

DETERMINATION OF SILICON AND CHROMIUM IN GOLD MATRIX USING PROTON INDUCED X-RAY EMISSION

Daniel D.¹ and Bello A.²

¹Department of Physics, Kebbi State Government Girls Science College Riba. Email: danny44phy@gmail.com

²Department of Physics, Kebbi State University of Science and Technology Aliero. Email: bello.abdullahi455@gmail.com

Cite this article:

Daniel D., Bello A. (2021), Determination of Silicon and Chromium in Gold Matrix Using Proton Induced X-Ray Emission. African Journal of Environment and Natural Science Research 4(4), 1-10. DOI: 10.52589/AJENSR-BPQ5D6XD.

Manuscript History

Received: 11 July 2021 Accepted: 3 Aug 2021 Published: 17 Aug 2021

Copyright © 2020 The Author(s). This is an Open Access article distributed under the terms of Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), which permits anyone to share, use, reproduce and redistribute in any medium, provided the original author and source are credited. **ABSTRACT:** The research aimed at the determination of elemental concentrations of silicon and chromium in five geological samples at the mining site of Garin Awwal area using the method of PIXE for analyses. The choice PIXE method in this research was due to its high sensitivity and multi-element capability that analyzes any element from sodium to uranium in a single spectrum. PIXE technique of 2.5MeV proton beam was used to characterize five samples. Samples were irradiated and analyzed at Centre for Energy Research and Development, Ile-Ife, Osun State, Nigeria. From the Spectra and results generated, silicon and chromium are of commercial deposit in the area, alongside other elements such as Iron(Fe), Magnesium(Mg) and Aluminium(Al) which appear to be deposited in commercial quantities in the area.

KEYWORDS: PIXE, CERD and Silicon and Chromium

INTRODUCTION

Silicon and Chromium are generallynatural components of the Earth's crust and therefore are majorconstituents of soil. It may not be easy to assign a definite causefor an increase in metal content of a soil sample without recourse to the background level of the metal (Wilberforce et al 2012). Silicon is an element of earth, it is available, abundantly on earth's crust. Itoccurs to the tune of 27.7% in the earth's crust. Silicon rarelyappears as an integral component of biological materials. Thepresence of silicon in plants, animals and humans plays apositive role (Vasanthiet al, 2012). Therefore, its requirement toanimals and humans becomes important for the development of bone, fairness of hair and also prevention of certaincardiovascular diseases even though it is a serious health hazardcausing silicosis of lungs upon inhalation (Vasanthiet al, 2012). Yet silicon products have emerged for use in food, cosmeticsand computers which men and women use in day today life (Vasanthiet al, 2012). Chromium is a relatively common element with an average concentration of 100ppm. It is the 21st most commonly occurring element in he earth's crust. Chromium compounds are used in thechemical industry in various fields. The metal industry uses most of the chromium in the form of master alloys, preferably in special steels (stainless steel). Additional applications of chromium compounds are found in the following: building industry (aspigments), printing industry (photomechanical reproduction processes), oil industry (as anti corrosives), textileindustry (chromium mordant for textiles and chrome dyeing processes), match industry and fireworks (additiveto the inflammable mixture). In the cassette tape industry chromium oxide is used in a specially crystallized form (Bello et al, 2012).

This research aimed at the determination of elemental concentrations of silicon and chromium in goldmatrix at the mining site of Garin Awwal area. The GarinAwwal was chosen tobe the study area of this research due to the availability of the sample of interest at Garin Awwal mining station located in Fakai. The choice of PIXE method in this research was due to its high sensitivity and multi-element capability that analyzes any element from sodium to uranium in a single spectrum (Hasnat, 2007). When charged particles collide with atoms, atomic inner shell electrons become ionized, producing characteristic X-rays. This phenomenon is called particle-induced X-ray emission (PIXE). The word PIXE is an acronym that stands for Particle or Proton Induced X-rays Emission. PIXE was first experimentally shown by Sven A.E. Johansson of Lund Institute of Science and Technology in 1970. PIXE is non-destructive. Therefore, the samples are not destroyed or consumed in the analysis. The sample is still available to be characterized by other methods. In PIXE technique, the accelerated proton beam is used due to its low bremsstrahlung radiations, high fluorescence yield and X-rays production cross-section. As a trace elemental analytical technique PIXE is very powerful with minimum detection limits (MDL) between 0.1 and 50ppm depending on the element and host matrix Johansson et al., (1995).

PIXE analysis consists of two parts. The first is to identify the atomic species in the target from the energies of the characteristic peaks in the X-ray emission spectrum and the second part is to determine the amount of a particular element present in the target from the intensity of its characteristic X-ray emission spectrum. This normally requires knowledge of the ionisation cross-sections, fluorescence yields and absorption coefficients. Depth profile analysis may be performed if the PIXE is combined with other methods like Rutherford Back Scattering (RBS) and/or sample etching techniques Govil, (2001). Trace elements play very important roles in living beings. Any fluctuation like deficiency or excess in their normal

level in living cells may lead to physiological disorders causing various diseases like hypertension, dental caries, goitre, cancer, heart disease, gallstones, obesity, and anemia (Buhari, 2018).

MATERIAL AND METHOD

Materials

The total of five samples was collected at places where gold mining were been undertaken, Global Positioning System (GPS), Mechanical Crusher, Chemflex TM, Electric Shaker, Aluminium Foil Paper and GUPIX Software.

Study Area

The site is located at approximately latitudes 007008.690'E and longitudes 090 34'224''N in Fakai local Government Area, Kebbi State, Nigeria. Where samples are being collected, It is North to Sokoto State, East to DankoWasagu L.G.A, South to Niger State and West to Koko Besse L.G.A.

Sample collection and Preparation

The geological samples (gold matrix) were collected from five different locations of Garin Awwal mining area. PIXE requires little orminimal sample preparations, therefore care must be taken inhandling the material to be analyzed (Ezeh *et al*, 2017). Eachsample collectedwas crushed to small pieces using mechanicalcrusher. The crushed samples were dried at 105° C to constantweight (Abdullahi, 2012). The dried samples were ground toform fine powder. Then the powdered samples were sievedusing a standard set of sieves to a diameter range of less than125µm (Buhari, 2018). Every powdered sample was shaken using an electric shaker to be sure that the sample was homogenized. The samples (leftover) were mixed with binding agent such as chemflex TM (Buhari, 2018).Five pellets are made of 13mm diameter and about 1mmthickness (Rahman *et al*, 2016) and thereafter fastened to thespecimen holder (Abdullahi 2012). The aluminium foil paper is placed behind the pellets before it is fastened to the special ladder to avoid the masking tape sticking to the pellets. It is thenmeticulously lowered into the specimen chamber. Once the specimen is securely placed in the specimen chamber, the chamber is made vacuous by a special vacuum pump affixed tothe chamber (Abdullahi, 2012).

Irradiation of samples

The samples were irradiated using 2.5MeV tandem accelerator at the Centre for Energy Research and Development (CERD), ObafemiAwolowo University (OAU) Ile-Ife, OsunState, Nigeria (Buhari, 2018). The target was placed at an angle of 45⁰ with respect to the proton beam from the accelerator (Arif*et al*, 2016). Each sample is irradiated and counted (for 10 min). Subsequently, the spectrum obtain is stored for qualitative and quantitative calculation at a later date. Irradiation is done together with Standard Reference Material (SRM) for relative quantitative calculation and quality control. The precision and trueness of the method were checked by analyzing the two SRMs under the same experimental condition as the samples.

RESULTS AND DISCUSSION

Quality Control

Table 3.1 shows the results of irradiation carried out on standard (NIST) 278 (Obsidian Rock). The table contains the analyte, standard and certain values. The observation from the table reveals that the certain values of the analyte silicon (Si), potassium (K), iron (Fe) and rubidium (Rb) respectively are of the standard. Analyte chlorine (Cl), vanadium (V) and zirconium (Zr) respectively are below the standard. Observation shows that PIXE is efficient for the analysis.

ANALYTE	STANDARD	CERT. VALUES (ppm)
Si	341397.3 ± 6281.71	341436
Cl	584.5 ± 88.03	-
К	34511.7 ± 106.99	34530
Ca	7020.8 ± 90.57	7026
Ti	1439.7 ± 22.75	1469
V	30.7 ± 15.76	-
Mn	401.2 ± 10.99	403
Fe	14275.1 ± 51.39	14268
Cu	6.8 ± 3.02	5.9
Zn	55.8 ± 5.96	55
Rb	127.5 ± 18.47	127.5
Sr	64.2 ± 13.67	.5
Zr	375.8 ± 39.46	-
Ba	1222.2 ± 165.49	1140
Се	67.1 ± 42.94	62.2

Table 3.1 (NIST) 278 (Obsidian Rock)

Volume 4, Issue 4, 2021 (pp. 1-10)

Element	Oxide	Element Concentration	Oxide Concentration
		(ppm)	(ppm)
Pb	PbO	756	814
Na	Na ₂ O	3503	4723
Mg	MgO	2660	4411
Al	Al ₂ O ₃	46037	86985
Si	SiO ₂	401090	858058
Р	P2O5	714	1637
S	SO_3	78481	195964
Κ	K ₂ O	25060	30186
Ti	TiO ₂	533	889
V	V_2O_3	61	90
Cr	Cr_2O_3	538	787
Mn	MnO	137	177
Fe	FeO	90510	116440
Ni	NiO	14	18
Cu	Cu ₂ O	35	39
Zn	ZnO	351	436
Se	SeO_2	64	91
Br	Br	153	153
Rb	Rb ₂ O	123	135
Y	Y_2O_3	65	82
Zr	ZrO_2	117	158
Ba	BaO	807	901
Dy	Dy_2O_3	2309	2650
Au	Au ₂ O ₃	457	513
Bi	Bi ₂ O ₃	151	168
Th	ThO ₂	357	406
U	UO ₃	702	843

Table 3.2 Average Concentration (ppm) of Elements in Sample A

Volume 4, Issue 4, 2021 (pp. 1-10)

Element	Oxide	Element Concentration (ppm)	Oxide Concentration (ppm)
Pb	PbO	2390	2575
Na	Na ₂ O	57	77
Mg	MgO	545	904
Al	Al ₂ O ₃	7254	13706
Si	SiO_2	73577	157404
S	SO ₃	253510	633001
Κ	K ₂ O	2492	3002
Ca	CaO	200	280
Ti	TiO ₂	394	657
Cr	Cr_2O_3	231	338
Mn	MnO	74	95
Fe	FeO	267407	344015
Ni	NiO	81	103
Cu	Cu ₂ O	24	27
Zn	ZnO	2880	3585
Se	SeO ₂	396	556
Rb	Rb ₂ O	240	263
Sr	SrO	26	31
Dy	Dy ₂ O ₃	12356	14181
Au	Au ₂ O ₃	1579	1771
Bi	Bi ₂ O ₃	652	726
U	UO ₃	56	67

Table 3.3 Average Concentration (ppm) of Elements in Sample B

Volume 4, Issue 4, 2021 (pp. 1-10)

Element	Oxide	Element Concentration (ppm)	Oxide Concentration (ppm)
Pb	PbO	309	333
Na	Na ₂ O	537	724
Mg	MgO	49749	82488
Al	Al ₂ O ₃	87232	164823
Si	SiO ₂	242029	517776
Р	P2O5	1517	3476
Cl	Cl	334	334
Κ	K ₂ O	53960	64999
Ca	CaO	35294	49382
Ti	TiO ₂	18844	31432
V	V_2O_3	493	725
Cr	Cr_2O_3	335	490
Mn	MnO	1772	2288
Fe	FeO	141279	181753
Cu	Cu ₂ O	41	46
Zn	ZnO	580	722
Br	Br	62	62
Rb	Rb ₂ O	278	304
Sr	SrO	195	231
Zr	ZrO_2	53	71
Nb	Nb ₂ O ₅	219	314
Mo	MoO ₃	2682	4024
Dy	Dy_2O_3	354	406
Au	Au ₂ O ₃	254	285

Table 3.4 Average Concentration (ppm) of Elements in Sample C

Element	Oxide	Element	Oxide Concentration
		Concentration	(ppm)
		(ppm)	
Pb	PbO	588	633
Na	Na ₂ O	281	378
Mg	MgO	795	1319
Al	Al ₂ O ₃	9468	17890
Si	SiO ₂	434689	929936
Р	P_2O_5	601	1378
S	SO ₃	5471	13662
Κ	K ₂ O	4127	4971
Ca	CaO	97	136
Ti	TiO ₂	243	405
V	V_2O_3	17	25
Cr	Cr ₂ O ₃	1371	2004
Mn	MnO	66	86
Fe	FeO	18284	23522
Ni	NiO	3	4
Cu	Cu ₂ O	6	7
Zn	ZnO	85	106
Se	SeO ₂	56	79
Br	Br	68	68
Rb	Rb ₂ O	22	24
Sr	SrO	32	37
Y	Y_2O_3	65	82
Sn	SnO ₂	2220	2819
Au	Au ₂ O ₃	42	47
Th	ThO ₂	467	532
U	UO_3	53	63

Table 3.5 Average Concentration (ppm) of Elements in Sample D

Element	Oxide	Element Concentration (ppm)	Oxide Concentration (ppm)
Na	Na ₂ O	519	700
Mg	MgO	535	886
Al	Al ₂ O ₃	12748	24087
Si	SiO ₂	510806	1092775
Р	P_2O_5	620	1422
Κ	K_2O	2312	2785
Sc	Sc_2O_3	24	36
Ti	TiO ₂	426	710
Cr	Cr_2O_3	728	1064
Mn	MnO	59	76
Fe	FeO	10638	13685
Ni	NiO	4	5
Cu	Cu ₂ O	5	6
As	As ₂ O ₅	35	54
Br	Br	19	19
Rb	Rb ₂ O	66	72
Sr	SrO	52	62
Y	Y ₂ O ₃	41	52
Sn	SnO ₂	6766	8591
Dy	Dy ₂ O ₃	1047	1201
Au	Au ₂ O ₃	64	72

Table 3.6 Average Concentration (ppm) of Elements in Sample E

Among the five samples analyzed, it was observed that silicon (Si) has the highest element concentration in sample A, C, D and E to be 401090ppm, 242029ppm, 434689ppm and 510806ppm. Chromium (Cr) has high element concentration which is above the world health recommendation of 100ppm in sample A, B, C, D and E to be 538ppm, 231ppm, 335ppm, 1371ppm and 728ppm respectively. All the samples in the study area indicated high deposit of Iron (Fe),Magnesium(Mg) and Aluminium(Al).

CONCLUSION

From the obtained results, it appears that PIXE can provide useful data with a satisfactory accuracy and precision. The analysis of data obtained from five samples using PIXE shows that silicon and chromium are of commercial deposit in the area, alongside with the other elements such as Iron (Fe), Magnesium (Mg) and Aluminium (Al) which appear to be deposited in commercial quantities in the area.

REFERENCE

- Abdullahi B (2012) "The Determination of Zirconium fromNorth-Western Nigeria using *PIXE Technique*" InternationalJournal of Science and Technology, Volume 2 No.9, PP (613-617)
- Arif R, Mohsin R, Nisar A, Athar N, Shahzad S, and ShahnawazM (2016) "Determination of trace elements in tap water usingpixe technique" Journal of Chemical and PharmaceuticalSciences, Volume 9 Issue 1, PP (34-38)
- Bello A, M. T. Tsepav1, M. D. Oladipupo1 & B. Alfa, (2012). Determination of Chromium and Other Trace Elements from North Western Nigeria by Proton Induced X-ray Emission Technique. *Modern Applied Science*; Vol. 6, No. 7
- Buhari S, (2018).*Determination of Lead from Tailings of Gold Matrix using Proton Induced X-ray Emission* International Journal of Science and Research (IJSR) Vol. 8, Issue 1, pp110-112.
- Ezeh G &Obiajunwa I (2017) "Multi-elemental analysis of colonial and post- colonial Nigerian coins by proton induced x-rayemission spectrometry" Journal of Fundamental andApplied Sciences, 9(1), 499-508
- Govil I. M, (2001). Department of Physics, Panjab University, Chandigarh 160014, *India*. *Current Science*, Vol.80, No.12. pp1-8, June
- HasnatMdKabir (2007) "Particle Induced X-ray Emission(PIXE) Setup and Quantitative Elemental Analysis" Adissertation submitted to Kochi University of Technology in partialfulfillment of the requirements for the degree of Doctorof Philosophy, Department of Electronic and Photonic SystemsEngineering Graduate School of Engineering Kochi Universityof Technology Kochi, Japan
- Johansson S.A.E. Campbell, J.L and Malmqvist K.G, (1995). Particle Induced X-ray Emission spectrometry (PIXE) *Wiley, Chichester*, pp56-71
- Rahman R, Rahman O, Shariff A, Uddin S, Hasan M, &Shameem A (2016) "PIXE Analysis of Some EnvironmentalSamples from Selected Saline Region of (Bangladesh)" International Journal of Environmental Science andDevelopment, Vol. 7, No. 1, PP (16-21)
- Vasanthi N, Lilly M. & Anthoni S (2012) "Silicon in Day Today Life" World Applied Sciences Journal 17 (11), PP 1425-1440, published by IDOSI
- Wilberforce O. J, Nwabue F & Afiukwa J (2012) "Analysis of Heavy Metals in Soils of Enyigba and Abakaliki Using ProtonInduced X-Ray Emission (Pixe) Spectroscopy" Environment andPollution; Vol. 1, No. 2; Published by Canadian Center ofScience and Education.