Statistical quality of the generated QSAR equation was 

judged based on the parameters like Friedman LOF and Cross-validation R-squared. Cross-

validation is a popular method used to test the reliability of QSAR models. In this study, leave-

one-out (LOO) method was applied to generate a number of improved data sets by removing 

the first row and its value predicted using the rest of the data. Also, each row is left in turn, so 

that the value of each row is predicted from all others. The model is judged based on these 

predictions. Predictive ability of the generated model was assessed externally by predicting the 

activities of test set. This condition may not be sufficient for a QSAR model to be truly 

predictive [30]. An additional condition for high predictive ability of QSAR model is based on 

external set cross-validation R2, (R2
pred) and the regression of observed activities against 

predicted activities and vice versa for validation set, if the conditions of Golbraikh and Tropsha 



African Journal of Biology and Medical Research 

ISSN: 2689-534X 

Volume 3, Issue 3, 2020 (pp. 67-89) 

74 

www.abjournals.org 

are satisfied [30]. Calculations relating to R2
pred, R0

2 and the slopes, k and k' are based on 

regression of observed values against predicted values and vice versa.  

Molecular Descriptors  

In spite of great advances in the field of drug design, the use of descriptors to define the 

molecular structure of biologically active compounds is the key method used to discover new 

lead molecules. Descriptors are the biochemical representative of a molecule in numerical 

form, used for QSAR studies. The information encoded by descriptors normally depends on 

the kind of molecular representation and the defined algorithm for its calculation. Some of 

these include: topological indices, and geometrical, constitutional and physicochemical 

descriptors. Constitutional descriptors are simple, commonly used descriptors reflecting the 

molecular composition of a compound without any information about its topology. The most 

common constitution descriptors are number of atoms, bond count, atom type, ring count, and 

molecular weight (MW). These descriptors are inert to any conformation change and, therefore, 

do not differentiate among isomers [31]. 

Domain of Applicability  

Applicability domain of a QSAR model must be clear if the model is to be used for screening 

new compounds. Predictive ability of the model may be considered reliable if the data set falls 

into this domain [32, 33, and 34]. One simple approach is based on Euclidean based and the 

calculation of leverages for compounds are used in the study.  

Y-randomization  

Another simple way of proving that the structure-activity relationships established in this study 

do not result from coincidence involves checking their robustness by means of the so-called Y-

randomization [35]. This test ensures the robustness of a QSAR model [32] and to assess the 

multiple linear regression models obtained by descriptor selection. In y-randomization test, the 

dependent variable (pIC50) is randomly shuffled and a new QSAR model is developed keeping 

X-data (descriptors) intact. The new models are expected to have low R2 and Q2 values, which 

determine the statistical significance of the original model.  

Molecular Docking 

Docking studies were performed to further explain the results of our 2D-QSAR study and 

explore the possible binding modes of these compounds. Docking is often utilized to forecast 

the binding orientation of small molecules (drug candidates) to their macromolecular target 

(such as protein, carbohydrate and nucleic acid) with the aim to determine their tentative 

binding parameters [36]. This establishes raw data for the rational drug designing (structure-

based-drug development) of new agents with better efficacy and more specificity [37]. The 

research in the drug discovery process involves virtual screening (VS) which is a computational 

technique used for the rapid exploration of huge collections of chemical structures in order to 

recognize those structures that are most likely to bind to a drug target, usually a protein receptor 

or enzyme [38]. Identification of possible protein targets of small chemical molecules is a main 

step for unravelling their primary causes of actions at the molecular level [39]. Docking studies 

were employed to locate the appropriate binding orientations and conformations of these New 

imidazo[1,2-a] quinoxaline derivatives interacting with ligand using the docking program 

Molegro Virtual Docker, iGemdock and PyRx. By default, the docking program produces 
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docked structures for each New imidazo[1,2-a] quinoxaline derivatives. The conformation with 

the lowest docking energy in the most inhabited cluster is selected as the possible 'active' 

conformation against the protein active site. The X-ray crystal structure, taken from the Protein 

Data Bank (pdb: 6EBE) was used to dock. At the beginning of docking, all the water molecules 

were removed and hydrogen atoms added to the protein were applied. The structures were 

docked by the active site defined through a grid box (Vina Search Space: center_x = -9.7952, 

center_y = -1.7878, center_z = 16.0475), Dimensions (Angstrom): size_x = 47.5025488281, 

size_y = 44.5045238495, size_z = 54.4464433479 and exhaustiveness = 8. 

 

RESULTS AND DISCUSSIONS 

pIC50 = -7.20917 - 1.4154ALogP - 0.06171AMR +2.92517SC-3 + 3.74747maxaasC ----Model 1 

Description about selected variables are as follows: 

ALogP (PaDEL; 2D): Ghose-Crippen LogKow 

AMR (Dragon; Molecular properties): Ghose-Crippen molar refractivity  

SC-3(PaDEL; 2D): Simple cluster, order 3 

MaxaasC (PaDEL; 2D): Maximum atom-type E-State: C: - 

SEE :0.51748, r^2 :0.73038, r^2 adjusted :0.63234, F :7.44967 (DF :4, 11), Q2 :0.51664, LOF: 

1.2666, PRESS :5.2809, SDEP :0.5745, r^2 :0.73038, r0^2 :0.73038, reverse r0^2:0.67893, 

rm^2(test) :0.73038, reverse rm^2(test) :0.56471, average rm^2(test) :0.64755, delta rm^2(test) 

:0.16567, rmsep:0.42907, rpred^2 :0.73038, Q2f1 :0.73038, Q2f2 :0.73038 

Some External Validation Parameters 

     Without scaling  After scaling 

rm^2(overall):   0.59546   0.57463 

reverse rm^2(overall):  0.47544   0.48104 

average rm^2(overall): 0.53545   0.52783 

delta rm^2(overall):  0.12001   0.09359 

Golbraikh and Tropsha acceptable model criteria’s: 

1. Q^2   0.51664, Passed (Threshold value Q^2>0.5) 

2. r^2   0.73038, Passed (Threshold value r^2>0.6) 

3. |r0^2-r'0^2|  0.05145, Passed (Threshold value |r0^2-r'0^2|<0.3) 

4. k = 1, [(r^2-r0^2)/r^2] = 0 OR   k' = 0.86976, [(r^2-r'0^2)/r^2] = 0.07044 Passed  
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(Threshold value: [0.85<k<1.15 and ((r^2-r0^2)/r^2) <0.1] OR [0.85<k'<1.15 and ((r^2-

r'0^2)/r^2) <0.1]) 

Table 2: GA-MLR QSAR analysis with corresponding Experimental and predicted class 

of tumour inhibitors. 

PubChem_CID 

(Train) Yobs Ypred (Residual)^2 (Yobs-Ybar)^2 

44224745 0.187087 -0.36463 0.304392 1.085594 

44224966 -0.10721 -0.39265 0.081477 0.558938 

44224967 -0.25042 -0.04276 0.043121 0.365314 

44224970 -0.54033 -0.27352 0.071186 0.098912 

44224971 -1.3962 -1.58743 0.036567 0.293079 

10244054 -1.43136 -0.99634 0.189246 0.332389 

25254189 -1.86982 -0.73271 1.293012 1.030197 

25254190 -1.49969 -1.38916 0.012215 0.415838 

44561145 -0.37107 0.182161 0.306062 0.234028 

44561183 -1.38021 -1.45988 0.006347 0.276024 

24779760 -1.67943 -1.261 0.175082 0.679959 

44561186 -1.93095 -2.97387 1.087687 1.158028 

44561225 -0.1959 -0.64536 0.202017 0.434192 

25253254 -1.89542 -1.54185 0.125011 1.082829 

25253257 0.431798 -0.66553 1.204123 1.655417 

44224744 0.251812 -0.1268 0.143351 1.22466 

PubChem_CID 

(Test) Yobs Ypred (Residual)^2 (Yobs-Ybar)^2 

57469 -1.84696 -3.39226 2.387952 0.984309 

44224968 -1.60206 -1.56728 0.00121 0.55835 

44224969 -1.90363 -0.17617 2.984113 1.099983 

44224972 -1.82151 -1.005 0.6667 0.934474 

44561144 -2 -1.75506 0.059994 1.31141 

44561146 -0.34044 -0.50363 0.026629 0.264595 

25253256 0.69897 -0.62523 1.753496 2.4143 

44224743 0.522879 -1.20436 2.983337 1.898086 

 

A total of 24 compounds (Table 1) were used for the QSAR model generation. It is essential to 

assess the predictive power of models by using a test set of compounds. This was achieved by 

setting aside 8 compounds as a test set such that it represented the various functional groups 

included in the training set and had a regularly distributed biological data. The mean of the 

biological activity of the training and test set was -0.9049 and -0.9364, respectively. The quality 

factor (Q) was performed to access the robustness and statistical confidence. The higher value 

of R2, RMSEP, Q, and F and lower value of Se, and RMSECV of Model 1 revealed that Model 

1 was robust and promising. In the developed Model the value of the coefficient of correlation 

was significantly high supporting reliability and goodness. The accuracy of the Model 1 was 

ascertained by correlation coefficient (R2 = 0.7304), statistical significance more than 95% 

(against tabulated value F = 3.4035) and low standard error of estimate (0.5175). The model 

shows that parameter SC-3 and maxaaC showed a positive contribution. The regression model 
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has small residuals that can be seen in (Table 2). LOO cross-validation analysis revealed that 

R2-Q2
LOO < 0.3 (0.7304 – 0.5166 = 0.21). The robustness of the model was justified According 

to Golbraikh and Tropsha [30], the proposed QSAR model is predictive as it satisfies this 

conditions like R2
pred > 0.5, R2 > 0.6, r2-r2o/r2 < 0.1, r2-r'2o/r2 < 0.1 and 0.85 ≤ K ≤ 1.15 or 0.85 

≤ K′ ≤ 1.15 , but this model satisfy the following criteria R2
pred = 0.7304 > 0.5, and R2 = 0.7304 

> 0.6. So, this QSAR model is predictive as it's satisfied this condition reported by Golbraikh 

and Tropsha, [30]. The model also possesses a high value of FIT criterion [40, 41], the internal 

validation parameter of the model (Q2
cv = 0.5166) was also good. It can be observed that the 

obtained model has sensible internal and external value. Nevertheless, it is always necessary to 

obtain a model that can relate the physicochemical properties represented by the selected 

molecular descriptors to the action mechanism of the system under study [42]. The estimation 

of probable error of the coefficient of correlation (PE) is another requirement for validating the 

method [43]. This is defined as PE = 2/3(1-R2/√n): Where R in multiple correlations is the 

correlation coefficient and n is the number of compounds under study. It is argued that: (1) if 

R < PE, then R is not significant; (2) if R > PE, several times; at least 3-times greater correlation 

is indicated, and (3) if R > 6PE, then the correlation is good. The 6PE = 0.269617 indicates 

that the proposed correlations are good. 

 

Fig. 1: The Williams plot, the plot of the standardized residuals vs. leverages 

 

Figure 1 shows the standardized residuals (σ) versus the leverage samples plot, and it was used 

for the identification of outliers. No compound presented residuals higher than 2.5σ. Only one 

compound presented leverage higher than the leverage cutoff line, but it can be considered 

acceptable [44]. Therefore, the model can be considered free of outliers, something which 

guarantees the maximum possible representation in terms of structure and range of inhibitory 

activity for the dataset under study. Euclidean based applicability domain helps to specify the 

scope of their proposed models, therefore, defining the model limitations concerning its 

structural domain and response space. If an external compound is beyond the defined scope of 

a given model, it is considered outside that model's Applicability Domain (AD) and cannot be 

associated with a reliable prediction. The resulting model can be reliably applicable for only 
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those compounds which are inside this domain. Euclidean based applicability domain helps to 

ensure that the compounds of the test set are representative of the training set compounds used 

in model development. It is based on distance scores calculated by the Euclidean distance 

norms. At first, normalized mean distance scores for training set compounds are calculated and 

these values range from 0 to 1(0 = least diverse, 1 = most diverse training set compound). Then 

normalized mean distance score for test set are calculated (Table 3), and those test compounds 

with scores outside 0 to 1 range are said to be outside the applicability domain. This can also 

be checked by plotting a 'Scatter plot' (normalized mean distance vs. respective activity) 

including both training and test set as shown in Figure 2. If the test set compounds are inside 

the domain/area covered by training set compounds that means these compounds are inside the 

applicability domain otherwise not [32, 34]. 

Table 3: Euclidean based applicability domain (AD) for Model 1 

PubChem_CID 

(Training Set) Distance Score Mean Distance 

Normalized Mean 

Distance 

44224745 70.48381 4.405238 0.058052 

44224966 68.54478 4.284049 0.043204 

44224967 64.68526 4.042829 0.01365 

44224970 64.30307 4.018942 0.010723 

44224971 102.1794 6.386216 0.30076 

10244054 62.90267 3.931417 0 

25254189 93.37212 5.835757 0.233318 

25254190 193.4945 12.09341 1 

44561145 75.42328 4.713955 0.095876 

44561183 64.86008 4.053755 0.014989 

24779760 67.26472 4.204045 0.033402 

44561186 114.4197 7.151229 0.394489 

44561225 76.78591 4.79912 0.10631 

25253254 193.4887 12.09304 0.999955 

25253257 63.43943 3.964964 0.00411 

44224744 84.76635 5.297897 0.16742 

PubChem_CID 

(Test Set) 

Distance Score Mean Distance Normalized Mean 

Distance 

57469 123.8296 7.739348 0.466544 

44224968 74.70109 4.668818 0.090346 

44224969 144.0752 9.004703 0.621575 

44224972 284.4916 17.78073 1.696805 

44561144 64.35608 4.022255 0.011129 

44561146 114.4033 7.150205 0.394363 

25253256 63.47061 3.966913 0.004349 

44224743 103.5443 6.471521 0.311211 
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Fig. 2: Euclidean Based applicability domain plot, the plot of the normalized mean 

distance vs. observed IC50 

 

In addition to Euclidean based applicability domain (AD), the internal predictive ability of the 

model was further assessed by a Y-randomization performed with 16 derivatives for 10 times. 

The average of 10 readings was given as average Q2 as shown in Table 4; the Y-randomization 

test (Table 4) ensures the robustness of a QSAR model [32] and to assess the GFA models 

obtained by descriptor selection [45]. In the Y-randomization test, the dependent variable is 

randomly shuffled and a new QSAR model is developed keeping molecular descriptors intact. 

The new models are expected to have low R2 and Q2
LOO values, which determine the statistical 

significance of the original model. The low R2 and Q2
LOO values of the random models shown 

in Table 4 and the value of R2
p = 0.5894 (R2

p≥0.5) indicates that there is no chance of 

correlation or structural dependency in the proposed model. Consequently, model 1 can be 

considered as a perfect model with both high statistically significant and excellent predictive 

ability. 

Table 4: The average R, R2 and Q2LOO values after several Y-Randomization 

Model 1 R R^2 Q^2 

Original 0.854625 0.730383 0.51664 

Random 1 0.344168 0.118452 -1.21506 

Random 2 0.299327 0.089597 -1.58454 

Random 3 0.411688 0.169487 -1.23794 

Random 4 0.608113 0.369801 -0.36964 

Random 5 0.459707 0.211331 -0.76204 

Random 6 0.730684 0.5339 -0.99338 

Random 7 0.371123 0.137732 -1.61845 

Random 8 0.62597 0.391838 -0.00437 

Random 9 0.550345 0.30288 -0.33447 

Random 10 0.646824 0.418382 -0.7894 
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Random Models Parameters Results 

Average r : 0.504795 

Average r^2 : 0.27434 

Average Q^2 : -0.89093 

cRp^2 : 0.58936 

 

Interpretation of descriptors 

By understanding the descriptors contained in the QSAR model, it is possible to gain certain 

insights into issues, which are related to the antitumor activity. For this reason, an acceptable 

interpretation of the selected descriptors is provided below. The brief descriptions of 

descriptors are shown in model 1 and Table 5. To observe the significance as well as the 

involvement of each descriptor in the model, the value of the mean effect (MF) was calculated 

for each descriptor [46, 47]. The MF value shows the relative importance of a descriptor, related 

with the other descriptors in the model. Its sign designates the variation direction in the values 

of the activities as a result of the increase (or decrease) of the descriptor values.  

Table 5: Variance Inflation Factor (VIF) and Mean effect (MF) of each Descriptors 

Descriptors VIF MF 

AlogP 2.030022475 -0.006133863 

AMR 1.328239136 -0.23656501 

SC-3 2.401363209 0.593332196 

maxaasC 2.580941216 0.649366678 

 

AlogP –thermodynamic descriptor. AlogP is the partition coefficient calculated using atom-

based approach and represents the hydrophobicity of the molecules [48]. A negative mean 

effect of this descriptor illustrates that the activity increases with decreasing the value of AlogP, 

which means that the partition coefficient calculated using atom-based approach and represents 

the hydrophobicity of the molecules will benefit the activity.  

Quantum mechanical calculations have become routine even for large molecular systems and 

therefore the information related to the structure and electronic distribution can be easily and 

efficiently used in deriving new descriptors and explaining the properties of molecules. AMR 

Ghose-Crippen molar refractivity, a quantum mechanical descriptor, a measure of the total 

polarizability of a mole of a substance, can be estimated, is a common molecular descriptor 

accounting for molecular size and polarizability [49]. The negative sign of this descriptor 

(Table 2) indicates that the pIC50 value is indirectly related to this descriptor. Hence, it was 

concluded that by decreasing the molecular size and polarizability, the value of this descriptor 

decreased, causing an increase in its pIC50 value. 

The selected parameter SC-3 (PaDEL; 2D): Simple cluster, order 3 encode structure 

information specifically based on a branch point, emphasizing the immediate branch point 

environment. SC-3 exhibits the second largest positive mean effect (MF) Table 5 (0.5933) to 

pIC50. Since the value of SC-3 (PaDEL; 2D): Simple cluster, order 3 is positive, increases in 

values of SC-3 (PaDEL; 2D): Simple cluster, order 3 are advantageous to improving the 

antitumor activity. 
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The desirability and suggested advantage of E-states over simple counts of the equivalent atom 

types is that E-states values for each atom in a given molecule 'reflect' the steric and electronic 

effects of the surrounding atoms and as such, could be best described as information-rich 

atomic descriptors [50, 51]. Electro topological state atom type descriptor MaxaasC represents 

Maximum atom-type E-State: C: -; this descriptor contributes positively MF (Table 5) which 

indicates that inhibitory activity of New imidazo [1, 2-a] quinoxaline derivatives will increase 

with Maximum atom-type E-State: C: -. The corresponding VIF values of the four descriptors 

are presented in Table 5. As can be seen from this table, all the variables have VIF values of 

less than five, indicating that the obtained model has statistical significance, and the descriptors 

were found to be reasonably orthogonal [52, 53]. 

Docking Analysis 

One application of molecular docking is to design therapeutic in-silico by optimizing targeted 

lead candidates against the protein. The lead candidates can be found using a docking algorithm 

that aims to identify the optimal binding mode of a small molecule (ligand) to the active site of 

the macromolecular target. Twenty-four New imidazo [1, 2-a] quinoxaline derivatives to obtain 

more effective compounds as inhibitors of the tumor. Molegro virtual docker (MVD) was used 

to predict various orientations or conformations of the drugs against the protein targets. The 

conformations with the least binding energies were selected and saved. The average binding 

energies were calculated for each ligand after ten simulations with MVD. The Hydrogen bond 

score, Number of Hydrogen bond, and interacting residues of the protein with the ligands were 

also analyzed using the software. In the case of the crystal structures PDB code: 6EBE 

complexes [54], the program generally identified three different binding sites (Figure 3). 

 

Fig. 3: The three cavity MVD-detected cavities in anti-tumor, (PDB code 6EBE), 

detected cavity green, carbon atoms grey, oxygen atoms red, nitrogen atoms blue. 

 

Additionally, docking of these ligands, New imidazo [1, 2-a]quinoxaline derivatives was 

performed with the crystal structure and each molecule selects the best position to define the 
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re-rank score. In each docking run, the best poses were selected based on their MVD re-rank 

scores, and the mean of the six re-rank scores were then computed as the final score for each 

molecule. The MVD score and the re-rank scores of the best poses for each of the docking 

studies New imidazo[1,2-a] quinoxaline derivatives with protein PDB code: 6EBE are 

summarized in Table 6. 

Table 6: Plant Score, MolDock Score and Re-rank score (kcal/mol) for New imidazo[1, 2-

a]quinoxaline derivatives when docked with 6ebe crystal structure  

Pubchem_CID 

(Ligand) 

Plant Score MolDock Score Re-rank Score 

44561182 -80.1715 -115.862 -88.8733 

44561144 -70.2567 -82.5739 -61.3965 

25254189 -70.2156 -84.4104 -65.7448 

25254190 -69.892 -92.7031 -67.7022 

25253257 -63.4977 -100.392 -77.4534 

44561145 -61.8085 -78.6937 -65.414 

 

Furthermore, the obtained score is between -78.6937 and -115.862cal/mol.  Moldock score of 

target compound PubChem_CID 44561182 is lower than PubChem_CID 44571145. 

PubChem_CID 44561182 is a proven active compound as an inhibitor of anti-tumor protein 

PDB code: 6EBE. By blocking PBD binding to its recognition motif, PubChem_CID 44561182 

disrupted the human anti-tumor protein PDB code: 6EBE subcellular localization and 

eventually arrested the cell cycle [55]. The docking results compound with 6EBE reveals no 

electrostatic interactions but it has a hydrogen bonding and steric interaction between the ligand 

to the receptor. The key residues in the binding pocket were Gly233, Glu236, Lys170, Asn232, 

Phe231, Asn61, Leu60, Ile167, Lys172, Thr169, and Gly171. The ligand formed hydrogen 

bonding (H-bond) with Gly171 in the binding site. This result indicates that the above-

mentioned molecules are predicted to be an antitumor drug candidate. The superposition of 

ligand as observed in the cavity of the crystallographic structure of 6EBE and the best 

conformation obtained theoretically are shown in Fig. 4. The result suggests that the software 

reproduced the appropriate conformation of PubChem_CID 44561182 inside its binding site in 

the protein (PDB code: 6EBE), the anion binding pocket is blue and specificity pocket is red 

Fig.4c. 
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a. Hydrogen Bonds 
 

b. Steric interactions & interaction 

Overlay 

 
c. binding pocket 

 

Fig.4. the best score docking solution of compound 44561182 with the selected crystal 

structure of 6ebe. Amino acids in the active site are presented in lines and ligand is 

presented in lines with fix color blue lines represent the hydrogen bonds between the 

ligand and the active site of 6ebe. 

 

The basic of iGEMDOCK is the GEMDOCK, which is a robust and well-developed tool. By 

means of iGEMDOCK, the predicted poses produced from the GEMDOCK can be directly 

visualized by a molecular visualization tool and analyzed by post-analysis tools. iGEMDOCK 

offers the post-analysis tools by using k-means and hierarchical clustering methods based on 

the docked poses (i.e. protein-ligand interactions) and compound properties (i.e. atomic 

compositions). We validated the protein-ligand docking accuracy and screening accuracies of 
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iGEMDOCK by using a training and test set with 24 protein-ligand complexes. Based upon 

the least binding affinity and other parameters, the best pose was selected and the docked 

structures were visualized in Discovery Studio and Melogro molecular viewer software (Fig. 

5a and 5b) for detailed residue-ligand interactions. The best inhibitor pose energy was obtained 

-93.6494kcal/mol with a hydrogen bond of -7kcal/mol between the inhibitor and enzyme. 

Docking of PubChem_CID 44561182 with protein represents that ligands were effectively 

bound by interacting with Leu189, Leu47, Tyr191, Ser259, and Asp19 which are the residues 

in the active site of protein (PDB code: 6EBE). The detailed docking results are shown in Table 

7. 

Table 7. iGEMDOCK Result: Computationally predicted potencies of 11 compounds 

screened 

Cpd CID (Ligand) Energy VDW HBond 

25253256 -87.5408 -87.5408 0 

25253257 -89.5498 -74.7659 -14.7839 

44224743 -85.6956 -85.6956 0 

44224970 -81.7628 -81.7628 0 

10244054 -80.5062 -80.5062 0 

25254189 -86.7377 -83.2393 -3.49839 

25254190 -92.7138 -80.7486 -11.9652 

44561144 -84.595 -78.595 -6 

44561145 -84.6749 -73.3491 -11.3258 

44561181 -89.203 -82.203 -7 

44561182 -93.6494 -86.6494 -7 

 

 
a. Visualization of Docking between 6ebe 

and compound CID 44561182. 

 
b. Visualization of Docking 

between 6ebe and compound CID 

44561182. 
 

Fig. 5. Visualization of Docking between 6ebe and compound CID 44561182 using 

Discovery Studio and Melogro molecular viewer respectively. 
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PyRx is an open-source package to accomplish virtual screening. It is a combination of several 

software such as AutoDock Vina, AutoDock 4.2, Mayavi, Open Babel, etc. PyRx uses Vina 

and AutoDock 4.2 as docking software. 

Table 8. PyRx AutoDock Vina Result of MVD and iGEMDOCK selected compounds 

(kcal/mol) 

PuBChem_CID (Ligand) Result PuBChem_CID (Ligand) Result 

25254190 -8.1 - - 

44561182 -8.6 10244054 -6.7 

44561144 -7.1 44561181 -7.8 

25254189 -8.2 44224970 -9.0 

25253257 -7.5 44224743 -7.7 

44561145 -6.8 25253256 -7.9 
 

The results of PyRx docking experiments of tumor inhibitors using AutoDock Vina are 

summarized in Table 8. For each docking experiment, the lowest energy docked conformer 

was selected from 10 runs. Ligand 44224970 (Fig. 6) showed better inhibition potential than 

ligand 44561182 (Fig. 7), a potent tumor inhibitor, with binding energy -9.0 kcal/mole (Table 

8). Modeling and docking analysis revealed the nature of the active site and some key 

interactions that enabled the binding of inhibitor ligand 44561182 to the active site. The 

numbers of the binding modes (compound CID 44561182) were thirteen (n=13) while 

compound CID 44224970 was twelve (n = 12), respectively. Based on the present molecular 

docking study, ligand 44561182 appeared as a strong binder to the enzyme (6ebe) active site 

than the ligand 44224970 and the interacting numbers of amino acids and conventional 

hydrogen bonds might be critical factors for regulating target protein activity. These data also 

suggest that computer-aided drug design process using Melogro Virtual Docker, iGemDock 

and PyRx tools is highly reliable and can be a good example for identifying the action 

mechanism between the 6ebe (enzyme) and its interacting ligands. 

  

Fig. 6: Binding interaction of compound CID 44561182 with antitumor (PDB ID-6EBE) 
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Fig. 7: Binding interaction of top ten least energetic molecules (Ligand 44224970) with 

anti-tumor (PDB ID-6EBE) 

 

CONCLUSION 

Present work aimed to develop a 2D QSAR model for imidazo[1,2-a] quinoxaline to identify 

the novel molecules that have well in silico predictions (QSAR and docking). GFA method 

was used for variable selection and model building of imidazo[1,2-a] quinoxaline derivative. 

The successful model was built with descriptors AlogP, AMR, SC-3, and maxaasC having 

SEE: 0.51748, r^2:0.73038, r^2 adjusted: 0.63234, F: 7.44967 (DF: 4, 11), Q2:0.51664. The 

cross-validation method, Y-randomization technique, applicability domain, and external 

validation indicated that the model is statistically significant and has good internal and external 

predictability. The reliability of these predictions for screened molecules, which were not part 

of the QSAR training set, was also assessed by domain of applicability (Leverage and 

Euclidean based applicability domain). Most of the molecules were followed the same domain 

as a training set; hence, predictions were reliable. The 2D descriptors were related to topology 

and 3D arrangement of atoms in molecules that can be used to design new inhibitors with good 

potency.  

The docking results of screened molecules ligand 44561182 were exhibited consistency in 

terms of position into the active site and binding modes in all docking runs. As concluded from 

these studies, imidazo[1,2-a] quinoxaline using known active enabled to identify new hits with 

good in silico activities and binding poses, but in vitro assay to verify their experimental 

activity need to be done. 
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