Volume 7, Issue 2, 2024 (pp. 48-58)

GAS CHROMATOGRAPHY-MASS SPECTROSCOPY AND FOURIER TRANSFORM INFRARED PROFILING OF THE BIOACTIVE COMPOUNDS PRESENT IN METHANOL LEAF EXTRACT OF SOLANUM AETHIOPICUM FROM IMO STATE, NIGERIA

Osuji-Kalu Nnenna Chinenyenwa^{1*}, Ene Aloysius Chinedu² and Chukwudoruo Chieme Sunday³

¹⁻³Department of Biochemistry, Federal University of Technology, Owerri.

*Corresponding Author's Email: <u>osujikalunnenna19@gmail.com</u>

Cite this article:

Osuji-Kalu N. C., Ene A. C., Chukwudoruo C. S. (2024), Gas Chromatography-Mass Spectroscopy and Fourier Transform Infrared Profiling of the Bioactive Compounds Present in Methanol Leaf Extract of Solanum Aethiopicum from Imo State, Nigeria. African Journal of Biology and Medical Research 7(2), 48-58. DOI: 10.52589/AJBMR-WNXGCVPM

Manuscript History

Received: 11 Jan 2024 Accepted: 25 Mar 2024 Published: 22 Apr 2024

Copyright © 2024 The Author(s). This is an Open Access article distributed under the terms of Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), which permits anyone to share, use, reproduce and redistribute in any medium, provided the original author and source are credited.

ABSTRACT: *The study aimed to access the bioactive compounds* and functional groups present in Solanum aethiopicum using the Gas Chromatography coupled with mass spectrometer (GCMS) and Fourier Transform Infrared Spectroscopy (FTIR). The GCMS showed Solanum aethiopicum showed a total of thirty-seven bioactive compound with the highest abundance being Squalene (21.13%), Palmitoleic acid (16.63%), 13-Octadecenal (16.63%) and 9-Octadecenoic acid (17.62%). Fourier Transform Infrared Spectroscopy of Solanum aethiopicum showed the presence of functional groups which include alkanes, alkenes, alkynes, primary (1^0) and secondary (2^0) amines, amides, imino, epoxy, peroxides, carboxylic esters, ethers, primary (1^0) , secondary (2^0) and Tertiary (30) alcohols, phenols, aldehydes, thiols, cyanate, isocyanates and alkyl halides. These bioactive compounds with reference to literature revealed a variety of biological functions spanning across antibacterial, anti-inflammatory, anti-oxidant, analgesic, antimalarial, antifungal, anti-tumour, neuroprotective, anti-tumour, anti-cancer, anti-seizure, anti-allergy, anti betaamyloid protein aggregation.

KEYWORDS: *Solanum aethiopicum*, GCMS, FTIR, Phytochemicals.

Volume 7, Issue 2, 2024 (pp. 48-58)

INTRODUCTION

The use of herbs in treating ailments is as old as mankind (Petrovska, 2012). Human instincts were the major drive to the beginning of the use of plants as medicine (Stojanoski, 1999). Plant use in traditional medicine and by extension orthodox medicine is globally on the increase and this is majorly attributed to the active phytochemicals present.

Solanum aethiopicum belongs to the Solanaceae family. It is often called African eggplant, bitter tomato, scarlet eggplant and garden eggs. The specie Solanum aethiopicum is believed to have an origin from Africa and was domesticated from the wild Solanum anguivi, through the semi-domesticated Solanum distichum both of which are found in tropical Africa (Anaso, 1991; Lester, 1998). Solanum aethiopicum is one of the most widely grown and consumed vegetable plant species in Africa and contains a great amount of nutrients (Kamga, Kouamé, Atangana, Chagomoka & Ndango, 2013). Solanum aethiopicum is an important food source as the fruits and leaves are used to prepare stews and soups. Moreso it is also used to treat certain diseases due to its phytochemical constituents, and also a rich source of important macronutrients and micronutrients (Han, Opoku, Bissah & Su, 2021). Solanum aethiopicum grows to about 2.5 m in height and is often a branched deciduous shrub. On the stems, the leaves are alternately arranged and have smooth or lobed margins. Leaf-blades can reach a length of up to 30 cm and a width of 21 cm. The leaves' petioles are oval or elliptical, reaching a length of up to 11 cm (Bukenya & Carasco, 1999).

They are the Gilo, Shum, Kumba and Aculeatum group (Lester & Daunay, 2003). The African eggplant is often grown as an annual, but generally a perennial, plant with stems that become more or less woody and persist. It grows well in deep, well-drained soils. Cultivation of African eggplant is mainly dependent on the rain, but irrigation can be applied during the dry seasons. The African eggplant requires a pH of 5.5–6.8, and thrives well at daytime temperatures ranging between 20–30 °C, but it can tolerate 10–40 °C. It cannot tolerate very cold or waterlogged conditions (James *et al.*, 2010).

A variety of phytochemical constituents are determined using qualitative methods. GCMS aims at using both the quantitative and qualitative methods to determine plant phytochemical constituents. FTIR is used to access the functional groups (chemical bonds) present in an unknown plant. This study aimed at evaluating the phytochemical constituents of *Piper guineense* and *Solanum aethiopicum* ethanol extracts from Imo state, Nigeria.

MATERIALS AND METHODS

Plant collection, Preparation and Processing

Fresh plant leaves of *Solanum aethiopicum* were purchased at Relief market located in Owerri-Municipal Local Government Area of Imo state. The plant was identified by a plant taxonomist, Dr. Udoka Emmanuel of the Department of Forestry and Wildlife, Michael Okpara University of Agriculture Umudike (MOUAU), Umuahia, Abia State.

The leaves of *Solanum aethiopicum* were washed with tap water and subsequently air-dried for a duration of three weeks at ambient temperature under the shade while being spread-out. The

Volume 7, Issue 2, 2024 (pp. 48-58)

samples were ground into fine particulate matter using an industrial-grade grinding machine. They were then placed in containers that were clearly labeled to facilitate identification and storage until needed for subsequent analysis.

Extraction

The leaves underwent uniform preparation techniques to produce methanol extracts using 99.8% methanol in the cold maceration technique. 130 grams of ground plant samples were dissolved in 1000 ml methanol in a volumetric flask in order to fully submerge the plant material. It was uniformly stirred for 5 minutes and left to stand for 72 hours. The solution was subjected to filtration, and water bath evaporation at 650 C to form a sticky concentrate. The concentrates (extracts) were appropriately labeled and stored in a refrigerator at a temperature of 4°C.

GC-MS Analysis of the phytochemical constituents

The GC (Agilent 6890N) and MS (5975B MSD) were used in the analysis. Both were equipped with DB-5ms capillary columns ($30m\times0.25mm$; film thickness $0.25\mu m$). The initial temperature was set at 40° C but increased to 150° C at the rate of 10° C/min. The temperature was further increased to 230° C at the rate of 5° C/min. The process continued till the temperature reached 280° C at the rate of 20° C/min and was then held for 8 minutes. The injector port temperature remained constant at 280° C and detector temperature was 250° C. 99.995% pure helium was used as the carrier gas with a flow rate of 1 ml/min. Split ratio and ionization voltage were 110.1 and 70eV respectively (Buss & Butler, 2010).

Identification of Phytochemical Constituents

The National Institute of Science and Technology 2014 (NIST, 2014) database was used to identify the unknown components in the extract by comparing the unknown peak value and chromatogram from the GC-MS against the known chromatogram, peak value from the NIST library database. The details about the molecular formula, molecular weight, retention time and percentage content were also obtained.

Procedure for FTIR Spectroscopy

Buck scientific M530 USA was used for the analysis. This instrument was equipped with a detector of deuterated triglycine sulfate and a beam splitter of potassium bromide. The Gram A1 software was used to obtain the spectra and to manipulate them. 1.0g of sample and 0.5ml of nujol were mixed properly and placed on the salt pellet. FTIR spectra were obtained at frequency regions of 4000-6000 cm-1 and co-added at 32 scans and at 4 cm-1 resolution. FTIR spectra were displayed as transmitter values (VanderWeerd, Heeren and Boon, 2004). The wavenumbers at different peaks were used to extrapolate the diverse functional groups present in *Piper guineense* and *Solanum aethiopicum* (Nandiyanto, Oktiani & Ragadhita, 2019).

Results

Extract yield

Yield (%) =
$$\underline{20.91g}$$
 ×100
130.00g

Volume 7, Issue 2, 2024 (pp. 48-58)

Yield =15.38%

The table 1.1 showed that Squalene (21.13%) and Palmitoleic acid (16.63%), 13-Octadecenal (16.63%) and 9-Octadecenoic acid (17.62%).were the most prevalent phytochemicals in *Solanum aethiopicum* amongst other phytochemicals present.

FTIR analysis in Table 1.2, revealed the presence of functional groups in *Solanum aethiopicum* which include alkanes, alkenes, alkynes, primary (1⁰) and secondary (2⁰) amines, amides, imino, epoxy, peroxides, carboxylic esters, ethers, primary (1⁰), secondary (2⁰) and Tertiary (3⁰) alcohols, phenols, aldehydes, thiols, cyanate, isocyanates and alkyl halides.

Table 1.1: GCMS Phytochemicals for Solanum aethiopicum

Triterpenoids 36.267 21.13 Squalene 410.7 C ₃₀ H ₅₀	S/	Class of	RT	Area	Bioactive Compound	MW	MF
Patty acid 25.895 0.71 Oleic acid 282.461 C18H34O2 C9H13NO3 Epinephrine 183.204 C9H13NO3 C9H13NO3 Epinephrine 183.204 C9H13NO3 C9H13NO3 Epinephrine 183.204 C9H13NO3 C9H13N	N	compound		(%)			
Alpha and beta-adrenergic agonist							
adrenergic agonist epinephrine 212.42 C ₁₅ H ₃₂ 5 Amine 30.003 0.05 7H-purin-6-amine 135.13 C ₃ H ₅ N ₅ 6 Alkane 26.212 1.71 Eicosane 282.54 C20H42 7 Fatty acid 34.683 17.62 9-Octadecenoic/Stearic acid 282.5 C ₁₈ H ₃₄ O ₂ 8 Alkene 34.173 1.35 1-Nonadecene 266.5 C ₁₉ H ₃₈ 9 Fatty acid 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 10 Aldehyde 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 11 Fatty acid 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 11 Fatty acid 32.704 16.63 Palmitoleic acid 256.45 C ₁₆ H ₃₀ O ₂ 11 Fatty acid 32.704 16.63 Palmitoleic acid 172.26 C ₁₆ H ₃₀ O ₂ 12 Alkane 31.00 0.37 Cy		Fatty acid	25.895	0.71			
agonist Alkane 27.320 1.36 Pentadecane 212.42 C ₁₅ H ₃₂ 5 Amine 30.003 0.05 7H-purin-6-amine 135.13 C ₅ H ₅ N ₅ 6 Alkane 26.212 1.71 Eicosane 282.54 C20H42 7 Fatty acid 34.683 17.62 9-Octadecenoic/Stearic acid 282.5 C ₁₈ H ₃₄ O ₂ 8 Alkene 34.173 1.35 1-Nonadecene 266.5 C ₁₉ H ₃₈ 9 Fatty acid 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 10 Aldehyde 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 11 Fatty acid 24.400 0.15 Decanoic acid 172.26 C ₁₀ H ₂₀ O ₂ 12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C ₁₄ H ₂₈ 13 Alkene 32.909 5.98 1-Docosene 308.60 C ₂₂ H ₄₄ 14 Alkane 31.00	3	Alpha and beta-	23.877	0.13	Epinephrine, 1,5-dimethyl	183.204	$C_9H_{13}NO_3$
4 Alkane 27.320 1.36 Pentadecane 212.42 C ₁₅ H ₃₂ 5 Amine 30.003 0.05 7H-purin-6-amine 135.13 C ₅ H ₅ N ₅ 6 Alkane 26.212 1.71 Eicosane 282.54 C20H42 7 Fatty acid 34.683 17.62 9-Octadecenoic/Stearic acid 282.5 C ₁₈ H ₃₄ O ₂ 8 Alkene 34.173 1.35 1-Nonadecene 266.5 C ₁₉ H ₃₈ 9 Fatty acid 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 10 Aldehyde 32.704 16.63 13-Octadecenal 266.5 C ₁₈ H ₃₄ O 11 Fatty acid 24.400 0.15 Decanoic acid 172.26 C ₁₀ H ₂₀ O ₂ 12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C ₁₄ H ₂₈ 13 Alkene 32.909 5.98 1-Docosene 308.60 C ₂₂ H ₄₄ 14 Alkane 31.00 0.37<		_			epinephrine		
5 Amine 30.003 0.05 7H-purin-6-amine 135.13 C ₅ H ₅ N ₅ 6 Alkane 26.212 1.71 Eicosane 282.54 C20H42 7 Fatty acid 34.683 17.62 9-Octadecenoic/Stearic acid 282.5 C ₁₈ H ₃₄ O ₂ 8 Alkene 34.173 1.35 1-Nonadecene 266.5 C ₁₉ H ₃₈ 9 Fatty acid 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 10 Aldehyde 32.704 16.63 13-Octadecenal 266.5 C ₁₈ H ₃₄ O 11 Fatty acid 24.400 0.15 Decanoic acid 172.26 C ₁₀ H ₂₀ O ₂ 12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C ₁₄ H ₂₈ 13 Alkene 32.909 5.98 1-Docosene 308.60 C ₂₂ H ₄₄ 14 Alkane 31.100 0.37 Heptadecane 240.471 C ₁₇ H ₃₆ 15 Alkane 26.953 0.		Ŭ					
6 Alkane 26.212 1.71 Eicosane 282.54 C20H42 7 Fatty acid 34.683 17.62 9-Octadecenoic/Stearic acid 282.5 C18H3402 8 Alkene 34.173 1.35 1-Nonadecene 266.5 C19H38 9 Fatty acid 32.704 16.63 Palmitoleic acid 256.43 C16H30O2 10 Aldehyde 32.704 16.63 13-Octadecenal 266.5 C18H34O 11 Fatty acid 24.400 0.15 Decanoic acid 172.26 C10H2002 12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C14H28 13 Alkene 32.909 5.98 1-Docosene 308.60 C22H44 14 Alkane 31.100 0.37 Heptadecane 240.471 C17H36 15 Alkane 26.953 0.43 Nonadecane 268.518 C16H34 16 Alkane 26.953 0.43 Nonadecane <td< td=""><td>4</td><td>Alkane</td><td>27.320</td><td>1.36</td><td>Pentadecane</td><td>212.42</td><td>$C_{15}H_{32}$</td></td<>	4	Alkane	27.320	1.36	Pentadecane	212.42	$C_{15}H_{32}$
7 Fatty acid 34.683 17.62 9-Octadecenoic/Stearic acid 282.5 C ₁₈ H ₃₄ O ₂ 8 Alkene 34.173 1.35 1-Nonadecene 266.5 C ₁₉ H ₃₈ 9 Fatty acid 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 10 Aldehyde 32.704 16.63 13-Octadecenal 266.5 C ₁₈ H ₃₄ O 11 Fatty acid 24.400 0.15 Decanoic acid 172.26 C ₁₀ H ₂₀ O ₂ 12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C ₁₄ H ₂₈ 13 Alkene 32.909 5.98 1-Docosene 308.60 C ₂₂ H ₄₄ 14 Alkane 31.100 0.37 Heptadecane 240.471 C ₁₇ H ₃₆ 15 Alkane 22.754 0.59 Hexadecane 226.445 C ₁₆ H ₃₄ 16 Alkane 26.953 0.43 Nonadecane 268.518 C ₁₉ H ₃₆ 18 Precursor to		Amine	30.003	0.05	7H-purin-6-amine	135.13	$C_5H_5N_5$
8 Alkene 34.173 1.35 1-Nonadecene 266.5 C ₁₉ H ₃₈ 9 Fatty acid 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 10 Aldehyde 32.704 16.63 13-Octadecenal 266.5 C ₁₈ H ₃₄ O 11 Fatty acid 24.400 0.15 Decanoic acid 172.26 C ₁₀ H ₂₀ O ₂ 12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C ₁₄ H ₂₈ 13 Alkene 32.909 5.98 1-Docosene 308.60 C ₂₂ H ₄₄ 14 Alkane 31.100 0.37 Heptadecane 240.471 C ₁₇ H ₃₆ 15 Alkane 31.100 0.37 Hexadecane 226.445 C ₁₆ H ₃₄ 16 Alkane 26.953 0.43 Nonadecane 268.518 C ₁₉ H ₄₀ 17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C ₂₇ H ₅₆ 18 Precursor to 25.895		Alkane	26.212	1.71	Eicosane	282.54	C20H42
8 Alkene 34.173 1.35 1-Nonadecene 266.5 C ₁₉ H ₃₈ 9 Fatty acid 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 10 Aldehyde 32.704 16.63 13-Octadecenal 266.5 C ₁₈ H ₃₄ O 11 Fatty acid 24.400 0.15 Decanoic acid 172.26 C ₁₀ H ₂₀ O ₂ 12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C ₁₄ H ₂₈ 13 Alkene 32.909 5.98 1-Docosene 308.60 C ₂₂ H ₄₄ 14 Alkane 31.100 0.37 Heptadecane 240.471 C ₁₇ H ₃₆ 15 Alkane 31.100 0.37 Hexadecane 226.445 C ₁₆ H ₃₄ 16 Alkane 26.953 0.43 Nonadecane 268.518 C ₁₉ H ₄₀ 17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C ₂₇ H ₅₆ 18 Precursor to 25.895 0.71	7	Fatty acid	34.683	17.62	9-Octadecenoic/Stearic	282.5	$C_{18}H_{34}O_2$
9 Fatty acid 32.704 16.63 Palmitoleic acid 256.43 C ₁₆ H ₃₀ O ₂ 10 Aldehyde 32.704 16.63 13-Octadecenal 266.5 C ₁₈ H ₃₄ O 11 Fatty acid 24.400 0.15 Decanoic acid 172.26 C ₁₀ H ₂₀ O ₂ 12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C ₁₄ H ₂₈ 13 Alkene 32.909 5.98 1-Docosene 308.60 C ₂₂ H ₄₄ 14 Alkane 31.100 0.37 Heptadecane 240.471 C ₁₇ H ₃₆ 15 Alkane 22.754 0.59 Hexadecane 226.445 C ₁₆ H ₃₄ 16 Alkane 26.953 0.43 Nonadecane 268.518 C ₁₉ H ₄₀ 17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C ₂₇ H ₅₆ 18 Precursor to 25.895 0.71 Estra-1,3,5 (10)-trien-17- 334.4 C ₂₃ H ₂₆ O ₂ 19 Fatty alcohol					acid		
10 Aldehyde 32.704 16.63 13-Octadecenal 266.5 C18H34O 11 Fatty acid 24.400 0.15 Decanoic acid 172.26 C10H2002 12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C14H28 13 Alkene 32.909 5.98 1-Docosene 308.60 C22H44 14 Alkane 31.100 0.37 Heptadecane 240.471 C17H36 15 Alkane 22.754 0.59 Hexadecane 226.445 C16H34 16 Alkane 26.953 0.43 Nonadecane 268.518 C19H40 17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C27H56 18 Precursor to 25.895 0.71 Estra-1,3,5 (10)-trien-17- 334.4 C23H2602 19 Fatty alcohol 25.542 0.41 Aspidospermidine-17- 414.5 C23H3602 20 Alkane 27.320		Alkene	34.173	1.35	1	266.5	$C_{19}H_{38}$
11 Fatty acid 24.400 0.15 Decanoic acid 172.26 C ₁₀ H ₂₀ 0 ₂ 12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C ₁₄ H ₂₈ 13 Alkene 32.909 5.98 1-Docosene 308.60 C ₂₂ H ₄₄ 14 Alkane 31.100 0.37 Heptadecane 240.471 C ₁₇ H ₃₆ 15 Alkane 22.754 0.59 Hexadecane 226.445 C ₁₆ H ₃₄ 16 Alkane 26.953 0.43 Nonadecane 268.518 C ₁₉ H ₄₀ 17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C ₂₇ H ₅₆ 18 Precursor to 25.895 0.71 Estra-1,3,5 (10)-trien-17- beta-ol 334.4 C ₂₃ H ₂₆ O ₂ 19 Fatty alcohol 25.542 0.41 Aspidospermidine-17- ol,1-acetyl-19,21-epoxy-15,16-dimethoxy 414.5 C ₂₃ H ₃₀ N ₂ O ₅ 20 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22	9	Fatty acid	32.704	16.63	Palmitoleic acid	256.43	$C_{16}H_{30}O_2$
12 Alkane 31.100 0.37 Cyclotetradecane 196.37 C ₁₄ H ₂₈ 13 Alkene 32.909 5.98 1-Docosene 308.60 C ₂₂ H ₄₄ 14 Alkane 31.100 0.37 Heptadecane 240.471 C ₁₇ H ₃₆ 15 Alkane 22.754 0.59 Hexadecane 226.445 C ₁₆ H ₃₄ 16 Alkane 26.953 0.43 Nonadecane 268.518 C ₁₉ H ₄₀ 17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C ₂₇ H ₅₆ 18 Precursor to hormone 25.895 0.71 Estra-1,3,5 (10)-trien-17- 334.4 C ₂₃ H ₂₆ O ₂ 19 Fatty alcohol 25.542 0.41 Aspidospermidine-17- ol,1-acetyl-19,21-epoxy- 15,16-dimethoxy 414.5 C ₂₃ H ₃₀ N ₂ O ₅ 20 Alkane 27.320 1.36 Octadecane 254.49 CH ₃ (CH ₂) ₁₆ CH ₃ 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22	10	Aldehyde	32.704	16.63	13-Octadecenal	266.5	C ₁₈ H ₃₄ O
13 Alkene 32.909 5.98 1-Docosene 308.60 C ₂₂ H ₄₄ 14 Alkane 31.100 0.37 Heptadecane 240.471 C ₁₇ H ₃₆ 15 Alkane 22.754 0.59 Hexadecane 226.445 C ₁₆ H ₃₄ 16 Alkane 26.953 0.43 Nonadecane 268.518 C ₁₉ H ₄₀ 17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C ₂₇ H ₅₆ 18 Precursor to hormone 25.895 0.71 Estra-1,3,5 (10)-trien-17-beta-01 334.4 C ₂₃ H ₂₆ O ₂ 19 Fatty alcohol 25.542 0.41 Aspidospermidine-17-ol,1-acetyl-19,21-epoxy-15,16-dimethoxy 414.5 C ₂₃ H ₃₀ N ₂ O ₅ 20 Alkane 27.320 1.36 Octadecane 254.49 CH ₃ (CH ₂) ₁₆ CH ₃ 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1-ol acetate 268.43 C ₁₇ H ₃₂	11	Fatty acid	24.400	0.15	Decanoic acid	172.26	$C_{10}H_{20}O_2$
14 Alkane 31.100 0.37 Heptadecane 240.471 C ₁₇ H ₃₆ 15 Alkane 22.754 0.59 Hexadecane 226.445 C ₁₆ H ₃₄ 16 Alkane 26.953 0.43 Nonadecane 268.518 C ₁₉ H ₄₀ 17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C ₂₇ H ₅₆ 18 Precursor to hormone 25.895 0.71 Estra-1,3,5 (10)-trien-17-beta-ol 334.4 C ₂₃ H ₂₆ O ₂ 19 Fatty alcohol 25.542 0.41 Aspidospermidine-17-ol,1-acetyl-19,21-epoxy-15,16-dimethoxy 414.5 C ₂₃ H ₃₀ N ₂ O ₅ 20 Alkane 27.320 1.36 Octadecane 254.49 CH ₃ (CH ₂) ₁₆ CH ₃ 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1-olacetate 268.43 C ₁₇ H ₃₂ O ₂ 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 <td< td=""><td>12</td><td>Alkane</td><td>31.100</td><td>0.37</td><td>Cyclotetradecane</td><td>196.37</td><td>$C_{14}H_{28}$</td></td<>	12	Alkane	31.100	0.37	Cyclotetradecane	196.37	$C_{14}H_{28}$
15 Alkane 22.754 0.59 Hexadecane 226.445 C ₁₆ H ₃₄ 16 Alkane 26.953 0.43 Nonadecane 268.518 C ₁₉ H ₄₀ 17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C ₂₇ H ₅₆ 18 Precursor to hormone 25.895 0.71 Estra-1,3,5 (10)-trien-17-beta-01 334.4 C ₂₃ H ₂₆ O ₂ 19 Fatty alcohol 25.542 0.41 Aspidospermidine-17-ol,1-acetyl-19,21-epoxy-15,16-dimethoxy 414.5 C ₂₃ H ₃₀ N ₂ O ₅ 20 Alkane 27.320 1.36 Octadecane 254.49 CH ₃ (CH ₂) ₁₆ CH ₃ 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1-ol acetate 268.43 C ₁₇ H ₃₂ O ₂ 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8	13	Alkene	32.909	5.98	1-Docosene	308.60	$C_{22}H_{44}$
16 Alkane 26.953 0.43 Nonadecane 268.518 C ₁₉ H ₄₀ 17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C ₂₇ H ₅₆ 18 Precursor to hormone 25.895 0.71 Estra-1,3,5 (10)-trien-17- otera-17- otera-18 334.4 C ₂₃ H ₂₆ O ₂ 19 Fatty alcohol 25.542 0.41 Aspidospermidine-17- ot,1-acetyl-19,21-epoxy-15,16-dimethoxy 414.5 C ₂₃ H ₃₀ N ₂ O ₅ 20 Alkane 27.320 1.36 Octadecane 254.49 CH ₃ (CH ₂) ₁₆ CH ₃ 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1-ot acetate 268.43 C ₁₇ H ₃₂ O ₂ 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈	14	Alkane	31.100	0.37	Heptadecane	240.471	$C_{17}H_{36}$
17 Alkane 26.411 0.49 2-methylhexacosane 380.70 C ₂₇ H ₅₆ 18 Precursor to hormone 25.895 0.71 Estra-1,3,5 (10)-trien-17- 334.4 C ₂₃ H ₂₆ O ₂ 19 Fatty alcohol 25.542 0.41 Aspidospermidine-17- ol,1-acetyl-19,21-epoxy- 15,16-dimethoxy 414.5 C ₂₃ H ₃₀ N ₂ O ₅ 20 Alkane 27.320 1.36 Octadecane 254.49 CH ₃ (CH ₂) ₁₆ CH ₃ 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1-ol acetate 268.43 C ₁₇ H ₃₂ O ₂ 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈	15	Alkane	22.754	0.59	Hexadecane	226.445	$C_{16}H_{34}$
18 Precursor to hormone 25.895 0.71 Estra-1,3,5 (10)-trien-17- beta-ol 334.4 C23H2602 19 Fatty alcohol 25.542 0.41 Aspidospermidine-17- ol,1-acetyl-19,21-epoxy-15,16-dimethoxy 414.5 C23H30N2O5 20 Alkane 27.320 1.36 Octadecane 254.49 CH3(CH2)16 CH3 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C30H61Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1-ol acetate 268.43 C17H32O2 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C17H32O 24 Alkane 26.212 1.71 Octacosane 394.8 C28H58	16	Alkane	26.953	0.43	Nonadecane	268.518	C ₁₉ H ₄₀
hormone beta-ol 414.5 C ₂₃ H ₃₀ N ₂ O ₅ 19 Fatty alcohol 25.542 0.41 Aspidospermidine-17- ol,1-acetyl-19,21-epoxy-15,16-dimethoxy 414.5 C ₂₃ H ₃₀ N ₂ O ₅ 20 Alkane 27.320 1.36 Octadecane 254.49 CH ₃ (CH ₂) ₁₆ CH ₃ 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1-ol acetate 268.43 C ₁₇ H ₃₂ O ₂ 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈	17	Alkane	26.411	0.49	2-methylhexacosane	380.70	C ₂₇ H ₅₆
19 Fatty alcohol 25.542 0.41 Aspidospermidine-17- ol,1-acetyl-19,21-epoxy-15,16-dimethoxy 414.5 C23H30N2O5 20 Alkane 27.320 1.36 Octadecane 254.49 CH3(CH2)16 CH3 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C30H61Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1-ol acetate 268.43 C17H32O2 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C17H32O 24 Alkane 26.212 1.71 Octacosane 394.8 C28H58	18	Precursor to	25.895	0.71	Estra-1,3,5 (10)-trien-17-	334.4	$C_{23}H_{26}O_2$
20 Alkane 27.320 1.36 Octadecane 254.49 CH ₃ (CH ₂) ₁₆ CH ₃ 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1-olacetate 268.43 C ₁₇ H ₃₂ O ₂ 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈		hormone			beta-ol		
15,16-dimethoxy 254.49 CH ₃ (CH ₂) ₁₆ CH ₃ CH ₃	19	Fatty alcohol	25.542	0.41	Aspidospermidine-17-	414.5	$C_{23}H_{30}N_2O_5$
20 Alkane 27.320 1.36 Octadecane 254.49 CH ₃ (CH ₂) ₁₆ CH ₃ 21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1-olacetate 268.43 C ₁₇ H ₃₂ O ₂ 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈					ol,1-acetyl-19,21-epoxy-		
21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1- ol acetate 268.43 C ₁₇ H ₃₂ O ₂ 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈					15,16-dimethoxy		
21 Alkane 31.348 0.33 1-bromo triacontane 501.7 C ₃₀ H ₆₁ Br 22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1- ol acetate 268.43 C ₁₇ H ₃₂ O ₂ 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈	20	Alkane	27.320	1.36	Octadecane	254.49	CH ₃ (CH ₂) ₁₆
22 Carboxylic acids 24.400 0.15 7-methyl-Z-tetradecen-1- ol acetate 268.43 C ₁₇ H ₃₂ O ₂ 23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈							CH ₃
23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈	21	Alkane	31.348	0.33	1-bromo triacontane	501.7	$C_{30}H_{61}Br$
23 Aldehyde 6.967 0.67 E-15-Heptadecenal 252.4 C ₁₇ H ₃₂ O 24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈	22	Carboxylic acids	24.400	0.15	7-methyl-Z-tetradecen-1-	268.43	$C_{17}H_{32}O_2$
24 Alkane 26.212 1.71 Octacosane 394.8 C ₂₈ H ₅₈					ol acetate		
	23	Aldehyde	6.967	0.67	E-15-Heptadecenal	252.4	C ₁₇ H ₃₂ O
25 Alkane 25.222 0.81 Heneicosane 206.6 Co.H.	24	Alkane	26.212	1.71	Octacosane	394.8	$C_{28}H_{58}$
23 Mikane 23.222 0.01 Helicicosane 290.0 C211144	25	Alkane	25.222	0.81	Heneicosane	296.6	C ₂₁ H ₄₄

Article DOI: 10.52589/AJBMR-WNXGCVPM DOI URL: https://doi.org/10.52589/AJBMR-WNXGCVPM

Volume 7, Issue 2, 2024 (pp. 48-58)

26	Fatty acid	24,943	0.38	Cis-5-Dodecenoic acid	198.30	$C_{12}H_{22}O_2$
27	Alkane	24.243	0.08	Tetrapentacontane, 1,54-	917.24	$C_{54}H_{108}Br_2$
				dibromodecane		
28	Fatty alcohol	20.290	0.05	1-heptanol	116.20	C ₇ H ₁₆ O
29	Aldehyde	17.566	0.04	2-heptanal	114.19	$C_7H_{14}O$
30	Alkane	9.168	0.57	Undecane	156.31	$C_{11}H_{24}$
31	Ester	9.168	0.57	Carbonic acid, nonyl prop-	228.33	$C_{13}H_{24}O_3$
				1-en-2-yl ester		
32	Carboxylic acid	7.583	0.78	Cyanoacetic acid	85.06	C ₃ H ₃ NO ₂
33	Carboxylic acid	7.093	0.63	Dichloroacetic acid, 2	128.94	$C_2H_2Cl_2O_2$
				pentadecyl ester		
34	Alkane	27.477	1.16	Cyclohexadecane	224.42	$C_{16}H_{32}$
35	Alkane	26.411	0.49	Dotriacontane	450.90	C ₃₂ H ₆₆
36	Alkane	17.684	0.20	Tetradecane	198.39	$C_{14}H_{30}$
37	Phthalates	30.003	0.05	Dibutyl Phthalate	278.34	$C_{16}H_{22}O_4$

Table 1. 2: FTIR for Solanum aethiopicum

S/N	Wavenumber (cm-1)	Bond/Mode of Vibration	Functional group
1	3835.48	O-H Stretch	Alcohols, Phenols
2	3702.799	N-H stretch	Amide
#3	3520.527	N-H Stretch	Amine
4.	3432.179	O-H Stretch	Dimeric alcohols
		N-H Stretch	Heterocyclic Amines
5.	3247.555	O-H Stretch	Alcohols, Phenols
6.	2846.22	C-H Stretch	Methyne, Methyl
		O-CH ₃	Methoxy
		C-O	Aldehyde
		N-CH3 Stretch	Methylamino
7.	2687.900	S-H Stretch	Thiols
8.	2528.652	S-H Stretch	Thiols
9	2245.355		Medial Alkyne
			Cyanate
			Isocyanate
10	2130.733	C <u>=</u> C Stretch	Terminal Alkyne
		-NCS Stretch	Isothiocyanate
11	1651.56	N-H bend	Secondary (2 ⁰) amine
		-N=N-	Open chain azo
13	1295.598	O-H bend	Primary(1 ⁰)/Secondary
		C-N Stretch	(2 ⁰) Alcohol
		C-N Stretch	Primary(1 ⁰)/Secondary
			(2 ⁰) Aromatic Amine
14	1177.917	C-N Stretch	Tertiary (3 ⁰) Amine
		C-N Stretch	2 ⁰ Amine
15	880.6337	C-O-O Stretch	Peroxides
			Epoxy and oxirane rings

Volume 7, Issue 2, 2024 (pp. 48-58)

16	732.5869	-C-Cl Stretch	Alkyl halides
		(-CH ₂) _n	Methylene
		Aromatic C-H bend	Aryl

DISCUSSION

GC-MS profile of Piper guineense and Solanum aethiopicum revealed the presence of a number of secondary metabolites. Squalene (21.13%) has been reported to possess neuroprotective, antioxidant, anti-tumour and anticancer properties (Ryszard, 2009; Lozano-Grande, Gorinstein, Espitia-Rangel, Davila-Ortiz & Martinez-Ayala, 2018; Gaudin et al., 2015). Oleic acid (19.00%) possesses neuroprotective, anti-inflammatory, anticancer, antiandrogenic, antibacterial, dermatitigenic and hypocholesteremic properties (Sreekumar, Ramesh & Vijaykumar, 2014; Awa, Ibrahim & Ameh, 2012; Song et al., 2019; Ubaid et al., 2020). Palmitoleic acid (16.63%) shows anti-inflammatory, antibacterial and antifungal properties (Odiase-Omoighe & Agoreyo, 2022; Ojinnaka, Kenne & Abbey, 1992). Epinephrine (0.13%) is a known neurotransmitter that helps the cholinergic pathway (Bylund, 2007), as 7Hpurin-6-amine (0.05%) is a neuroprotective compound (World Intellectual Property Organization, 2010). Eicosane (1.71%; 1.23%) has active anti-inflammatory, analgesic, anticancer properties (Okechukwu, 2020; Tiloke, Anand, Gengan, & Chuturgoon, 2018). 9-Octadecenoic acid (17.62%:10.13%) has been reported to possess good antibacterial and antiinflammatory properties (Adegoke, Jerry & Ademola, 2019; Imad, Huda, & Ghaidaa, 2016). 13-Octadecenal (16.63%) is potent as an antibacterial and antimicrobial (Ajanaku et al., 2018). Hexadecane (3.27%), Heptadecane (0.31%) and Nonadecane (0.43%) have antibacterial properties (Balmurugan, Selvam, Thinakaran & Sivakumar, 2013; Tyagi & Agarwal, 2017). Nonadecane (0.43%) also has antioxidant, antimicrobial, antimalarial and anti-toxic effects (Banakar & Jayaraj, 2018). Heptadecane (0.31%) also has strong anti-inflammatory properties (Kim et al., 2013) Decanoic/Capric acid (0.15%) has been known to be antibacterial, antiinflammatory, anti-seizure and reduce oxidative stress, regulate signaling pathways (Yang et 2018:Chang et al., 2016: Huang et al., 2014,). 1-Docosene (5.98%), 2methylhexacosane(0.49%) and Dibutyl phthalate (0.05%) possess antibacterial properties (Togashi et al., 2007; Sahar & Aida, 2018; Khatiwora, Adsul, Kulkarni, Deshpande & Kashalkar, 2012). Aspidospermidine-17-ol,1-acetyl,19,21-epoxy-15,16-dimethoxy (0.41%) has antimicrobial properties (Olubunmi & Anthony, 2017; Safwat, Hamed & Moatamed, 2018). Cis-5-Dodecenoic acid (0.38%) and 1-heptanol (0.05%) possess active antibacterial properties (Rouis-Soussi et al., 2014; Renugadevi, Valli & Moin, 2021; Ingram & Vreeland, 1980). Tetrapentacontane-1,54dibromodecane (0.08%) is a molecule that has active antioxidant properties (Ijaz et al., 2008). Cyclohexadecane (1.16%) has active antibacterial and antifungal properties (Kumari, Menghani & Mithal, 2019). Tetradecane (0.20%; 0.47%) has antibacterial (Rahbar et al., 2012) and antifungal properties (Guo et al., 2008). Estra-1,3,5 (10) trien-17-beta-ol (0.71%) is a precursor to the hormone estrogen which is implicated in menopausal women and AD pathogenesis (Zhao et al., 2015). E-15-heptadecenal (0.67%) is reported to have anti-inflammatory, antibacterial, antifungal, antioxidant, anticancer properties (Kumar, Anburaj, Subramanian, Vasantha & Selvam, 2011). 1-nonadecene (1.35%) exhibits antioxidant, anti-inflammatory and anticancer properties (Sivakumar & Balaraman, 2018). Octacosane (1.71%) has antioxidant, wound healing, and larvicidal properties (Balachandran et al., 2023; Rajkumar & Jebanesan, 2003). Carbonic acid, nonylprop-en-2-yl ester (0.57%) has active antibacterial properties (Mitchell et al., 2017). Cyanoacetic acid (0.78%)/its

African Journal of Biology and Medical Research

ISSN: 2689-534X

Volume 7, Issue 2, 2024 (pp. 48-58)

derivatives possess active antibacterial properties and are used as scientific probes for medical purposes (Mohareb, El-Arab & El-Sharkawy, 2009; Teppang, Ehrlich & Yang, 2020). Anticancer, anti-inflammatory and hepatoprotective properties have been reported for 7-methyl-Z-tetradecen-1-ol acetate (0.15%) (Al-Mawla & Abu-Serag, 2019; Hameed, Hussein, Kareem & Hamad, 2015). Undecane (0./57%; 0.09%) also has anti-inflammatory and antiallergy properties (Choi, Kang & Park, 2020). Dotriacontane (0.49%) has antioxidant, antimalarial, anti-tumour and antiprotozoal activities (Gallo & Sarachine, 2009). 2-Heptanal (0.04%) has antimicrobial and antifungal properties (Ji, Kang & Baik, 2017; Li *et al.*, 2021). Hexacosane (1.23%) has antibacterial properties (Das, Das, Bhavya & Nivashini, 2020; Rukiyat, Garba & Labaran 2015). Heneicosane (0.36%) has pesticidal, antimicrobial and antioxidant properties (Rhesto, Shubharani, Roopa & Sivaram, 2020; Nandhini, Sangareshwari & Kumari 2015; Otieno, 2016). Dichloroacetic acid, 2 pentadecyl ester (0.63%) and its salt derivatives have antidiabetic and antitumour properties, they are also used to therapeutically treat congenital lactic acidosis, a rare medical condition (Stacpoole, Gilbert & Neiberger, 2008; Michelakis, Sutendra, & Dromparis., 2010; Stacpoole & Greene, 1992).

FTIR analysis revealed the presence of functional groups in *Solanum aethiopicum* which include alkanes, alkenes, alkynes, primary (1^0) and secondary (2^0) amines, amides, imino, epoxy, peroxides, carboxylic esters, ethers, primary (1^0) , secondary (2^0) and Tertiary (3^0) alcohols, phenols, aldehydes, thiols, cyanate, isocyanates and alkyl halides.

IMPLICATION TO RESEARCH AND PRACTICE

This study has demonstrated that *Solanum aethiopicum* which is a common culinary vegetable is a rich source of phytochemicals which span across terpenoids, purines, alkanes, monounsaturated omega-9-fatty acid and monounsaturated omega-7-fatty acid and have bioactive potentials.

CONCLUSION

The presence of various bioactive compounds in appreciable concentrations in *Solanum aethiopicum* has revealed its potential biological, pharmacological and industrial applications. The bioactive compounds in the methanolic extracts exhibited important biological functions which include neuroprotective, antitumour, anti-cancer, antioxidant, analgesic, antibacterial, antifungal, antimalarial, anti beta-amyloid protein aggregation and anti-inflammatory properties, linked to their rich phytochemical composition which include terpenoids, purine, alkanes, mono-unsaturated omega-9-fatty acid and monounsaturated omega-7- fatty acid.

This research validates the use of these plants as indigenous edible vegetables as they are rich in bioactive compounds which are biologically important to man and can be used in drug development.

Volume 7, Issue 2, 2024 (pp. 48-58)

REFERENCES

- Adegoke, A.S., Jerry, O.V., Ademola, O.G., 2019. GC-MS analysis of phytochemical constituents in methanol extract of wood bark from Durio zibethinus Murr. Int.J. Med. Plants. Nat. Prod. 5, 1-11
- Ajanaku, C., Echeme, J., Mordi, R., Bolade, O., Okoye, S., Jonathan, H., & Ejilude, O., (2018). In vitro antibacterial, phytochemical, antimycobacterial activities and GC-MS analyses of *Bidenspilosa* leaf extract. *J. Microbiol Biotecnol.Food Sci.*, 8(1):721-725
- Anaso, H.U. 1991, Comparative cytological study of Solanum aethiopicum Gilo group, Solanum aethiopicum Shum group and Solanum anguivi. *Euphytica*, 53, 81–85
- Awa, E.P., Ibrahim, S., Ameh, D.A., (2012). GCMS Analysis of antimicrobial activity of Diethyl ether fraction of methanolic extract from the stem bark of *Annona senegalensis Pers. Int. J of Pharmaceutical Sciences and Research*. 3(11):4213-4218
- Balamurugan, M., Selvam, G.G., Thinakaran, T., Sivakumar, K., 2013. Biochemical study and GC-MS analysis of Hypnea musciformis (Wulf) Lamouroux Am-Euras *J. Sci. Res.* 8 (3):117-123
- Banakar, P., & Jayaraj, M., 2018, GC-MS analysis of bioactive compounds from ethanolic leaf extract of waltheria indica linn and their pharmacological activities. Int. J. Pharm. Sci. Res. 9:2005-2010
- Bukenya, Z.R.; Carasco, J.F. 1999. Ethnobotanical aspects of Solanum L. (Solanaceae) in Uganda. In Solanaceae IV: Advances in Biology and Utilization; Royal Botanic Gardens: Kew, UK, pp. 345–360
- Buss, A.D., & Butler, M.S., (2010) Natural product chemistry for drug discovery. *The Roy. Soc. of Chemistry*, Cambridge, p. 153
- Bylund, D.B 2007 Eds. Enna S.J & Bylund, D.B. Epinephrine Xpharm: the comprehensive Pharmacology reference. Pp :1-5
- Chang, P., Augustin, K., Boddum, K., Williams, S., Sun, M., Terschak, J.A., Hardege, J.D., Chen, P.E, Walker, M.C., & Williams, R.S.B (2016). Seizure control by Decanoic acid through direct AMPA receptor inhibition. *Brain*. 139(2):431-443
- Choi, D., Kang, W., Park, T., 2020. Anti-allergic and anti-inflammatory effects of undecane mast cells and Keratinocytes. *Molecules*. 25 (7):1554
- Das, S., Das, A., Bhavya, T., & Nivashini, S.R., (2020). Molecular characterization and antibacterial activity of *Aloe barbadensis* miller on textiles. *The Journal of textile institute*. 111(8):1116-1122
- Gallo, M.B.C,& Sarachine, M.J., 2009. Biological activities of Lupeol. *Int. J. Biomed. Pharm.Sci.* 3:46-66
- Gaudin, A., Yemisci, M., Eroglu, H., Lepetre-Mouelhi, S., Turkoglu, O.F., Donmez-Demir, B., Caban, S., Sargon, M.F., Garcia-Argote, S., Pieters, G., Loreau, O., Rousseau, B., Tagit, O, Hildebrandt, N, Dantec, Y.L, Mougin, J., Valetti, S., Chacun, H., Nicholas, V., Desmaele, D., Andrieux, K., Capan, Y., Dalkara, T., Couvreur, P., (2015). Squalenoyl Adenosine Nanoparticles provide neuroprotection after stroke and spinal cord injury. *Nat Nanotechnol.* 10(1):99.
- Guo, L., Wu, J., Han, T., Cao, T., Rahman, K., Qin, L., 2008. Chemical composition, antifungal and antitumor properties of ether extracts of Scapania varrucose Heeg and its endophytic fungus Chaetomium fusforme. *Molecules*. 13 (9);2114-2125
- Hameed, I.H., Hussen, H.J., Kareem, M.A., & Hamad, N.S., (2015). Identification of five newly described bioactive chemical compounds in Methanolic extract of *Mentha viridis*

- www.abjournais.org
- by using gas chromatography-mass spectrometry (GC-MS). *J. Pharmacogn Phyther*. 7:107-125
- Han, M., Opoku, K.N., Bissah, N.A.B., Su, T., 2021. *Solanumaethiopicum*: The Nutrient-rich vegetable crop with great economic, genetic biodiversity and pharmaceutical potential. *Horticulturae*. 7(6). doi:10.3390/hoticulturae7060126
- Huang, W., Tsai, T., Chuang, L., Li, Y., Zouboulis, C.C., & Tsai, P., (2014). Anti-bacterial and Anti-inflammatory properties of Capric acid against *Propionibacterium acnes*: A comparative study with Lauric acid. *J of Dermatological Science*. 73(3):232-240
- Ijaz, H.A, Farooq, A., Sherazi, H., Tufail, SPrzybylski, Roma. 2008, Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depend on seasonal variations. *Food Chemistry* 108;986-995
- Imad, H.H, Huda, J.A., Ghaidaa, J.M, 2016. Evaluation of the antifungal and antibacterial activity and analysis of bioactive phytochemical compounds of Cinnamomum zeylanicum (Cinnamon bark) using Gas Chromatography-Mass Spectrometry. Oriental Journal of Chemistry. 32(4):1769-1788.
- Ingram L.O, & Vreeland N.S, 1980. Differential effects of ethanol and hexanol on the Escherichia coli cell envelope. *J. Bacteriol*. 144:481-488
- James, B.; Atcha-Shower, C.; Godonou, I.; Bailey, H.; Goergen, G.; Sikirou, R.; Toko, M. 2010. Integrated Pest Management in Vegetable Production: A Guide for Extension Workers in West Africa; International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria, p. 120.
- Ji, T., Kang, M., Baik, B.K., 2017 Volatile organic compounds of whole-grain soft winter wheat. Cereal chemistry Journal. 94 (3);594-601
- Kamga, R.T.; Kouamé, C.; Atangana, A.R.; Chagomoka, T.; Ndango, R. 2013. Nutritional Evaluation of Five African Indigenous Vegetables. *J. Hortic. Res.* 21;99–106.
- Khatiwara, E., Adsul, V.B., Kulkarni, M., Deshpande, N.R., & Kashalkar, R.V., (2012). Antibacterial activity of dibutyl phthalate: a secondary metabolite isolated from Ipomoea carnea stem. *Journal of Pharmacy Research*. 5:150-152
- Kim, D.H., Park, M.H., Choi, Y.J., Chung, K.W., Park, C.H., Jang, E.J., An, H.J., Yu, B.P., Chung, H.Y., (2013). Molecular study of dietary Heptadecane for the anti-inflammatory modulation of NF-kB in the aged Kidney. *PLoS ONE*. 8(3)59316
- Kumar, V., Bhatnagar, A.K, Srivastava, J.N., 2011. Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compounds. Journal of medicinal plants research. 5(32):7043-7048
- Lester, R.N. 1998. Genetic resources of capsicum and eggplants. In Proceedings of Xth Meeting on Genetics and Breeding of Capsicum and Eggplant, Avignon, France, 7–11 September. Palloix, A., Daunay, M.C., Eds.; Eucarpia: Wageningen, The Netherlands, pp. 25–30
- Lester, R.N.; Daunay, M.C. 2003. Diversity of African vegetable Solanum species and its implications for a better understanding of plant domestication. *Schr. Genet. Ressour.* 22, 137–152
- Li, S., Zhang, S., Lv, Y., Zhai, H., Hu, Y., Cai, J., 2021. Heptanal inhibits the growth of Aspergillus flavus through disturbance of plasma membrane integrity, mitochondrial function and antioxidant enzyme activity. *LWT*. 154.
- Lozano-Grande, M.A., Gorinstein, S., Espitia-Rangel, E., Davila-Ortiz, G., Martinez-Ayala, A.L, 2018. Plant sources, extraction method and uses of Squalene. *International Journal of Agronomy*. 1-13.

Volume 7, Issue 2, 2024 (pp. 48-58)

- Michelakis, E.D., Sutendra, G., Dromparis, P., (2010). Metabolic modulation of glioblastoma with dichloroacetate. Sci. Translate. Med. 2;31-34
- Mitchell, H.W., Cameron, J.L., Megan, S.J.A., Joseph, S., Alan, W., Anthony, C.G, Ian, E.C (2017). GC-MS analysis of *Tasmannia Lanceolata* extracts which inhibit the growth of the pathogenic bacterium *Clostridium Perfringens*. Pharmacogn J., 9(5): 626-637
- Mohareb, R.M., Ezz El-Arab, E., El-Sharkawy, K.A, 2009. The reaction of cyanoacetic Hydrazide with 2-Acetylfuran: synthesis of Coumarin, pyridine, Thiophene and Thiazole derivatives with potential antimicrobial activities. Sci. Pharm. 77(2):355-366
- Nandhini, S.U., Sangareshwari, S., & Kumari, L., (2015) Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine Streptomyces. Asian J. Pharm Clin Res. 8 (2):244-246
- Nandiyanto, A.B.D., Oktiani, R., & Ragadhita, R., (2019). How to read and interpret FTIR spectroscopy of organic material. *Indonesian Journal of Science and Technology*. 4(1):97-118
- National Institute of Standard and Technology (NIST) (2014). Program Handbook details the criteria used for OWM Laboratory Recognition. NIST Handbook 143
- Odiase-Omoighe, J.O., Agoreyo, B.O., (2022). Identification of Bioactive compound in Sclerotia extracts from Pleurotus tuber-regium (Fr.) Sing. Using Gas Chromatograph-Mass Spectrometer (GC-MS). Nig. J. Biotech. Spec. Edtn. 1:39-50
- Okechukwu, P.N, 2020. Evaluation of anti-inflammatory, analgesic, antipyretic effects of Eicosane, pentadecane, octadecane and heneicosane. Asian Journal of Pharmaceutical and Clinical research. 13(4):29-35
- Olubunmi, A.W., & Anthony, J.A., (2017). Chemical constituents and biological activities of essential oils of *Hydnora africana* Thumb used to treat associated infections and Diseases in South Africa. *Appl. Sci.* 7:443.
- Otieno, A.J, 2016. Antimicrobial activity and photochemical profiles of Warburgia Ugandensis Sprague (Canellaceae) extracts from different populations across the Kenyan rift valley. Ph.D Thesis, Kenyatta University, Nairobi Kenya.
- Petrovska, B.B. (2012). Historical review of medicinal plants' usage. *Pharmacogn. Rev*.6(11):1-5
- Rahbar, N., Shafagha, A., Salimi, F., 2012. Antimicrobial activity and constituents of the hexane extracts from leaf and stem of Origanum vulgare L sp. Viride (Boiss) Hayek. Growing wild in Northwest Iran. *Journal of Medicinal Plant research*. 6(13):2681-2685
- Rajkumar, S., & Jebanesan, A., 2003 Mosquitocidal activities of octacosane from Moschoma polystachyum Linn (lamiaceae). Journal of Ethnopharmacology 90(1):87-89
- Renugadevi, K., Valli, N.C., Moin, Z., 2021. Bioactivity of dodecanoic acid extracted from *Geitlerinema sp.*TRV57. *Indian J. of Pharmaceutical Education and Research.* 55 (1)
- Rhesto, T., Shubharani, R., Roopa, M., &Sivaram, V., 2020. Chemical constituents, antioxidant and antimicrobial activity of Allium chinense G. Don. *Future J. Pharm. Sci.* 6 (102)
- Rouis-Soussi, L.S., Ayeb-Zakhama, A.E., Mahjoub, A., Flamini, G., Jannet, H.B., Harzallah-Skhiri, F., 2014. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L. *EXCLI Journal*. 13:526-535
- Rukiyat, M., Garba, S., & Labaran, S., (2015). Antimicrobial activities of hexacosane isolated from *Sanseveria liberica* (Gerome and Labroy) plant. *Adv. Med. Plant Res.* 3(3):120-125
- Safwat, G.M, Hamed, M.M., &Moatamed, S.A., 2018. Studies of the biological activity of *Cassiafistula. Pharmacology online*. 1;75-85

- Sahar, W.M.H., Aida, H.S.,2018. GC-MS identification and applications of bioactive seaweed extracts from Mediterranean coast of Egypt. *The Egypt Journal of Aquatic Research* 22(5):1-21
- Sivakumar, D., & Balaraman, D., 2018. Phytochemical profiling and GC-MS analysis of Caulerpa racemosa. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*. 4 (5):155-165
- Song, J., Kim, Y., Lee, D.H, Lee, S.H., Park, H.J., Lee, D., & Kim, H., (2019). Neuroprotective effects of oleic acid in rodent models of cerebral ischaemia. *Sci Rep.* 9:10732
- Sreekumar, V.T., Ramesh, V., Vijaykumar, 2014. Study on ethanolic extract of Pitchavari: a native medicinal rice from southern peninsular India. Int. J. Pharm. Sci. Rev. Res. 25 (2):95-99
- Stacpoole, P.W., & Greene, Y.J., (1992). Dichloroacetate. Diabetes care. 15:785-791
- Stacpoole, P.W., Gilbert, L.R., & Neiberger, R.E., (2008) Evaluation of long term treatment of children with cognitive lactic acidosis with dichloroacetate. *Paediatrics*. 121; 1223-1228
- Stojanoski, N., (1999). Development of health cultures in Veles and its region from the past to the end of the 20th century. *Veles: society of science and art.* 13-34.
- Teppang, K.L., Ehrlich, R.S., Yang, J., 2020. Method to discriminate amyloids using fluorescent probes in *Methods in Enzymology*. 639:91-114
- Tiloke, C., Anand, KGengan, R.M, Chuturgoon, A.A, 2018 Moringa oleifera and their photo nanoparticles: potential antiproliferative agents against cancer. Biomed Pharmacother. 108;457-466
- Togashi, N., Shiraishi, A., Nishizaka, M., Matusuoka, K., Endo, K., Hamashima, H., Inoue, Y., 2007. Antibacterial activity of long-chain fatty alcohols against staphylococcus aureus. *Molecule* 12(2)139-148
- Tyagi, T., & Agarwal, M., (2017) phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of *Pistia stratiotes* L and *Eichhornia crassipes* (Mart.) solms. *J Pharmacognosy and Phytochemistry*. 6(1):195-206
- Ubaid, S., Rumman, M., Singh, B., Akhtar, M.S., Mahdi, A.A., Pandey, S., (2020). Elucidating the Neuroprotective Role of formulated Camel α-Lactalbumin-Oleic acid complex by Curating the SIRT1 Pathway in Parkinson's disease model. *ACS Chem Neurosci*. 11(24):4416-4425.
- Vanderweerd, J., Heeren, R.M.A, & Boon, J.J (2004). Preparation methods and accessories for the infrared spectroscopic analysis of multi-layer paint. *Stud Conserv.* 49: 193-210
- World Intellectual Property Organization, 2010. Purine derivatives for treatment of Alzheimer's disease.
- Yang, C., Lim, W., Bazer, F.W., & Song, G., (2018) Decanoic acid suppresses proliferation and invasiveness of human trophoblast cells by disrupting mitochondrial function. *Toxicology and Applied Pharmacology*. 339;121-132
- Zhao, Y, Gong, P, Chen, Y., Nwachukwu, J.C., Srinivasan, S., Ko, C., Bagchi, M.K., Taylor, R.N, Korach, K.S., Nettles, K.W., Katzenellenbogen, J.A., &Katzenellenbogen, B.S (2015) Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. *Sci. Transl. Med.* 21;7(271). doi: 10.1126/scitranslmed.3010626