

PHYTOCHEMICAL EVALUATION AND FUNCTIONAL GROUP DETECTION OF ETHANOLIC LEAF AND ROOT EXTRACTS OF Datura metel

Chieme Sunday Chukwudoruo^{1*}, Stanley Chukwuma Okereke²,

Chinyere Henrietta Onuoha¹, Olachi Lilian Osuagwu¹,

Chioma Blessing Onowoh¹ and Favour Ntite Ujowundu¹

¹Department of Biochemistry, Federal University of Technology, Owerri

²Department of Biochemistry, Abia State University, Uturu

*Corresponding Email: <u>cchukwudoruo@gmail.com</u>

Cite this article:

Chieme S.C., Stanley C.O., Chinyere H.O., Olachi L.O., Chioma B.O., Favour N.U. (2022), Phytochemical Evaluation and Functional Group Detection of Ethanolic Leaf and Root Extracts of datura metel. African Journal of Biology and Medical Research 5(1), 30-52. DOI: 10.52589/AJBMR-96ZVVKMM

Manuscript History

Received: 12 Oct 2021 Accepted: 3 Nov 2021

Published: 22 Feb 2022

Copyright © 2022 The Author(s). This is an Open Access article distributed under the terms of Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), which permits anyone to share, use, reproduce and redistribute in any medium, provided the original author and source are credited. **ABSTRACT:** Datura metel is a plant with various medicinal parts. This work gears towards the phytochemical evaluation, identification and functional group detection of ethanolic leaf and roots extracts of Datura metel. Gas Chromatography-Mass spectrometry (GC-MS) and Fourier –Transform Infrared Spectroscopy (FTIR) analytical instruments were used for studies. The preliminary phytochemical evaluation of plant parts revealed presence of alkaloids, flavonoids, saponins, tanins and terpenes. The chromatogram result for the Gas Chromatography-Mass Spectroscopy (GC-MS), detected 30 bioactive compounds with high percentage composition and molecular weights. Thiophene, 2,3-dehydro, an isomer of dehydrothiophene (C_4H_6HS) had the least retention time and highest percentage composition of 38.914% for the root extracts while 2-methyl-3thiosemicarbazide $(C_2H_7N_3S)$ and Benzene hexanenitirle, dimethyl- \mathcal{E} -oxo ($C_{14}H_{17}HNO$) both had the highest percentage composition for the leaf extracts. The chromatogram result for Fourier -transform infrared spectroscopy (FTIR) revealed that alkenes (=C-H) and carbon tetrachloride $(C-CL_4)$ had the highest and least wavelengths for both extracts respectively. The presence of bioactives detected and identified in this study, showed that plants may serve as reservoir for biologically active compounds and hence in addition to its medicinal values can also be used for diverse purposes in the industry.

KEYWORDS: Datura metel, Phytochemicals, FTIR, GC-MS, Functional group, Bioactives.

INTRODUCTION

Nature has endowed us with so many botanical wealth which provides us with medicinal plants that has some potential and valuable effect in health care. Medicinal plants has been used for health purposes for several thousands of years (Chavhan etal.,2018), due to the presence of phytochemicals synthesized as secondary metabolites that helps to protect them from environmental damage and also contribute to their colour, aroma and flavor (Mattai,2010).

Datura metel is one of the most commonly used medicinal plant. It was first described by the scientist Linneaus in the year 1753 (Dixon and Jeena, 2017). The plant is said to have originated from North America (Alabiri etal., 2013) and widely cultivated in all tropical and subtropical regions of the globe for its beautiful flowers (Monira and Munan, 2012). It has numerous common names such as Jimson weed, Thorn apple, Devil apple, Angel trumpet (Jmdhade etal.,2010). Datura metel is about 1.5m tall, its leaves are simply broad and dark green in colour. The fruits are like capsule covered with short spines or thorns (Monira and Munan, 2012). According to several reports on preliminary phytochemical investigations, Datura metel, is found to be rich in some bioactive compounds like alkaloids, flavonoids, tanins, saponins. Scopolamines is its major bioactive components under category of alkaloids (Dixon and Jeena, 2017) and are responsible for its medicinal properties. Datura metel is used in treatment of some diseases like epilepsy, heart disease, asthma (Alabiri etal., 2013), in Nigeria. it also has a wide application in pharmacology as it is used in producing some medications used for wound healing, treatment of hairfall, dandruff, skin disorder, diarrhea, fever, pain etc. (Yang etal., 2014). Despite all these application, Datura metel also have intoxicating and hallucinogenic properties.

Gas Chromatography and Mass Spectometry (GC-MS) is mainly used in the separation and analysis of multi component mixtures such as essential oils, hydrocarbons and solvents (Kadhim etal. 2010). It is also used for quantitative and qualitative analysis of mixtures, purification of compounds and determination of thermochemical constants in solution and vapor pressure and activity coefficient. GC-MS analysis can identify nature of compounds even less than 1mg present in crude plant extract (Muthulaskshmi etal. 2012). Fourier transform Infrared Spectroscopy (FTIR) has been the most powerful tool for identifying the type of chemical bond or functional group present in analytes. It interprets its infrared absorption spectrum by varying observation in wavelength of the light absorbed which is the salient feature of the chemical bonds as seen in the annoted spectrum. (Coates, 2000)

It is important to isolate, identify and characterize, the bioactive present in these traditionally grown medicinal plants as well as attention given to harness other components beneficial for man such as industrially and agriculturally, hence the objective of this research work.

MATERIALS AND METHODS

Collection and authentication of plant materials.

The leaves and roots of *datura metel* were harvested in Federal University of Technology Owerri, Imo State. It was identified by a plant taxonomist, Dr D.I. Edet from department of Forestry and Wildlife, School of Agricultural and Agricultural Technology, Federal University

of Technology Owerri. The plant was pressed by Dr, F.A. Faruwa, and deposited at the university herbarium with voucher number FUTO/FW/HERB/2019/052 for reference purpose.

Preparation of plant extracts

The plant leaf and root were detached, washed free of sand and debris, air-dried for about five weeks at room temperature, and pulverized using an electric blender. Solvent extracts of *datura metel* was prepared by weighing 50g of powdered sample into 1000ml capacity beaker, then 500ml of ethanol added to each beaker containing the samples, the sample was thoroughly mixed and allowed to stand for 24 hours, then filtered, using muslin bag and whatmann filter paper . The sample was further concentrated using a water bath at a temperature of 35° C, covered firm and refrigerated at temperature of 4° C.

Preliminary phytochemical screening

Wagner reagent test was used in testing for alkaloids. From each of the extracts, 3ml filtrate was acidified in 1ml hydrochloric acid and few drops of wagner'sreagent added. A reddish brown precipitate indicated the presences of alkaloids. Lead Acetate was used to test for presence of flavonid. 1ml of each extracts was taken and lead acetate solution added, a yellow precipitate confirmed the presence of Flavonids. To 1ml of extracts, 20ml of distilled water was added and agitated in a graduated cylinder for 15 minutes. The formation of 1cm layer of foam indicated presence of saponins, using the foam test. Terpenoids present was tested using salkwoski test, hence 5ml of each extract was added to 2ml of chloroform and 3ml of Con H₂SO₄ to form a layer of reddish brown coloration, its interface was said to form a positive result. Presence of tannins was determined using iron (iii) chloride solution (FeCl₃). Hence 5% FeCl₃ solution was added to extract and a blue black colouration was formed.

Structural elucidation of samples

This was carried out using GC-MS procedure. Exact 2g of extracted powder was weighed into an amber glass bottle and added 3ml ethanol. The sample was then shaken vigorously for 2 hours filtered and concentrated, 2ml of the extracted samples were then analyzed in GC column. This operation was carried out using GC (Agilent 6890N) and MS (5975B MSD). It was equipped with DB-5ms capillary columns (30m by 0.25m) film thickness (0.25µm) and temperature was set at 40°C, then to 15°C and 230°C at the rate of 10°C/mins which held for 5 minutes. Heluim served as gas carrier having a flu rate of 1ml/mins. Split rate and ionization voltage were 110ev and 70ev respectively. Phytochemicals were identified by mass spectra peak value which was compared with the database of National Institute of Science and 'Technology.

Determination of functional bonds and chemical groups

This was carried out using Fourier transform spectrometer (vectex 80, Bruker optics) equipped with an attenuated total reflectance (ATR) accessory (MIRracle, Pike technologies). The spectrum was recorded in the spectral range of 600cm⁻¹ to 4000cm⁻¹ at a resolution of 2cm⁻ with a mercury cadmium tellun dedectector (MCT Dectector) (Coates, 2000).

RESULT

The preliminary phytochemical screening for active compounds of ethanolic leaf and root extracts of *Datura metel* was qualitatively analyzed and the results listed in table 3.1. Then Table 3.2.and 3.3.Showed results from Fourier Transform Infrared Spectroscopy (FTIR) analysis revealing presence of alkenes, alkane, amine, alkyl halides and isothiocynate groups for both ethanolic extracts.

The Gas Chromatography Mass spectrometry (GC-MS) chromatogram for both extracts of *Datura metel* showed various peaks and indicated presence of 30 compounds as shown in tables 3.4 and 3.5. These compounds were identified and confirmed by interpretation of mass spectrum of GC-MS using the database of National Institute of Standards and Technology (NIST).

Fig 1.0. The chromatogram of the FTIR analyses of the ethanolic leaf extract of *Datura metel*

Fig 2.0. The chromatogram of the FTIR analyses of the ethanolic root extract of *Datura metel*

Fig 3.0. The chromatogram of the GC-MS analyses of the ethanolic Root extract of *Datura metel*

Fig 4.0. The chromatogram of the GC-MS analyses of the ethanolic leaf extract of *Datura metel*

Table 3.1. Results on the preliminary phytochemical screening of ethanolic leaf and root extract of *Datura metel*.

PHYTOCHEMICAL RESULTS/INFERENCE	
ALKALOID	+
SAPONINS	+
TANINS	+
FLAVONOIDS	+
TERPENES	+

KEY + = PRESENT

S/N	Wavelenght	Functional Group
1	3054.6	=С-Н
2	2987.6	C-H
3	2920	C-H
4	2309.1	Isothiocyanate (-NCS)
5	2152.5	Isothiocyanate (-NCS)
6	2005.3	Isothiocyanate (-NCS)
7	1932.6	Amines
8	1442	Methyl (C-H)
9	1265.4	C-N
10	896.4	C-H
11	730	-(CH ₂) _n
12	702.6	C-Cl

Table 3.2. Results for FT-IR analysis of ethanolic Leaf extract of Datura metel

Table 3.3. Results for FT-IR analysis of ethanolicRoot extract of Datura metel

S/N	Wavelenght	Functional Group
1	3054.6	=С-Н
2	2997.2	-C-H
3	2201	-C=C-
4	2081.7	Transition metal carbonyls
5	1992.3	Transition metal carbonyls
6	1422	C=C
7	1265.4	C-0
8	896.4	C-H
9	730.6	C-Cl
10	702.6	-OH

Table 3.4 Result for GC-MS Analysis of the ethanolic Leaf extract of *Datura metel*

S /	Retention	Name of compound	Molecular	Molecular	%
Ν	time(R.T)		weight	formular	composi
0	(Mins)				tion
1	1.441	Adenosine,4'de (hydroxymethyl)-4'-	442	C20H22N6O	20.804
		(N-ethylaminoformyl		6	
2	1.441	Chlorozotocin	313	C ₉ H ₁₆ ClN ₃ O	20.804
3	1.983	2-methyl-3-thiosemicarbazide	105	C ₂ H ₇ N ₃ S	38.621
4	1.983	Benzenehexanenitrile, _{β,β} -dimethyl-ε- oxo	215	C14H17NO	38.621
5	3.793	Hexestrol, pentafluoropropionyl-	416	$C_{21}H_{21}F_5O_3$	3.065
6	3.793	(1,2-Diethylethylene)bis(phenylene) diacetate	354	$C_{22}H_{26}O_4$	3.065
7	4.654	3-	218	C10H9F3O2	5.575
		Methylbenzylalcohol,trifluoroacetate			
8	4.654	4-Methylbenzyl alcohol,	218	$C_{10}H_9F_3O_2$	5.575
	527 11 (card)	trifluoroacetate			120121212
9	7.878	Trisiloxane ,1,1,1,5,5,5-hexamethyl-	296	C9H28O3Si	5.282
		3- 〔(trimethylsily)oxy〕		4	
10	7.878	Cyclotetrasiloxane,octamethyl-	296	C8H24O4Si4	5.282
11	9.502	Estragole	148	C10H12O	1.521
12	9.502	Anethole	148	C ₁₀ H ₁₂ O	1.521
13	12.418	(-)-Epigallocatechin	290	C15H1406	1.580
14	12.418	Catechin	290	C15H14O6	1.580
15	20.392	Ellagic acid	302	C14H6O8	2.632
16	20.392	1,1'-Biphenyl) -3,3'-	302	C16H14O6	2.632
		dicarboxaldehyde,6,6'-dihydroxy- 5,5'-dimethoxyl			
17	21.864	Vitamin E	430	C29H50O2	0.797
18	21.864	(+)-γ-Tocopherol,o-methyl-	430	C29H50O2	0.797
19	26.119	3-Pyridinecarboxylicacid,2,7,10-	597	C32H39N01	1.551
		tris(acetyloxy)-			
		1,1a,2,3,4,6,7,10,11,11a-decahydro-			
		1,1,3,6,9-pentamethyl-4-oxo-4a,7a-			
		epoxy-5H-cyclopenta (a)			
		cyclopropa (f) cycloundecen-11-yl			
		ester, (1Ar-			
		1aR*,2R*,3S*,4aR*,6S*,7S*,7aS*,8 E,10R*,11R* 11As*)			

20	26.119	Hexadecanoic 1a,2,5,5a,6,9,10,10a- octahydro-5,5a-dihydroxy-4- (hydroxymethyl)-1,1,7,9- tetramethyl-11-oxo-1H-2,8a- methanocyclopenta (a) cyclopropa (e) cyclodecen-6-yl ester, (1aR- (1a,9a,10a))	586	C36H58O6	1.551
21	28.976	Lorazepam	320	C15H10Cl2 N2O2	2.630
22	28.976	Quinazoline-2-carboxaldehyde,6- chloro-4-(2-chlorophenyl)-	320	C15H8Cl2 N2	2.630
23	30.228	2,4-Imidazolidinedione,5-[3,4- bis[(trimethylsily)oxy]phenyl]-3- methyl-5-phenyl-1-(trimethylsilyl	516	C25H40N2O 4Si3	3.006
24	30.228	(+)-Prostaglandin F2 ⁸ ,4TMS Derivatives	642	C32H66O5S i4	3.006
25	31.392	Benzofuran-2-Carboxylic acid	162	C9H6O3	4.396
26	31.392	Benzofuran-5-carboxylic acid	162	C9H6O3	4.396
27	32.492	PGF2ă	354	C20H34O5	4.485
28	32.492	Aceticacid,1-acetoxyl-10a,12a- dimethyl-5-oxo-hexadecahydro-6- oxabenzo[3,4]ctclohepta[1,2- E]inden-8-yl ester	406	C23H34O6	4.485
29	33.533	ă-Tocopheryl acetate	472	C31H52O3	4.054
30	33.533	(±)-α-Tocopherol acetate	472	C31H52O3	4.054

Table 3.5 Result for GC-MS Analysis of the ethanolic root extract of Datura metel

S/N	Retention	Name of compound	Molecular	Molecular	%
	time		weight	formular	compo
	(R.T)(Mins)				sition
1	1.342	Thiophene,2,3 — dihydro	86	C4H6S	38.914
2	1.342	Thiophene,2,5 – dihydro	86	C4H6	38.914
3	5.323	Bis(2 - ethylhexyl)phytalate	390		0.542
				C24H38O4	
4	5.323	Diisooctylphythalate	390	C24H38O4	0,542
5	24.45	Iron (1,2-ethanediyl[bis(1-r) - ethyl - 2,4 - cyc]	426	C22H44FeP2	19.744
6	24.45	Hydrido - iron, [n - 5(1 - ethlcuc - bis(diisopropylph)]	426	C22H44FeP	19.744
7	24.68	3,7,11,15-Tetramethyl-2- hexadecen-1 -ol	296	C20H40O	1.497
8	24.68	Phytolacetate	338	C20H42O2	1.497
9	24.89	Phytylhexadecanoate	534	C36H70O2	3.664
10	24.89	hexadecanoicacid,3,7,11,15- tetramethyl-2-hexadecenylester, (R- (R,R-E)	534	C36H70O2	3.664
11	26.07	I-(+)-Ascorbicacid 2,6- dihexadecanote	652	С з вН 680 в	6.501
12	26.07	n-Hexadecanoic acid	256	С16Н32О2	6.501
13	27.335	Ethyl iso-alocholate	436	C26H44O5	0.568
14	27.335	1-Heptatriacotanol	536	C37H76O	0.568
15	27.85	Linoelaidic acid	280	C18H32O2	8.403
16	27.85	(Z)-18-Octadec-9-enolide	280	C18H32O2	8.403
17	28.010	4-Androstene-3,17-dione17- mono(O-methyloxime	315	C20H29NO2	1.188
18	28.010	5,19-cyclo-5ß-androst-6-ene-3,17- dione	284	C20H29NO2	1.188

19	31.234	3',8,8'-Teimethoxy-3-piperidyl- 2,2'-binaphthalene-1,1',4,4'- tetrone	487	C28H25NO7	0.277
20	31.234	6,19-Cycloandrostane-3,7- diol,3ß- methoxyl	320	C20H32O3	0.277
21	32.311	(S)-(+)-Epichlorohydrin	92	C ₃ H ₅ CIO	0.859
22	32.311	Oxirane(chloromethyl)	92	C ₃ H ₅ CIO	0.859
23	33.865	9,10-Anthracenedione	208	C14H8O2	4.339
24	33.865	9,10-Phenanthrenedione	208	C14H8O2	4.339
25	35.757	Amodiaquine	355	C20H22CL N3O	6.118
26	35.757	Amopyroquine	355	C20H22CL N3O	6.118
27	36.502	β-Tocopherol,o-methl	430	C29H50O2	2.003
28	36.502	(+)- _γ -Tocopherol,o-methyl	430	C29H50O2	2.003
29	37.602	7H-Pyranol (2,3-c) acridin-7- one, 3,12-dihydro-6,11-dihydroxy- 3,3,12- Trimethyl-5-(3-methyl-2-butenyl)	391	C24H25NO4	5.382
30	37.602	1-Azaspiro (4.5) dec-3-ene,2- (diphenylmethylene)-4-methyl-1- phenyl	391	C29H29N	5.382

DISCUSSION

The phytochemical Evaluation of leaf and root ethanolic extract of *Datura metel* showed presence of alkaloid, saponins, tannins, flavonoid and terpenes. Studies are in line with results from Datura *metel Linn* by sundaramoorthy, 2014. Phytochemical are known for their biological activities such as antimicrobial, antioxidant, antifungal, anticancer and antidiabetic strength (Hossain, 2011). Tannins, Saponins, Flavonoids have anti-hypoglycaemic and anti-inflammatory properties, terpenes have analgesic properties and as well as central nervous system (CNS) activity (Ayoola etal, 2008). Alkaloids have antioxidant, antifungal, protective properties.

Fourier Transform Infrared Spectroscopy (FTIR) of both leaf and root ethanolic extracts of plant, showed presence of functional groups such as alkanes, alkenes, amines, isothicyanates and alkyl halides The wavelength study was in line with observation from *Cleome gynandra* leaf (Deepashree etal, 2013) were the band range between 20005.3m-2997.2m were transition metals and isothiocynate (-NCS). Wavelength of 2987m and 2920m indicates presence of compounds such as methyl (-C-H). Wavelength of 3054m showed presence of alkene (C=C). Wavelength of 1990m -2150m showed presence of nitrogen multiple and cumulative double bound compounds isothiocyanate (–NCS). Wavelength of 1932m indicates primary amines. Wavelength of 1150m -1210m, aliphatic chloro compound (C-CL). Wavelength within 1200m-1800m, showed transition metals and Wavelength of 590m-720m indicated Alcohol (-OH) and Hydroxyl compounds. (Coates 2000).

The results from GC-MS analysis showed that roots and leaves extracts of *datura metel* contained so many bioactive compounds belonging to various classes of phytochemicals which plays some biological roles in the body system as discussed in tables 4.1 and 4.2.

 Table 4.1 Biological Activity of Identified Compound in Ethanolic Leaf extract of Datura metel.

S/No	Compound Biological Activity	Uses	Reference
1	Adenosine,4 ' de(hydroxymethyl)-4'-(N- ethylaminoformyl)	Binds readily with adenosine than to other endogenous purines with two pharmacologically distinguishable type (a1 and2) to exert biological effect.	NCBI, 2021.
2	Chlorozotocin	A nitroso urea used for cancer therapy and analogue of streptozotocin	Cooke, 2006.
3	2 – methyl – 3 – thiosemicarbazide	Exhibit an anti- arrangement between thione S atom and hydrazine N atom	Jesus Valdes- Martinez, 2007.
4	Benzenehexanenitrile, $_{\beta, \beta}$ – dimethyl – ε – oxo	Is an Aromatic ketone	TSCA,2006
5	Hexestrol, pentaf luoropropionyl —	Non-steriodal estrogen previously used for estrogen- replacement therapy and treatment of certain hormone dependent cancers.	J.elks (2014).
6	(1,2 - Diethylethylene)bis(phenylene)diacetate	No activity reported	Nil
7	3 - Methylbenzylalcohol, trifluoroacetate	No activity reported	Nil

8	4 – Methylbenzyl alchol, trifluoroacetate	No activity reported	Nil
9	Trisiloxane, 1, 1, 1, 5, 5, $5 - hexamethyl - 3 - l(trimethylsily)oxy$	No activity reported	Nil
10	Cyclotetrasiloxane, octamethyl —	Used in manufacture of polymeric materials widely used in cosmetics	EPA.2016
11	Estragole	Used as flavouring agent in pharmaceutical industry, cosmetic and food industry, antioxidant, antimicrobial properties.	Friedman,2002
12	Anethole	Is the main fragrance and bioactive compound in some plant species. It has antimicrobial, antifungal, antihelmetic and insecticidal activity	Astani,2011
13	(-)-Epigallocatechin	It reduces inflammation, aid weight loss, helps prevent heat and brain disease.	Ansley2019
14	Catechin	It is a phenolic compound, mostly found in tea, cocoa and berries and have antioxidant actitvity.	Tania,2006
15	Ellagic acid	Natural phenol, antioxidant found in fruits and vegetables	Ryszand,2012
16	1,1'-Biphenyl) -3,3'-dicarboxaldehyde,6,6'- dihydroxy-5,5'-dimethoxyl	No activity reported	Nil
17	Vitamin E	Antiageing, Analgesic, Antidiabatic, Antiinflammatory, Antioxidant,	Juliana Kubala, 2021.
18	(+)- _y -Tocopherol,o-methyl-	Fat soluble antioxidant	Gamze Guelu, 2021.

African Journal of Biology and Medical Research

ISSN: 2689-534X

19	3-Pyridinecarboxylicacid,2,7,10-tris(acetyloxy)- 1,1a,2,3,4,6,7,10,11,11a-decahydro-1,1,3,6,9-	No activity reported	Nil
	pentamethyl-4-oxo-4a,7a-epoxy-5H-cyclopenta (
	a) cyclopropa (f) cycloundecen-11-yl ester, (
	1Ar- 1aR*,2R*,3S*,4aR*,6S*,7S*,7aS*,8E,10R*,11R* ,11As*)		
20	Hexadecanoic $1a,2,5,5a,6,9,10,10a$ -octahydro- 5,5a-dihydroxy-4-(hydroxymethyl)-1,1,7,9- tetramethyl-11-oxo-1H-2,8a-methanocyclopenta	No activity reported	Nil
	<i>laR-(1a,9a,10a)</i>		
21	Lorazepam	Used in healing anxiety disorder, active seizure, alcohol withdrawal, chemotherapy, induced nausea and vomiting	Julie Maves (2021).
22	Quinazoline-2-carboxaldehyde,6-chloro-4-(2- chlorophenyl)-	No activity reported	Nil
23	2,4-Imidazolidinedione,5-[3,4- bis[(trimethylsily)oxy]phenyl]-3-methyl-5- phenyl-1-(trimethylsilyl	No activity reported	Nil
24	(+)-Prostaglandin F2 ⁸ ,4TMS Derivatives	Notable for promotion of uterine contraction	Emmanuel etal, 2011
25	Benzofuran-2-Carboxylic acid	Anti-inflammatory, local anaesthetics, cytotoxicity against human cancer cell line.	Saku etal, 2010.
26	Benzofuran-5-carboxylic acid	Antiviral, antioxidant, anti-inflammatory, antioxidant, Antimicrobial, antitumor activity	Hayakwa etal, 2004
27	PGF2ă	Is a stable prostaglandin that stimulates the contraction of uterine and bronchial smooth muscle and tightening in some blood vessels	Jian Zhang etal, 2010.

African Journal of Biology and Medical Research

ISSN: 2689-534X

Volume 5, Issue 1, 2022 (pp. 30-52)

28	Aceticacid,1-acetoxyl-10a,12a-dimethyl-5-oxo- hexadecahydro-6-oxabenzo[3,4]ctclohepta[1,2- E]inden-8-yl ester	No activity reported	Nil
29	ă-Tocopheryl acetate	Also known as vitamin E acetate and safe for use in cosmetics and skincare products	SAS 2016
30	(±)-ă-Tocopherol acetate	Also known as vitamin E acetate and safe for use in cosmetics and skincare products	SAS 2016

Table 4.2: Biological Activity of Identified Compound in Ethanolic Root extract of Datura *metel*.

S /	Compounds biological activity	Uses	Reference
no			
1	Thiophene,2,3 — dihydro	Antimicrobial, analgesic, anti- inflammatory, antihypertensive and antitumor	Pillai etal, 2005
2	Thiophene,2,5 — dihydro	Inhibitors of corrosion of metals and fabrication of light- emitting diode in material science	Benabdlellh etal,2006
3	Bis(2 – ethylhexyl)phytalate	DEHP is used as plasticizers in many products, especially in medicinal device such as intravenous bags and tubing, blood bags, infusion tubing, peritoneal dialysis bags.	Hung P.C etal, 2008.
4	Diisooctyl phythalate	DIOP is used in rubber compounds for manufacture of automobile hoses and parts	Kent Carlson, 2010

5	Inon (1.2 other adjust this (1 methylethy)	No activity reported	Nil
5	$ITON (1,2 - etnaneatyt_bis(1 - metnytetnyt))$	vet	1111
	– ethyl – 2,4 – cyclohexadien -	yee	
6	Hydrido - iron, [n - 5(1 - ethlcuclohexadienyl)	No activity reported	Nil
	 bis(diisopropylphosphino)ethan 	yet	
7	3,7,11,15-Tetramethyl-2-hexadecen-1	No activity reported	Nil
	-ol	yet	
8	Phytolacetate	Used as a food	EU, 2012.
		addictive and	
		flavouring agent	
9	Phytylhexadecanoate	No activity reported	Nil
		yet	
10	hexadecanoicacid, 3, 7, 11, 15-tetramethyl-2-	No activity reported	Nil
	hexadecenvlester $[R - [R R - E]]$	yet	
	noxudoconylosici, (it (it,it D)	•	
11	I-(+)-Ascorbicacid 2,6-dihexadecanote	It is a vitamin C	Okenwa,
		compound, used for	2014
		treating cold, gum	-
		disease acne and	
		infections. It is also an	
		antioxidant in the skin	
		by scavenging and	
		quenching free	
		radicals generated by	
		ultraviolent radiation	
12	n-Hexadecanoic acid	Also called palmitic	Vasudevan
12		acid has anti-	2012
		inflammatory property	2012.
		and can be seen in	
		food addictives or as	
		surfactants in	
		cosmetics	
12	Ethyl iso alocholata	Also called Ethyl	Malathi
13	Euryi iso-alocholate	Cholate is more stable	etal 2016
		than other ligands and	ciai,2010
		and other figallus, allu	
		debudropteroate	
		aunthorse and can also	
		be used as	
		or used as	
14	1 Hontotriogotonol	Una anti abalastaral	Lovo
14	1-rreptainacotanoi	affect	iunwoi 2019
15	L incolaidia agid	It can modulate	David A 7
13			David A, L.
		cancer,	2015
		aineroscierosis,	
		obesity, tumour and	
1		diabetics	

16	(Z)-18-Octadec-9-enolide	Has antibacterial, anti-	Lalthanpuii
17	A-Androstene-3 17-dione 17-	Is a drug or nutritional	Van thuvne
17	$+-$ Androstene- $5,17$ -dione 17^{-}	supplement which	etal 2005
	mono(O-methyloxime)	increases testosterone	ctai, 2005.
		estrogen ratio	
18	5 19-cyclo-58-androst-6-ene-3 17-	Has androgenic	Charles
10	dione	activity	2012
19	3' 8 8'-Teimethoxy-3-piperidyl-	No activity reported	Nil
17	2.2'-binaphthalene-1.1'.4.4'-tetrone	vet	1 (11
20	6 19-Cycloandrostane-3 7-diol 38-	No activity reported	Nil
20	methoxyl	vet	1 (11
21	(S)-(+)-Epichlorohydrin	Used to produce	ECN.2003
		glycerol, plastics.	
		epoxy glues and resins	
22	Oxirane(chloromethyl)	Also known as	Boogaard
		ethylene oxide, used to	P.J.2014
		make detergents,	
		thickeners, solvents.	
23	9,10-Anthracenedione	Also called	IUPAC
		Antraquine, serves as	2014
		building blocks for	
		dyes, bleaches, pulp	
		for paper making	
24	9,10-Phenanthrenedione	Serves as initial	Robert,2013
		mediator for electron	
		acceptor/donor	
		containing formate	
		dehydrogenase,	
		reduction of carbon	
27		dioxide to formate.	
25	Amodiaquine	Medication used in	Nair etal,
26	· ·	treating malaria,	2012
26	Amopyroquine	Medication against	Lewis
		stroip of <i>Plagmodium</i>	Noble,2012
		faloinaruim	
27	B-Tocopherol o-methl	Has antioxidant	Zing et al
21	s-rocopheron,o-mean	properties	2013
28	(+)Tocopherol.o-methyl	Scavenge ROS during	Zing etal.
	() / F, · · · · · · · · · · · · · · · ·	lipid oxidation	2013
29	7H-Pyranol (2,3-c) acridin-7-one,	No activity reported	Nil
	3,12-dihydro-6,11-dihydroxy-3.3.12-	yet	
	Trimethyl-5-(3-methyl-2-butenyl)		

Volume 5, Issue 1, 2022 (pp. 30-52)

30 1-Azaspiro (4.5) dec-3-ene,2- (diphenylmethylene)-4-methyl-1- phenyl No activity rep yet	orted N1I	
--	-----------	--

CONCLUSION

Presence of various bioactive compounds in both plant extracts reveals the biological, pharmacological and industrial strength of the *Datura metel*. Antioxidants, anticancer, hypocholesterolemic, hypoglycemic, antibacterial activities, as seen in compounds got from phytochemical screening, proves that plant has many medicinal properties. Root extracts effect of plant as seen in epichlorohydrin shows plants importance in industrial use as they can exert harmless or harmful effects. In the industy. Results from this study has justified that *datura metel* leaf and roots may be very useful in pharmaceutical, health, medicinal and industrial applications for the welfare of human

REFERENCES

- Adegoke S.A. and Alo, L.A. (2013). *Datura stromonuim* poisioning in children. *Nigeria Journal of Clinical Practice* .16(1):116-118.
- Aiyadurai N., Muthu M., Palaniyandi S. and Rajangam U. (2017). Nematicidal activity of aqueous leaf extracts of *Datura metel*, *Datura innoxia and Brugmansiasuaveolens*. *American Journal of Entomology* 1(2): pp.39-45
- Akharaiyi F.C. (2011). Antibacterial and antioxidant activities of *Datura metel*. *International Journal Pharm.Tec.Rex.* 3(1):478-483.
- Alabiri T.H., MusalamiA. H., Hossia, M.A., Weli A.M and AL-Riyami Q. (2014). Comparative study of phytochemical screening, antioxidant and antimicrobial capacities of crude plant of *Datura metel 1. Journal King Univ, Sci 26:237-243*.
- Ali Esmail Al-Snafi. (2017). Medicinal importance of *Datura Fatuosa* and *Datura stramonium*-a review. IOSR *Journal of Pharmacy*.7 (2): 43-58.
- Anitha M., Punitha M and Leena G.B. (2014). Phytochemical screening of *Datura metel* linn and its antimicrobial activity on selected human pathogens. *International Journal of Pharmacy*.7 (2):43-58.
- Ansley Hill (2019). EGCE (Epigallocatechin gallate). Benefits, dosages and safety- a review. *Journal of nutrition*. 100: 23-27.
- Astani A., Reichling J and Scnitzler P. (2011). Screening for antiviral activities of isolated compunds from essential oils. Evidence based complement alternative. Journal of Medicine. 253643:1-8.
- Ayoola, G.A., Coker H.A., Adesegun, S.A., Adepoj Bello A.A., Obaweya K., Ezennia E.C and Atangbayilla T.O. (2008). Phytochemical screening and oxidant activities of aqueous and methanol stem extracts of *scostusafeker gawl* (*costaceae*). African Journal of Biotechnology 9; 31 4880- 4884
- Babalola S.A. (2014). *Datura metel* Analgesic or Hallucinogen? 'sharo' prospective. *Middle East Journal of Scientific Research*. 21(6):993-997.
- Bauzidi A., Mahdeb. N and Kara .N. (2011). Toxicity studies of alkaloid of seeds of *Datura stramonuim* and synthesis alkaloids in male rats. *Journal Medicinal Plants Research*.5 (15): 342-343.

- Benabdellah M., Yahyi A., Dafali A., Hammouli B, Benabdellah M., yahyi A and
 Etthouhami A (2006). Investigation of inhibitive effect of triphenyltins. 2thiophene carboxylation corrosion of steel in 2m. HPO solution. *Application Surf.Science* .252:8341-8347.
- Beta S., Dawaung C., Bot C., Abraham K., Abdulateef H., Agwu E., Kujul N and Udokainyang A.D. (2018). Plant remedies used for livestock by farmers in southern senatorial zone, Plateau State. Nigeria. *European Journal of Medicinal Plants*.25 (2):1-15
- Boogard P.J., Van Puijvelde. M.J and Urbanus J.H (2014). Biological monitoring to accesse dermal exposure to ethylene oxide vapors during air incidental release. *Toxicology Letters* 231,387-390.
- Charles D. Kochakian (2012). Anabolic-Androgenic Steroid. Springer Science and Business Media. Pp171-115
- Chavhan S.A, Kadam S.D. and Sapkal P.N. (2018). Pharmacognostic Review on *Datura metel*. *International Journal of Pharmacognosy and Chineese Medicine*. 2(4): 600.
- Cooke M.M., (2006). Therapy of digestion disorder. *Elsevier Health Science*. pg 477. ISBN.978-1-4160-01375.
- Coates.J. (2000). Interpretation of Infrared Spectra: A potential approach In: Meyers R.A., ED, Encyclopedia of Analytical Chemistry, John Wiley &Sons LTD.Chichester, 10881-10882.
- David A.Z., Mohd E.N., Azlan A. and Chan Y.M. (2013). The Trans fatty acid content in milk and its associate with material diet among lactating mothers in Malaysia. Pg. 46-50.
- Dixon D. and Jeena G. (2017).Research article on comparison of different solvent for phytochemical extraction potential from *Datura metel* plant leaves. *International Journal of Biological Chemistry*.11:**17**-22.
- Emmanuel Recotti and Garret Fitgerald (2011). Atherosclerosis, thrombosis and inflammation. *Vascular biology* 31(5): 986-1000.
- Environmental Protection Agency USA (2016). Aggregate computational Toxicology Response (ACTOR). Http://actor.epa.gov/actor/faces/ACTORHOME
- European Chemical News (2003). Epichlorohydrin. National Library of Medicine 79(12) 17-19.
- EU Food improvement Agent (2012). Adopting the list of flavoring substance by European parliament and of the council and repeating commission regulation (EC). NO /565/2000.
- Friedman M., HenikaP. R and Mandwell R. E (2002). Bacterial activity of plants essential oil and some of the isolated constituent against *Camphylobacter jeguni*, *Eschericia Coli, Listeria monocytogens* and *Salmonella enterica. Journal of Food Protein.*65:1545-1560.
- Gamze Guelu, and Serkan Seli (2021). Antioxidant activity in Olive oil. Olives and Olive Oil in Health and Diesaes Prevention (2nd Edition).pg. 245-250.
- Ganesh.S. Radha.R and Jayshree.N. (2015).A review on phytochemical and pharmacological status of *Datura Fastuosa*linn. *International Journal of Multidisciplinary Research and Developmant* 2(4):602-605.
- Hameed I. H., Altameme H. J and Didan S. A (2016).*Artemisia annua*: Biochemical products analysis of methanol aerial parts extract and anti-microbial *Journal of Pharmaceutical, Biological and chemical science*. 7(2):1843-1868.

- Hayakwa, I,Shioya R., Agatsuma T., Funekwa H., Naneto S., Sugano Y.,(2004). 4-hydroxymethyl-6- phenylbenzofuran-2- carboxylic acid ethyl esters derivatives as potent antitumour agent. Bio org. Med. Chem.Letter. 14: 455- 458
- Hossain M.A. and Nagooru M.k. (2011). Biochemical profiling and total flavonoid content of leaves crude extract of endemic medicinal plant amydaline terminal L. Kunth. *Pharmacognosy Journal* 3(24), 25-29.
- Huang P.C., Tien C.J. Sun Y.M and Lee. C.C. (2008). Occurance of phythalates in sediment and biota. Relationship to aquatic factor and biota-sediment accumulation factor. *Chemsphere* .vol 73 nos 4. pp 539-544.
- Ilondu E. M and Lemy E.G. (2018). Studies on the diversity of snake repellant plants within some communities in Delta State Nigeria. *International Journal of plant, animals and Environmental Science* 8(1):16-24.
- Indra R., Bachheti R. K., Joshi A and Pnday D. P. (2013). Phytochemical properties and elemental analysis of some non-cultivated seed oils collected from Garwal Region,Uttarkhand (India) *.JICRGG*. 5(1):232-236
- International Union of Pure and Applied Chemistry (2014). Nomenclature of organic Chemistry. IUPAC Recommendation and Preferred Names the Royal Society of Chemistry pp.724-729.
- Jamdhade M.S., Survase S. A., Kare M. A and Bhuktar A.S. (2010). Phytochemical investigation of extracts and the solvent fractionates of the aqueous extracts of *Eichhorniacrassipes. Journal Pharmacology Research* 4(5):1405-1406.
- J.Elks (2014). The dictionary of drugs: chemical data: chemical data, structure and bibliographies. Springer pp.162-ISBN: 978-1-4757-2085-3.
- Jesus Valdes-Martinez and Ruben Alfredo Toscano. (2007). 2-methy-3- thiosemicarbazide. *Acta Crystallographic section E.* Structure Report Online 63(10): 2.
- Jian Zhang, Yangun Gong and Ying Yu (2010). PGF2 receptors: a promising theraupeutic target for cardiovascular disease. Frontiers in Pharmacology. 23:24-26.
- Julie marves (2020). Lorazepam (Atwan). Everyday Health. Pp.23-25.
- Kadhim M. J., Soasa A. A and Hameed I.H. (2016). Evaluation of anti-bacterial activity and bioactive chemical analysis of *Ocimum basilicum* using Fourier Transform Infrared (FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques. *International Journal of Pharmacognosy and Phytochemical Research* .8(6):127-146.
- Kent Carlson and Leslie E. Patton (2010). Toxicity review of dissoctyl phthalate (DIOP). United State Consumer Product Safety Commission pg. 1-16.
- Khan Z. S and Nasreen S. (2010).Phytochemical analysis, antifungal activities and mode action of methanol extract from plants against pathogen. *Journal Agricultural Technology*. pg. 274-275.
- Lalthanpuii P.B. Zarzokimi and Kholhing L.A. Chandama. (2019) Chemical Profiling, antibacterial and antiparasitic studies of imperata cylinderica. Journal of Applied Pharm. Science. 9(12): 117-121.
- Lewis Noble W., Raymond Tietz F., Yun Shik K and Burckhalter J.H. (2012). Antimicrobial agents, Synthesis of Amopyroquine. *Journal of Pharmaceutical Science*. Volume 52, issue 6. Pp600-61
- Love Junweei, Wanxi Peng (2014). Molecular and function of rosewood. Pterocarpus canbodianus, Arabic Journal of Chemistry Volume 11, issue 6. Pg763-770.
- Malathi L.K., Anand Anbarasu and Sudha Ramiah. (2016). Medical and biological computional laboratory, school of bioscience and technology. Vit university Vellore India. Indian *Journal of Pharmaceutical Science*. 78(6) 780-788.

- Mathai, K. (2010). Nutrition in adult. *Kruse's Food, Nutrition and Diet Therapy*. 10th edition, pg 24-27.
- Monir K. M and Munan S.M. (2012). Review on *Datura metel* a potential medicinal plants. *Global Journal of Research on Medicinal Plant and Indigenous Medicine* .1(4):123-132.
- Muthulakshmi A., Margret J and Mohan V (2012). GC-MS analysis of bioactive components of *Ferniale Phantumcorrea* (Rutaceae). *Applied Pharmac. Sci.* (2):69-74.
- Nair A., Abrahamsson B., Barend D., Groot D., KoppS., Polli J., Shah V and Dressman J. (2012). Biowaiver monographs for immediate release solid oral dosage Amodiaquine hydrochloromate. Journal of Pharmaceutical Science. 101(12): 4390-401.
- National centre for biotechnology information (2021). Pubchem compound summary .https:/pubchem.ncbi.nlm.nih.gov/compound/10071499.
- Okenwa Igwe and Okwunodulum Felicia (2014). Investigationn of Bioactive phytochemical compunds from the chloroform extract of the leave *of phyllantus amaraus* by GC-MS Technique. International Journal of Chemistry and Pharmaceutical Science vol 2(1): 554-560.
- Pillai A.D., Rathod P.D., Xavier F.P, Pad H, Sudarasanam V and Vasu. K.K. (2005). Tetra substituted thiophene as anti-inflammatory agents: exploitation of analoguebased drug design. *Bioorganic Med.Chem.13:* 6685-6695.
- Robert A. Kanaly and Natsuko Hamamura (2018). 9, 10-phenanthrenedione biodegradation by soil bacteria and identification of transformation product. *Chemospehre* 92(**11**) 1442-1449.
- Ryszard Amarawicz and Michael Janiak (2019). Natural phenolic found in fruits and vegetables .Encyclopedia of Food Chemistry pg. 458-460.
- Saku O., Saki M., Kurokwara K., Ikeda T., Takizawa and Uesaka N (2010). Synthesis study on selection adenosine A2A receptor antagonists: synthesis and structure activity relationship of novel benzofuran derivatives. Bioorganic and Medicinal Chemistry Letter Vol. 20. Nos 3 pp 1090-1093.
- Sood P. Modgil R., Sood M and Chuhan P (2012). Anti-nutrient profile of different hemopoduim cultivers leaves. *Annual Food Science and Technology* 13(1) 68-74
- Sundaramoorthy Sanutha, Mani Deepa, Nagaraj Sugitha, Sathiavelu Mythili and Arunachalem Sathiavelu (2014). Antioxidant activity and phytochemical Analysis of Datura metel. International Journal of Drug Development and Research 254-260.
- Tania R.D. and Pedro F. O (2018). Phenolic compunds very abundant in tea, coca, and berries. *Encyclopedia of Reproduction* pg. 458-464.
- Toxic substance control Act (TSCA). Chemical substance Inventory: user guide by United State, Environmental Protection Agency. Office of Toxic Substance.pp25- 30.
- Van Thuyne W., Van Eenno P., Mikulcikora P., Deventus K and Delbeke F (2005). Detection of androst-4-ene, 3, 6, 17-trione. And its metabolite in Urine by Gas Chromatography. 19(9)689-95.
- Vasudevan Aparna (2012). Anti-inflammatory, property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chemical Biology and Drug.30: 25- 29.
- Visveshwari M., Subbaiyiyan B and Thagapandian V. (2017). *Datura metel* is deleterious to the visual cortex of adult Wister Rats. *Advances in Applied Science Research* 3(2):944-949

- Yang B., GuoR., Lilin Y., Wang C., Shu Z., Wang Z., Zhang J., and Xia Y. (2014). Anolides from the leaves of *Datura metel* and their inhibitory effect on nitric oxide production. Molecules.19:4548 - 4559.
- Zingg J.M., Han S.N., Pang E., Meydani M., Maydani S.N and Azzi A. (2013). In vivo regulation of gene transcription by alpha- and gamma tocopherol in murine T. Lymphocytes. Archives of Biochemistry and Biophysics 538-119.