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ABSTRACT: This study was conducted in order to determine the health 

status of forest vegetation in Gashaka-Gumti National Park. Landsat 

images were downloaded from the USGS website. The images were pre-

processed using radiometric correction since the reflectance values 

were needed for computing spectral indices, the digital numbers were 

converted to radiance and reflectance, and analysis was carried out 

using a raster calculator. The range of NDVI, GNDVI, ARVI and MSI 

were used for health assessment. Utilizing NDVI, GNDVI, ARVI, and 

MSI as assessment tools revealed moderate to good health in most forest 

regions, with higher ARVI, GNDVI, and NDVI indicating healthier 

vegetation and elevated MSI values suggesting areas under moisture 

stress. the average values of NDVI, GNDVI, ARVI, and MSI over three 

decades indicate a potential decline in overall vegetation health, 

reduced green vegetation, changes in vegetation conditions, and a 

decrease in moisture stress, suggesting a potential increase in greening 

and photosynthetic activities in plants. These trends highlight the 

dynamic nature of the forest ecosystem over the studied period. Positive 

correlations between ARVI, GNDVI, and NDVI across years indicate a 

consistent vegetation pattern, while negative correlations with MSI 

suggest potential inverse relationships, providing valuable insights into 

forest health dynamics. Higher values of ARVI, GNDVI, and NDVI 

generally signify healthier vegetation, whereas elevated MSI values may 

indicate areas experiencing moisture stress, emphasizing the 

importance of monitoring these indices for sustainable forest 

management. The study recommends the sustained use of NDVI, 

GNDVI, ARVI, and MSI for forest health monitoring in the study area, 

implementing integrated pest management based on identified stress 

conditions, utilize spatial maps for strategic timber harvest planning, 

developing climate-resilient management considering moisture stress, 

and invest in research for enhanced assessment precision and 

understanding of ecosystem dynamics. 
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INTRODUCTION 

Healthy canopies of green vegetation have a very distinctive interaction with energy in the visible 

and near-infrared regions of the electromagnetic spectrum. In the visible regions, plant pigments 

(most notable chlorophyll) cause strong absorption of energy, primarily for photosynthesis. This 

absorption peaks in the red and blue areas of the visible spectrum, thus leading to the characteristic 

green appearance of most leaves. In the near-infrared, however, a very different interaction occurs. 

The energy in this region is not used in photosynthesis and it is strongly scattered by the internal 

structure of most leaves, leading to a very high apparent reflectance in the near infrared. It is this 

strong contrast particularly between the amount of reflected energy in the red and near-infrared 

regions of the electromagnetic spectrum which has been the focus of a large variety of attempts to 

develop quantitative indices of vegetation condition using remotely sensed imagery (Eastman, 

2012). The spectral characteristics of vegetation vary with wavelength. Chlorophyll absorbs 

radiation in the red and blue wavelengths but reflects the green wavelength. The internal structure 

of healthy leaves acts as a diffuse reflector of near-infrared wavelengths. Spectral bands are often 

used both individually and in combination with other bands to obtain vegetation indices (Berra et 

al., 2014 and Goergen et al., 2016). The biometrical properties of vegetation in different 

wavelengths of the electromagnetic spectrum can be analyzed as well used for modeling and 

simulating biophysical processes (Salami and Balogun, 2006; Jarocinska and Zagajewski, 2006; 

Samvedan, 2007). The most common vegetation index in forest classification and land cover 

change studies is NDVI. It reportedly improves vegetation classifications by partially 

compensating for variation in illumination due to terrain (Tucker, 1979; Lillesand and Kiefer, 

1994). The perceived condition of a forest predicated on factors such as age, structure, 

composition, function, vigour, the presence of unusual levels of insects or diseases, and resilience 

to disturbance can be termed forest health (Martin and Aber, 2006). A forest is adjudged to be 

vigorous if the physical and biotic resources support productive forests, guarantee the sustenance 

of organisms within the ecosystem and the maintenance of a functional equilibrium between 

supply and demand of essential resources (Haile et al., 2014). Indicators commonly used in forest 

health monitoring include tree mortality, tree crown condition, the growth of trees (as shown by 

basal area, height or volume changes through time), plant diversity, the dominance of native 

species, soil Morphology and chemistry (Morse et al., 2005). 

Many researchers studied chlorophyll concentration of canopy relates to forest health measurement 

and predicts the stress of vegetation in the forest because defoliation and discolorations determine 

canopy chlorophyll masses. Ahmad et al. (2020) used airborne hyperspectral AVIRIS NG data 

and leaf pigments and water concentration via spectral signature to measure forest health. Meng 

et al. (2016) calculated the Forest Health Index (FHI) using spectral and textural features retrieved 

from SPOT 5 satellite data. Canopy health and forest damage by insects has been successfully 

retrieved from remote sensing imagery using hyperspectral bands in Eucalyptus (Evans et al., 

2012). Kumaresan (2018) used Hyperion data sets for spectral discrimination for health assessment 

through the ENVI forest health toolbox. Zarco-Tejada et al. (2018) analysed the temporal changes 

of red edge spectra which are sensitive to chlorophyll for estimating canopy defoliation and 

pigment degradation. Kayet et al. (2019) worked on forest health analysis using Hyperion data to 

monitor dust accumulation on leaves in the mining area of Jharkhand state, India. Lots of other 

studies concentrated only NDVI as an indicator of forest health and these studies does not reflects 
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many stressors and therefore does not meet the requirement of FH monitoring (Barkey and 

Nursaputra, 2019; Dash et al., 2017; Housman et al., 2018; Reang et al., 2018). Developing 

suitable indicators to know the quantity, rate and place of forest health decline is the principle 

behind forest health monitoring (Meng et al., 2016). The approach based on RS techniques used 

spectral traits and its variation in a spatiotemporal way for retrieving indicators of forest health 

(Lausch et al., 2017). The forest health indicators accuracy using RS depends upon spectral, 

spatial, angular, radiometric resolution, the utilization of modelling method (biophysical, 

biochemical and classification retrieval) suitability for the RS methods and norms of spectral traits 

(Lausch et al., 2016). On the other hand, structural traits for forest health monitoring are essential 

because forests having complex structures (good condition) supplies more ecological services than 

forests having simple structures (Meng et al., 2014; Brockerhoff et al., 2017) 

Remote sensing refers to “the practice of deriving information about the earth’s land and water 

surfaces using images acquired from an overhead perspective, using electromagnetic radiation in 

one or more regions of the electromagnetic spectrum reflected or emitted from the earth’s surface. 

(Campbell, 2002) Remote sensors can be deployed on satellites, airplanes, balloons, or remote-

controlled vehicles. Current and past satellite remote sensing of forest health has focused on the 

following categories: vegetation and landscape classification, biomass mapping, invasive plant 

detection, fire fuel mapping, canopy or foliar water stress, fire detection and progression mapping, 

post-fire burn area and severity mapping, and insect infestation detection. Most of these studies 

have analyzed spectral signatures or simple indices (calculated from reflectance data) such as the 

Normalized Difference Vegetation Index (NDVI). Little has been done for remote sensing of 

absolute forest water stress (e.g., evapotranspiration [ET]) and biomass growth using physically- 

and physiologically-based algorithms. Previous studies estimated biomass by using NDVI or other 

simple indices using correlation and regression methods. The vegetation indices are mathematical 

combinations of the spectral response of different bands of the electromagnetic spectrum and are 

indicators of photosynthetic activity and vegetation vigour used as surrogates for vegetation for 

time-series analysis, vegetation status monitoring and change detection (Brantley, et al., 2011; Hill 

2013). The main indices cited recently in the literature use reflectance values in three wavelength 

bands: the red, red edge and the near-infrared. These indices reduce the volume of data to be 

analysed and make easier estimates of biophysical structural and physiological variables of the 

vegetation (Fonseca 2004; Prabhakara, et al., 2015; Pan et al., 2015). However, some indices such 

as Normalized difference vegetation index – NDVI and Simple Ratio – SR may present saturation 

problems when measured for areas of vigorous vegetation (Hill 2013; Li et al., 2014; Schuster et 

al., 2015).  

Forests provide human with many goods, services, and resources, such as recreation, atmospheric 

purification, and water conservation. In recent years, there have been increasing threats to the 

health of forests such as global warming due to climate change, environmental pollution, and the 

growing interest in forests, efforts are being made in various countries for forest management. The 

sustainable forest management proposed in the Montreal which is an international forest treaty, 

means sustainable management of the forests in terms of ecological, economic, social and cultural 

functions in consideration of intergenerational equity. Seven criteria for evaluating the 

performance of management were presented. In this reason, countries around the world are actively 

working on the establishment of a forest health survey index using criteria for conservation of 
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biodiversity and the third standard for maintaining health and vitality of forest ecosystems. Forest 

usage include provision of timber, fuelwood, wildlife habitat, natural water supply, recreation, 

landscape and community protection while others are employment generation (Amarsaikhan, et 

al., 2012) aesthetically appealing landscapes, biodiversity management, watershed management, 

erosion control (Khalile, et al., 2018). Forest ecosystems are the most important feature of the 

earth according to (Ramos, 2010) and it has emerged as a science embraced by the majority of 

industrialized countries. Generally speaking, intensive and effective forest management requires 

reliable field data, maps, and plans indicating the current state of the forest (Ayansina, 2017). 

 

LITERATURE REVIEW 

Forest health monitoring has a long practice often associated with monitoring programs at national, 

international, and regional levels in which graded ecological indicators of forest health have been 

used and created. In Germany, FHM initiative consists of three level of analysis: the first level 

consists of systematic sample grid of permanent plots, the second level consist of continual 

sampling in selected forest ecosystems and the third level comprises National Forest Inventory 

(NFI) at every 10 years and 45 countries integrated into it (Lorenz, 1995; JHTI, 2018). In the USA, 

USDA forest service performed FHM to determine the changes, status, and trends in indicators of 

forest health on an annual basis. In Europe and North America, the tree canopy condition, e.g., 

defoliation and dieback, is mostly used as a pointer for forest wellbeing assessment. Frequency 

level of five years since 2004, the wellbeing status and environmental elements of forest biological 

systems were checked and added to the national forest inventory (Yang et al., 2015). At Global 

level, Global Forest Observations Initiative (GFOI) was setup to supply a platform for coordinated 

actions at national level and individual countries (currently 45) report their findings to the Food 

and Agriculture Organization of the United Nations (FAO). Using ecological indicators, the 

multiple Forest Health Index (FHI) can be adopted to quantify forest health. Forest health, a more 

formal and scientific term is normally used in forestry to describe the forest stand condition. While 

this term first appeared in the forestry literature in the 1980s (Waring, 1980; Smith, 1990), there 

was no widely accepted definition for almost 10 years. The lack of a universal definition hindered 

the assessment of forest health as well as the monitoring of its dynamics. In this context. 

(O’Laughlin and Cook, 2003; Tuominen et al., 2009) integrated the definitions of forest, 

ecosystem and health and finally defined forest health as a condition of forest ecosystems that 

sustained their complexity while providing for human needs. This definition made a great effort to 

combine the social, ecological and economical perspectives (Tuominen, et al., 2009) and was 

adopted by the US forest service and is frequently used in the forestry literature (Tuominen, et al., 

2009; Lim, 2012; Lim, 2015) 
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METHODOLOGY 

Study Area 

Gashaka-Gumti National Park is located in the North-Eastern part of Nigeria. It is indeed known 

for its significant size, making it the largest national park in Nigeria covering approximately 

6731km2. Situated between latitude 6°55' to 8°05' N and longitude 11°01' to 12°13' E, as reported 

by (Dunn, 1999). The name of the park emerged from the amalgamation of two villages, Gashaka 

in Taraba State and Gumti in Adamawa State during the military regime by the Federal 

Government of Nigeria through Decree No. 36 of 1991. The merging of Gashaka and Gumti Game 

Reserves into one national park reflects the government's commitment to conservation efforts and 

the protection of natural resources (Marguba, 2002).  The establishment of Gashaka-Gumti 

National Park with its diverse ecosystems aligns with various objectives, viz: preserving the rich 

biodiversity and ecosystems within the park, providing opportunities for outdoor activities and 

recreational experiences for visitors, promoting sustainable tourism that focuses on natural and 

cultural heritage, providing economic benefits while minimizing environmental impact, serving as 

a hub for scientific research, contributing to the understanding of local ecosystems and potentially 

leading to advancements in medical and biological fields, supporting and preserving the art, crafts, 

and cultural values of the indigenous people living around the park. The multi-faceted role that 

Gashaka-Gumti National Park plays in contributing to environmental conservation, scientific 

knowledge, and the well-being of both wildlife and local communities around. 

The climate of the reserve is classified as savanna woodland. However, it differs from most central 

habitats due to a long and marked dry season, the rainy season typically begins from March to 

April and lasts until mid-November, the park exhibits a variation in rainfall across its expanse. The 

northern part receives approximately 1200mm of rainfall, while the southern part receives a higher 

amount, around 3000mm (Dunn 1999) and this indicates a north-to-south gradient in terms of 

precipitation. The high rainfall is attributed to the influence of high mountains. The humidity from 

the Atlantic is forced to higher elevations, where it cools down and forms rain-bearing clouds, his 

phenomenon contributes to the growth of moist forests in the park. Understanding the climate is 

crucial for comprehending the diversity of flora and fauna within the park, as different species may 

be adapted to specific climatic conditions. The presence of a marked dry season and distinct wet 

season also plays a role in shaping the ecosystems and wildlife behaviors. 
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Figure 1: Map of the Study Area 

Spatial Data Acquisition  

Satellite (Landsat) images of 2003, 2013 and 2023 were acquired on the 1st February 2024 through 

path and row 1985/055 and 1986/055, downloaded from United States Geological Survey (USGS) 

website. These sensors include operational land imager (OLI) /Thermal Infrared Sensor (TIRS), 

Enhanced Thematic Mapper (ETM+).  

Image processing 

Geometric rectification is critical for producing spatially corrected map of land use/cover changes 

through time. The Landsat OLI images were in UTM projection (Zone 31N) on WGS84. 

Therefore, the images of the study area were geometrically corrected. Since the reflectance values 

will be necessary for the calculation of vegetation indices, the digital numbers (DN) must be 

converted to radiance and then to reflectance (Chukwuka and Funmilayo, 2018) 

Table 1: Adopted data and their attributes 

 Data type Date Resolution  Source 

1 Landsat Image 2003 30m Earth Explorer USGS 

2 Landsat Image 2013 30m Earth Explorer USGS 

3 Landsat Image 2023 30m Earth Explorer USGS 

4 Administration map   Office of the Surveyor General Taraba 

State 
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Overview of Approach  

Figure 2. below shows the summary of methods adopted in the study. Data from different sources 

were acquired and used for the study which includes multi-temporal data (Landsat satellite 

images). Landsat satellite images of 2003, 2013 and 2023 were acquired from United States 

Geological Survey (USGS) archive (http://glovis.usgs.gov) the study area was extracted from the 

data and ArcMap and Idrisi software was used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Summary of the methods adopted 

Data processing and Analysis 

The multi-temporal data (Landsat images) were processed using ArcMap software package. The 

Landsat imagery was imported, imagery was enhanced using radiometric correction. spectral 

indices were computed using raster calculator. 
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Spectral Indices 

i. Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) is a numerical indicator that uses the red 

and near-infrared spectral bands. Healthy vegetation (chlorophyll) reflects more near-infrared 

(NIR) and green light compared to other wavelengths. But it absorbs more red and blue light. 

Overall, NDVI is a standardized way to measure healthy vegetation. When you have high NDVI 

values, you have healthier vegetation. When you have low NDVI, you have less or no vegetation 

(Jaksibaev 2020). To determine the density of live green vegetation on a patch of land the NDVI 

is calculated from reflectance bands by these individual measurements (Rouse et al, 1973; Souza 

et al., 2010) as adopted by Kumaresan (2018). 

The formula for  

NDVI= (NIR - Red) / (NIR + Red)……………………………………………………….(1) 

where NIR is the near-infrared band 

Red is the red band of the Landsat imagery.  

ii. Green Normalized Difference Vegetation Index (GNDVI) 

This index has a lot in common with NDVI. The major difference is that it measures the green 

spectrum from 540 to 570nm instead of the RED spectrum. This index is also unique because it is 

very sensitive to chlorophyll concentration. is an index of plant “greenness” or photosynthetic 

activity? It is a chlorophyll index used at later stages of development, as it saturates later than 

NDVI. It is one of the most widely used vegetation indices to determine water and nitrogen uptake 

in the crop canopy. GNDVI is more sensitive to chlorophyll variation in the crop than NDVI, the 

values given by this index also range from -1 to 1. Values between -1 and 0: are associated with 

the presence of water or bare soil. It is used mainly in the crop cycle’s intermediate and final stages 

and values greater than 0: the more intense the green, the more vigorous the vegetation and 

vegetation cover. (Gitelson and Merzlyak. 1995) 

GNDVI = (NIR - Green) /(NIR + Green)…………………………………………..…...(2) 

iii. Atmospherically Resistant Vegetation Index (ARVI) Calculation  

ARVI – (Atmospherically Resistant Vegetation Index) is an enhancement to the NDVI that is 

relatively resistant to atmospheric factors (for example, aerosol). It uses blue reflectance to correct 

red reflectance for atmospheric scattering. It is most useful in regions of high atmospheric aerosol 

content, including tropical regions contaminated by soot from slash-and-burn agriculture. The 

formula is ARVI is an index of atmospherically resistant vegetation, which is most useful in 

regions with high concentrations of atmospheric aerosols. It uses blue light reflectance 

measurements to correct for atmospheric scattering effects that also affect red light reflectance. It 

is calculated by the following formula: (Kaufman and Tanre, 1992). ARVI values range from -1 

to 1, with green vegetation typically corresponding to values in the range of 0.20 to 0.80 
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ARVI = (NIR - (2 * Red) + Blue) / (NIR + (2 * Red) + Blue)…………..………………(3) 

iv. Moisture Stress Index (MSI) 

Moisture Stress Index is used for canopy stress analysis, productivity prediction and biophysical 

modeling. Interpretation of the MSI is inverted relative to other water vegetation indices; thus, 

higher values of the index indicate greater plant water stress and in inference, less soil moisture 

content. The values of this index range from 0 to more than 3 with the common range for green 

vegetation being 0.2 to 2 (Welikhe et al., 2017).  

MSI = (MidIR / NIR)…………………………………………………………………….(4) 

 

RESULTS AND DISCUSSIONS 

Vegetation Indices and Forest Health Assessment  

The health status of the vegetation was analysed using Normalized Difference Vegetation Index 

(NDVI), Green Normalized Difference Vegetation Index (GNDVI), Atmospherically Resistance 

Vegetation Index (ARVI) and Moisture Stress index (MSI) are based on the characteristic 

reflection of plant leaves in the visible and near-infrared portion of light. Th healthy vegetation 

has a low reflection of visible light since it is strongly absorbed by the leaf pigment known as 

chlorophyll (Aigbokan 2018).  For this research three different Landsat scenes were obtained and 

analyzed viz: 2003, 2013 and 2023. The techniques for forest health assessment exhibit a spatial 

map of the overall health and vigour of a forest. It is very good for the detection of pest and blight 

conditions as well as assessing good area for timber harvests. A forest that is experiencing high 

stress condition will show signs of dry/drying vegetation condition, very dense or sparse canopy 

and inefficient light utilization. The results of the findings (Figure 3,4,5 and 6) indicate most of 

the regions to be moderately healthy and this corresponds with findings of (Kumaran 2018) in his 

research titled Spectral Based Vegetation discrimination and Forest Health Assessment Using 

Hyperion where he used nine (9) categories for health classes as a scale. 

http://doi.org/10.4172/2469-4134.1000200
http://doi.org/10.4172/2469-4134.1000200
http://doi.org/10.4172/2469-4134.1000200
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Figure 3: NDVI Maps 

From figure 3 (A) maximum and minimum NDVI were 0.50 and -0.16, the red patches are more 

concentrated in the north towards the western part while northeast and southern part shows 

increase in the NDVI values signifying better canopy vigour and chlorophyll concentration. Image 

A B 

C 
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in 2(B) shows little improvement where maximum and minimum NDVI (0.49 to -0.02) this shows 

general improvement in the in the chlorophyll content compare to the image in (A). Image in (C) 

shows positive NDVI values ranging from 0.47-0.01 which represent increase in the chlorophyll 

content in the leave 

 

Figure 4: GNDVI Maps 

B A 

C 
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From figure 4 (A) maximum and minimum GNDVI were 0.47 and -0.13, the red patches are more 

concentrated in the north towards the western part while northeast and southern part shows 

increase in GNDVI values signifying increase in chlorophyll concentration. Image in 2(B) shows 

decrease in GNDVI values where maximum and minimum (0.45 to -0.0005) in the in the 

chlorophyll content compare to the image in (A). Image in (C) shows positive NDVI values 

ranging from 0.45-0.05 which represent decrease in the chlorophyll content in the leaves. 

  

 
Figure 5: ARVI Maps 

A B 

C 
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From figure 5 (A) maximum and minimum ARVI were 0.34 and 0.12, the red patches are more 

concentrated in the north towards the western part while northeast and southern part shows 

decrease in ARVI values signifying reduction in green vegetation. Image in 2(B) shows decrease 

in ARVI values where maximum and minimum (0.30 to -0.05) reduced compare to the image in 

(A). Image in (C) shows reduction values ranging from 0.30 to -0.05 which represent decrease in 

green vegetation. 

  

 

Figure 6: MSI Maps 

A B 

C

C 
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From figure 6 (A) maximum and minimum MSI were 4.13-0, the deep blue color signifies water 

stress, and almost all the part of the study area.  Image in 2 (B) shows decrease in MSI values 

where maximum and minimum (4 to 0) reduced compare to the image in (A). Image in (C) shows 

reduction values ranging from 5 to 0 which represent increase in water stress especially towards 

the more than part of the area. 

Mean Values of the Spectral Indices  

The figure 7 below shows average values of the spectral indices obtained in three decades. NDVI 

is a measure of vegetation health, and higher values typically indicate healthier vegetation. The 

reduction in NDVI from 0.3 in 2003 to 0.2 in 2013 and 2023 suggests a potential decline in overall 

vegetation health over the decades. GNDVI, like NDVI, assesses vegetation health with an 

emphasis on greenness, similar to NDVI, the decrease from 0.3 in 2003 to 0.2 in 2013 and 2023 

indicates a possible reduction in green vegetation. ARVI is less common and resistant to 

atmospheric effects, the decline from 0.2 in 2003 to 0.1 in 2013 and 2023 suggests changes in 

vegetation conditions. MSI is often associated with moisture stress in vegetation, the highest mean 

value of 0.8 in 2003, reducing to 0.4 in 2013 and 0.29 in 2023, implies a potential decrease in 

moisture stress over the decades which implies greening and high photosynthetic activities in plant. 

 

Figure 7: Mean Values of the Spectral Indices  

Relationships Between Spectral Indices 

ARVI exhibits positive correlations with GNDVI and NDVI in all years, suggesting a coherent 

relationship with these indices while negative correlation was observed with MSI. GNDVI depict 

positive correlations with other indices (ARVI, MSI, and NDVI) for all years. MSI shows negative 

correlations with ARVI, GNDVI, and NDVI across all indices, suggesting an inverse relationship. 

NDVI exhibits strong positive correlations indicating consistency over time with the exception of 

MSI which shows negative. Generally, the strong positive correlations among spectral indices viz: 

ARVI, GNDVI, and NDVI across different years suggest a consistent vegetation pattern. The 
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negative correlations of MSI with other indices indicate potential inverse relationships, implying 

that as one index increases, the other may decrease. The detailed relationships revealed by these 

correlations provide valuable insights into the dynamics of the forest health assessment based on 

spectral indices.  

The higher the values of ARVI, GNDVI and NDVI, the lower the values of MSI and the better the 

vegetation (greenness, moisture level as well as chlorophyll content in the leaves). Higher values 

of MSI indicate moisture stress which affect the rate of photosynthesis and chlorophyll production 

in plants leading to the declining health status. Higher values of ARVI, GNDVI, and NDVI 

generally signify healthier vegetation, while higher MSI values may indicate areas with moisture 

stress. Monitoring these indices over time can help identify changes in vegetation health, guiding 

sustainable forest management practices
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Table 2: Correlation Matrix for Spectral Indices  

 
ARVI 

2023 

ARVI 

2013 

ARVI 

2003 

GNDVI 

2023 

GNDVI 

2013 

GNDVI 

2003 

MSI 

2023 

MSI 

2013 

MSI 

2003 

NDVI 

2023 

NDVI 

2013 

NDVI 

2003 

ARVI-2023             

ARVI-2013 0.915***            

ARVI-2003 0.663*** 0.680***           

GNDVI-2023 0.916*** 0.796*** 0.581***          

GNDVI-2013 0.837*** 0.942*** 0.642*** 0.804***         

GNDVI-2003 0.533*** 0.521*** 0.919*** 0.540*** 0.555***        

MSI-2023 -0.689*** -0.597*** -0.456*** -0.594*** -0.493*** -0.338***       

MSI-2013 -0.700*** -0.761*** -0.553*** -0.591*** -0.673*** -0.397*** 0.738***      

MSI-2003 -0.720*** -0.746*** -0.850*** -0.542*** -0.622*** -0.632*** 0.595*** 0.636***     

NDVI-2023 0.987*** 0.883*** 0.640*** 0.966*** 0.836*** 0.541*** -0.684*** -0.686*** -0.664***    

NDVI-2013 0.896*** 0.991*** 0.673*** 0.807*** 0.977*** 0.538*** -0.578*** -0.754*** -0.710*** 0.877***   

NDVI-2003 0.635*** 0.646*** 0.993*** 0.578*** 0.628*** 0.958*** -0.430*** -0.519*** -0.801*** 0.621*** 0.646***  

Computed correlation used Pearson-method with listwise-deletion. 
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Table 3: Summary performance of the spectral indices  

 Green Chlorophyll  Moisture/Stress Blight Defoliation Aerosol Ranking 

NDVI – ˗  − −  1 

GNDVI − −     2 

ARVI −     − 3 

MSI   −    4 

 

CONCLUSION 

Healthy vegetation exhibits low reflection of visible light due to strong absorption by chlorophyll, 

a key leaf pigment. The study spanned a three decades allowing for a temporal analysis of 

vegetation health over the years (2003, 2013, and 2023). NDVI, GNDVI, ARVI, and MSI were 

employed as effective tools for assessing forest health. These indices provide insights into factors 

such as pest and blight conditions and identify suitable areas for timber harvests. Forest health 

assessment techniques resulted in spatial maps that offer a visual representation of the distribution 

of health and vigor across the forest landscape. High-stress conditions in the forest were identified 

through signs such as dry/drying vegetation, variations in canopy density, and inefficient light 

utilization. The findings indicated that the majority of the forest regions fall within the categories 

of moderate and good health. Higher values of ARVI, GNDVI, and NDVI generally signify 

healthier vegetation with optimal greenness, moisture levels, and chlorophyll content in the leaves. 

Conversely, higher values of MSI indicate areas experiencing moisture stress, potentially leading 

to a decline in the health status of vegetation 
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