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ABSTRACT: In this paper, we present new k-means clustering methods namely: the 

modified k-means method and the enhanced k-means method. The modified k-means 

clustering method proposed updates cluster centroids depending on if a point is added to a 

cluster or a point is removed from a cluster; while the enhanced k-means clustering method 

uses the Minkowski’s distance as its metric in a normed vector space instead of the usual 

Euclidean distance used in the modified k-means method and the existing methods. K-means 

clustering is one of the simplest and popular unsupervised learning techniques which aim is 

to classify points or objects to be analyzed into well separated groups or clusters. The 

existing k-means clustering methods discussed in this paper are the Forgy’s method, Lloyd’s 

method, MacQueen’s method, and the Hartigan and Wong’s method. It was observed that the 

modified k-means method performed relatively better than the enhanced k-means method and 

the other existing methods in terms of minimizing the total intra-cluster variance and 

accuracy using simulated data and real-life data sets. 

KEYWORDS: K-Means Clustering, Centroid Update, Euclidean Distance, Intra-Cluster 

Variance, Unsupervised Classification 

 

 

INTRODUCTION 

Cluster analysis is a multivariate technique where a set of data, usually multidimensional is 

classified into clusters (groups) such that members of one cluster are similar to one another 

with respect to some predetermined criterion (Anderberg, 1973; Hartigan, 1975; Jain and 

Dubes, 1988; Gan et al., 2007; Everitt et al., 2011; Yuan and Yang, 2019). The clusters of 

objects should exhibit high internal (within-clusters) homogeneity and high external 

(between-clusters) heterogeneity. Clustering is carried out on the basis of similarities or 

distances (Johnson and Wichern, 2002).  

Cluster analysis as a field of study gained widespread acceptance in the sciences, and 

motivated world-wide research on clustering methods when Sokal and Sneath’s (1963) 

publication of Principles of Numerical Taxonomy was published. The clustering method 

(cluster analysis) which is usually performed under a condition known as unsupervised 

learning is different from supervised classification (discriminant analysis). In supervised 

classification, observations are allocated to a known number of predefined groups, while in 
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unsupervised learning; neither the number of groups nor the groups themselves are known in 

advance.  

Clustering methods can be broadly divided into two main groups which are based on the 

structure of their output namely: hierarchical and non-hierarchical clustering methods. 

Hierarchical clustering methods produce a sequence of the sets of the clusters. The clusters 

are merged (agglomerative methods) or split (divisive methods) step-by-step based on the 

applied similarity measure. The results of a hierarchical clustering method entail that 

agglomerative and divisive methods can be displayed graphically using a tree diagram known 

as dendrogram. While non-hierarchical or partitioning clustering methods partition the data, 

object set into clusters where every pair of object clusters is either distinct (non-overlapping) 

or has some members in common (overlapping). Partitioning clustering begins with a starting 

cluster partition which is iteratively improved until a locally optimal partition is reached. 

Amongst the partitioning clustering methods, the k-means method is the most popularly and 

commonly used in practice. K-means clustering is used to divide a set of objects (items, 

cases, entities, or data points) into k subsets or clusters (partitions, classes, or groups). 

The purpose of this paper is to propose new k-means clustering methods that minimize the 

total intra-cluster variance, and also compare them with some existing k-means clustering 

method. 

The rest of this paper is organized as follows: section 2 discusses the materials and methods 

from which the proposed methods are developed; section 3 is centered on experimental 

results and discussion, while section 4 is the conclusion of the paper.   

 

METHODOLOGY 

There are several k-means clustering methods that aim to classify data points to be analyzed 

into well separated clusters. Four existing k-means clustering methods were used namely: 

Forgy method; Lloyd’s method; MacQueen’s method; and Hartigan & Wong’s method, 

considering the fact that Likas’ method employs the MacQueen’s method (or basic k-means 

algorithm) as a local search procedure, while Faber’s method also adopted the MacQueen’s 

method of updating centroids during initial partitioning (Oti and Onyeagu, 2020). The four-

existing k-means clustering methods and the new proposed k-means methods have different 

centroid update approach and the rationale behind these developed methods is based on the 

assumption that an optimal clustering solution with k clusters can be obtained through local 

search.  To be able to use any of these methods, the number of clusters present in the data set 

need to be known; multiple runs or trials will be necessary to find the best number of clusters 

(Oti and Onyeagu, 2020). There is no best method, as the tendency of generating global 

optimum depends on the characteristics of the data set (size, number of variables in the 

cases). The k-means clustering methods have two phases of iteration namely: the assignment 

or initialization phase which involves an iterative process where each data point is assigned to 

its nearest centroid using any metric of choice; the next is the centroid update phase, where 

clusters centroids are updated given the partition obtained by the previous phase. The 

iterative process stops when no data point change clusters or some maximum number of 

iterations is reached. 
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Forgy’s Method 

The Forgy’s method is a batch algorithm often called an offline centroid clustering model. 

Forgy (1965) proposed a method which is seldom referred to as traditional k-means 

algorithm. The algorithm is based on the minimization of the average squared Euclidean 

distance between the data points and the cluster’s center known as centroid.  A centroid is the 

center of a geometric object and it is seen as a generalization of the mean. Batch algorithm is 

an algorithm where a transformative step is applied to all data-point (case) at once, where 𝑐 is 

the cluster center in the Euclidean distance and 𝑥 is the case it is compared to, 𝑖 is the 

dimension of 𝑥(𝑜𝑟 𝑐) being compared and k is the total number of dimensions. That is, 

𝑑𝑒𝑢𝑐 = √∑ (𝑐𝑖 − 𝑥𝑖)2𝑘
𝑖=1                                                           (1) 

being the most common distance.   

Forgy's method starts with the choosing of k instance or initialization of data set uniformly at 

random and assigns the rest of the data points to the closest cluster (Peña et al., 1999). This 

method is very applicable because of its simplicity and high-speed intensity. It also treats the 

data set as a continuous distribution. Given the data set {𝑥1, 𝑥2, . . . , 𝑥𝑛} 𝜖 𝑅𝑑, where 𝑅𝑑 is the 

real d-dimensional data space (or the Euclidean d-dimensional data space), the algorithm tries 

to find a set of k cluster centers 𝑐 = {𝑐1, 𝑐2, . . . , 𝑐𝑘} 𝜖 𝑅𝑑. The error function for a continuous 

distribution is defined as 

𝐸 = ∑ ∫ 𝑓(𝑥)𝑑(𝑐𝑖 , 𝑥𝑖)𝑑𝑥𝑘
𝑖=1                    (2) 

In the above equation, 𝑓(𝑥) is the probability density function at 𝑥 and 𝑑(𝑐𝑖 , 𝑥𝑖) is the 

distance function. We note that if the probability density function is not given (or known), 

then it has to be deduced (generated) from the given data. Though the k-means algorithm 

converges to a local optimum, the limit point depends on the initial points. Hence, it is 

appropriate to start with a reasonable initial partition in order to achieve high quality 

clustering solution. However, there is no efficient and universal technique for obtaining such 

initial partitions theoretically. 

Algorithm 1: The Forgy’s Algorithm. 

1.  Begin with any desired initial configuration. Go to step 2 if beginning with a set of seed 

points; go to step 3 if beginning with a partition of the data units. 

2.  Assign each data unit to the cluster with the nearest seed point. The seed points remain 

fixed for a full cycle through the entire data set. 

3.  Compute new seed points as the centroids of the cluster of the data units. 

4.  Repeat step 2 and 3 until the process converges; that is, continue until no data units 

changes their cluster membership at step 2. 

Lloyd’s Method 

Lloyd (1982) proposed a method that is widely known as the standard k-means algorithm; it 

is also a batch algorithm that is based on the minimization of the average squared Euclidean 
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distance between the data items and the cluster centers like the Forgy’s method. The 

dissimilarity between the Lloyd algorithm and the Forgy algorithm is that the Lloyd 

algorithm treats the data set as a discrete distribution while the Forgy algorithm treats the data 

set as a continuous distribution.  While the similarity between them is that they have the same 

procedure. The error function for a discrete distribution is defined as 

𝐸 = ∑ ∑ 𝑓(𝑥)𝑑(𝑐𝑖 , 𝑥𝑖)𝑛
𝑗=1

𝑘
𝑖=1                     (3) 

In Equation (3) above, 𝑑(𝑐𝑖 , 𝑥𝑖) is the distance function of the data point 𝑥𝑖 and cluster 

center 𝑐𝑖. The first step of the algorithm begins with choosing the number of clusters k and its 

initial centroids or cluster centers. It could be done by either using k random observations or 

from the k observations that are the farthest from one another in the data space. Initialization 

of the centroids occurs only once, and once the initial centroids have been chosen; iterations 

are done on the following two steps. First, data set is assigned to cluster centroids (centers), 

using any of the distance metric. All cases assigned to a centroid are said to be part of the 

centroids subspace c (Rd) (Morissette and Chartier, 2013). Second, update the value of the 

centroid by using the mean of the data points (cases) assigned to the centroid. 

Algorithm 2: The Lloyd’s Algorithm. 

1. Choose k data objects representing the cluster centroids. 

2. Assign each data object of the entire data set to the cluster having the closest centroid. 

3. Compute new centroid for each cluster by averaging the data observations belonging to the   

cluster. 

4.  If at least one of the centroids has changed, go to step 2, otherwise go to step 5 

5.  Output the clusters. 

Macqueen’s Method 

MacQueen (1967) proposed the MacQueen's algorithm, and it is often referred to as basic k-

means algorithm, which is an online (or incremental) algorithm. The MacQueen's method is 

similar to the Forgy’s and Lloyd’s Methods, but the main difference is that the centroids are 

updated by re-calculating the points (cases) any time it is moved. Once the initial centroids 

have been chosen in the same way like the Lloyd’s algorithm, the iterations follows: For each 

case (𝑥𝑖) in turn, after arbitrarily partitioning of points (items) into clusters, we compute the 

coordinates (𝑥̅𝑖
′𝑠) of the cluster centroid (mean), likewise the Euclidean distance is computed 

for each point from the group centroids and reassign each point to the nearest group. If a 

point is moved from its initial position, the cluster centroid must be recalculated or updated 

before computing the squared distances. 

If the centroid of a case belongs to the nearest subspace, no change is made. If another 

centroid is closest to the subspace, the case is re-assigned to the other centroid and the 

centroids for both the old and new subspaces (centers) are recalculated as the mean of the 

cases. When we see that each point is currently assigned to the clusters with the nearest 

centroid, the process stops. 
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Algorithm 3: The MacQueen’s Algorithm. 

1. Choose k points as initial cluster centroids. 

2. Assign each object to the cluster that has the closest centroid. 

3. When all objects have been assigned, re-compile the positions of the k centroids. 

4. If at least there is a change in one of the centroids, repeat step 2 and 3, otherwise go to step 5. 

5. Output result. 

Hartigan and Wong’s Method 

Hartigan and Wong’s method is a non-Lloyd heuristic that updates centers considering each 

point, rather than after each pass over the entire data set (Hartigan and Wong, 1979). Hartigan 

and Wong (1979) proposed the conventional k-means algorithm popularly known as Hartigan 

and Wong’s algorithm. 

It follows that the algorithm searches for the partition of data space with locally optimal 

within-cluster sum of squares error (SSE), which means that it may assign a case to another 

subspace, even if it currently belongs to the subspace of the closest centroid; doing so 

minimizes the total within-cluster sum of square (Morissette and Chartier, 2013).  The 

initialization of the cluster centers is done in the same way as that of Lloyd’s and Forgy’s 

algorithm. The points (cases) are designated (assigned or allotted) to the centroid nearest to 

them and the centroids are calculated as the mean of the designated data points. The iterative 

steps are as follows: 

Step 1. For each point I(𝐼 = 1, … , 𝑀), find its closest and second closest cluster centers, 

𝐼𝐶1(𝐼) and 𝐼𝐶2(𝐼), respectively. Assign point I to cluster 𝐼𝐶1(𝐼). 

Step 2. Update the cluster centers to be the average of the points contained within them. 

Step 3. Initially, all clusters belong to the live set (specified number of k). 

Step 4. This is the optimal-transfer (OPTRA) stage: Consider each point I (𝐼 = 1, 2, … , 𝑀) in 

turn. If cluster L (𝐿 = 1, 2, … , 𝐾) is updated in the last quick-transfer (QTRAN) stage, then 

the cluster belongs to the live set throughout this stage. Otherwise, at each step, it is not in the 

live set if it has not been updated in the last M optimal-transfer steps. Let point I be in cluster 

L1. If L1 is in the live set, do step 4a; otherwise, do step 4b.   

Step 4a. Compute the minimum of the quantity, 𝑅2 = [𝑁𝐶(𝐿) ∗ 𝐷(𝐼, 𝐿)2]/[𝑁𝐶(𝐿) + 1], over 

all clusters 𝐿(𝐿 ≠ 𝐿1, 𝐿 = 1,2, … , 𝐾) where the number of points in cluster L is denoted by 

𝑁𝐶(𝐿); while number of points in cluster 𝐿1 be 𝑁𝐶(𝐿1); 𝐷(𝐼, 𝐿) is the Euclidean distance 

between point I and cluster L; 𝐷[𝐼, 𝐿(𝐼)]is the Euclidean distance between I and the cluster 

mean of the cluster containing I; 𝐷(𝐼, 𝐿)2 is the squared Euclidean distance between point I 

and cluster L. Let L2 be the cluster with the smallest R2. If this value is greater than or equal 

to 𝑅1 = [𝑁𝐶(𝐿1) ∗ 𝐷(𝐼, 𝐿1)2]/[𝑁𝐶(𝐿1) − 1], no reallocation is necessary and L2 is the 

new 𝐼𝐶2(𝐼). Otherwise, point I is allocated to cluster L2, and L1 is the new IC2 (I). Cluster 

centers are updated to be the means of points assigned to them if reallocation has taken place. 
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The two clusters that are involved in the transfer of point I at this particular step are now in 

the live set. 

Step 4b. This step is the same as step 4a, except that the minimum R2 is computed only over 

clusters in the live set. 

Step 5. Stop if the live set is empty; otherwise, go to step 6; after one pass through the data 

set. 

Step 6. This is the quick-transfer (QTRAN) Stage: Consider each point 𝐼(𝐼 = 1, 2, … , 𝑀) in 

turn. Let 𝐿1 = 𝐼𝐶1(𝐼) and 𝐿2 = 𝐼𝐶2(𝐼). It is not necessary to check the point I if both the 

clusters 𝐿1 and 𝐿2 have not changed in the last M steps. Compute the values:  

𝑅1 =  [𝑁𝐶(𝐿1) ∗ 𝐷(𝐼, 𝐿1)2] [𝑁𝐶(𝐿1) − 1]⁄   and  𝑅2 = [𝑁𝐶(𝐿2) ∗ 𝐷(𝐼, 𝐿2)2]/[𝑁𝐶(𝐿2) +
1] 

If R1 is less than R2; point I remains in cluster 𝐿1. Otherwise, switch 𝐼𝐶1(𝐼) and 𝐼𝐶2(𝐼) and 

update the centers of clusters 𝐿1 and 𝐿2. The two clusters are also noted for their involvement 

in a transfer at this step. 

Step 7. If no transfer took place in the last M steps, go to step 4, otherwise go to step 6. 

Algorithm 4: The Hartigan and Wong’s Algorithm. 

1. Choose the number of clusters, k, and tentative centroids, 𝑐1, 𝑐2, … , 𝑐𝑘. 

2. Observe an entity 𝑖 ∈ 𝐼 coming either randomly or according to a pre-specified 

(dynamically) changing order. 

3. 𝑑𝑖𝑗= distance between case i and cluster j; 

4. 𝑑𝑖𝑗 = arg 𝑚𝑖𝑛  1≤𝑗≤𝑘 𝑑𝑖𝑗 

5. Assign cases i to cluster  𝑛𝑖 ; 

6. Re-compute the cluster means of any changed cluster above; 

7. If no further change of cluster membership occurs in a complete iteration; 

8. Output results. 

The Modified K-Means Clustering Method 

This first proposed method begins with first choosing the desired number of clusters k, its 

initial cluster partition, and the coordinates of the cluster initial centroid is denoted by 𝑐̅(𝑖, 𝑗) 

which is the centroid of the 𝑗𝑡ℎ variable over the data points in the 𝑖𝑡ℎ cluster and it is 

computed as the arithmetic mean. This method also uses the squared Euclidean distance and 

the minimum distance rule like those of the existing k-means heuristic clustering methods by 

assigning each entity or data point to its closest (nearest) centroids. Specifically, for each data 

point i 𝜖 𝐼; its squared distances to the centroids are calculated. This method which proceeds 

in an incremental way (that is, adding cluster centers one by one as clusters are being formed) 

is such that when a case (point) is moved from the initial configuration, the cluster centroids 
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will be updated or recalculated before computing the squared distance. The 𝑖𝑡ℎ coordinate, 

where 𝑖 = 1,2, … , 𝑘, of the centroid is updated using Equation (4) and Equation (5) below: 

𝑐𝑖̅ , 𝑛𝑒𝑤 =
𝑁𝑘𝑐𝑖̅+𝑐𝑖𝑗

𝑁𝑘+1
                                                                                                                                   (4)   

if the 𝑗𝑡ℎ point is added to the cluster. 

𝑐𝑖̅ , 𝑛𝑒𝑤 =
𝑁𝑘𝑐𝑖̅−𝑐𝑖𝑗

𝑁𝑘−1
                                                                                                                                   (5)  

if the 𝑗𝑡ℎ point is removed from the cluster. 

Here 𝑁𝑘 is said to be the number of points (cases) in the old cluster with centroid 𝑐̅𝐼 =
(𝑐1̅, 𝑐2̅, … , 𝑐𝑘̅) or perhaps the cluster size and centroid 𝑐𝑘̅ is a multidimensional vector which 

minimizes the sum of squared distance to clusters elements. If a point or case is closest to the 

centroid of a particular subspace where the case is not moved to another cluster implies that 

the case will not be reassigned but if a case is closest to the centroid of a particular subspace 

where the case is moved to another cluster implies that the case will be reassigned and 

updated. The stopping rule is to end when there is no further change of cluster membership 

observed.   

Algorithm 2.6: The Modified K-Means Algorithm. 

1. Initial setting. Choose the number of clusters, k, and tentative centroids, 𝑐1, 𝑐2, … , 𝑐𝑘 .  

2. Apply minimum distance rule to determine what cluster list a data point, 𝑖,  should be 

assigned to.  

4. Update within cluster centroid,  𝑐𝑘,  with Equation (4) or Equation (5) depending on if a 

point is added to a cluster or a point is removed from a cluster.  

5. The stopping condition is to end when there is no further change of cluster membership 

observed.  

6. Output results. 

The Enhanced K-Means Clustering Method 

This second propose method uses the Minkowski’s distance, or r-metric, between vectors or 

N-dimensional points where 𝑦 = (𝑦𝑣) and 𝑐 = (𝑐𝑣) which is defined by the formula 

𝑑(𝑦, 𝑐) = [∑ |𝑦𝑣 −𝑁
𝑣=1

𝑐𝑣|𝑟]1 𝑟⁄                                                                                                              (6)  

In Equation (6), 𝑦𝑣 are data points, 𝑐𝑣  are cluster centers (centroids) and  ∑ |𝑥𝑣 − 𝑦𝑣|𝑟𝑁
𝑣=1  is 

the r Minkowski distance. In application, when values 𝑟 = 2 (Euclidean metric), 𝑟 = 1 

(Manhattan, or city block, metric) and 𝑟 → ∞ (Chebyshev, or Maximum, metric). However, 

the Euclidean k-means criterion is the usual k-means when 𝑟 = 2 which is stated as 
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𝐸 = 𝑊(𝑠, 𝑐) = ∑ ∑ 𝑑𝑒𝑢𝑐
2 (𝑦𝑖 , 𝑐𝑘)𝑖=𝑆𝐾

𝐾
𝑘=1        

where k represents the number of clusters, 𝑐𝑘𝜖 𝑐 = {𝑐1, 𝑐2, … , 𝑐𝑘} is the centroid of cluster 𝑠𝑘,
𝑑𝑒𝑢𝑐

2 (𝑦𝑖, 𝑐𝑘) is the squared Euclidean distance between an entity (cluster point) 𝑦𝑖𝜖 𝑠𝑘 and its 

respective centroid 𝑐𝑘. The Minkowski k-means criterion allows the use of any distance 

function and W(s,c) is the square error criterion which is the sum of values over all clusters. 

Focusing on the Minkowski metric, which is between the N-dimensional entities 𝑦𝑖 and 𝑐𝑘 

and is defined by  

𝑑(𝑦𝑖 , 𝑐𝑘) = [∑ |𝑦𝑖𝑣 − 𝑐𝑘𝑣|𝑟𝑁
𝑉=1 ]1 𝑟⁄                                                                           (7)  

 r is the exponent or power of Equation (7) which becomes  

𝑊𝑟(𝑠, 𝑐) = ∑ ∑ 𝑑𝑟(𝑦𝑟 , 𝑐𝑘) = ∑ ∑ ∑ |𝑦𝑖𝑣 − 𝑐𝑘𝑣|𝑟𝑁
𝑣=1𝑖𝜖𝑆𝑘

𝐾
𝑘=1𝑖=𝑆𝐾

𝐾
𝑘=1                                      (8) 

This method is a batch k-means algorithm in which the minimum distance rule applies with 

the distance being the r power of Minkowski r-metric rather than the squared Euclidean 

distance (Amorim and Komisarczuk, 2012; Amorim, 2012; Amorim and Mirkin, 2012).  

Algorithm 6: The Enhanced K-Means Algorithm. 

1. Choose at random the number of cluster centers (centroids) 𝑐 = 𝑐1, 𝑐2, … , 𝑐𝑘. 

2. Calculate the distance between each data point and cluster centers using Equation (7)   

3. Assign data point to the cluster center whose distance from the cluster center is the 

minimum of all cluster centers.  

4. New cluster center is calculated using 𝑣𝑖 =
1

|𝐶𝑖|
∑ 𝑦𝑖𝑦𝜖𝑐𝑖

 where |𝑐𝑖| denotes the absolute 

value of data points in 𝑖𝑡ℎ cluster and 𝑣𝑖 is the mean of the cluster 𝑐𝑖 and ∑ 𝑦𝑖 is the sum of 

points or cases in the data space.  

5. The distance between each data point and new obtained cluster centers is recalculated.  

6. If no data point was reassigned then stop, otherwise repeat step 3 to 5.   

 

RESULTS AND DISCUSSION 

This section shows the performance and also the comparison of the new k-means clustering 

methods modified and some of the existing k-means clustering method using R statistical 

software (R version 3.2.2) support window 64-bit system. We conducted experiments using 

one simulated data set and two real-life data sets to ensure the efficiency of the proposed 

methods. The number of clusters k used is two and three, since research has proven that the 

optimal number of clusters k will either be two, three, or four using methods like elbow, the 

silhouette and the gap statistic methods (Kaufman and Rousseeuw, 1990). The performance 

of the proposed methods was evaluated using total intra-cluster variance and accuracy 

parameters. 
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Total intra-cluster variance: The total intra-cluster variance is defined as the sum of squared 

distance between points and the corresponding centroid. That is; 𝑊(𝐶𝐾) = ∑ (𝑥𝑖 − 𝜇𝑘)2
𝑥𝑖𝜖𝑐𝑘

 

where 

• 𝑥𝑖 is the data point belonging to the cluster 𝑐𝑘. 

• 𝜇𝑘 is the mean value of the points assigned to the cluster 𝑐𝑘. 

Accuracy: Accuracy is defined as the ratio of the total number of correctly classified 

instances divided by total number of correctly plus incorrectly classified instances.  

Simulated Data 

The simulated data was generated randomly from a Gaussian (Normal) distribution with 

dimension of 250 rows and 2 columns (categories or attributes) that are divided into two and 

three clusters (that is, k = 2, 3). We chose 300 true centers uniformly at random given the 

above dimension. The point from the Gaussian distributions has a variance of 1 around each 

true center. Thus, this obtained a number of well separated Gaussians with the true centers 

providing a good approximation to the optimal clustering. The Gaussian distribution is used 

in the simulation of data because it is suitable for most applications and it’s also the most 

commonly used distribution in statistics owing to the fact that it has finite moments (mean, 

variance …) for small parameter values. 

Shown below is the summary table of the results of experiments and data analysis of some of 

the existing method when the number of clusters k is two and three respectively: 

Table 1: Summary table of the Gaussian simulation when the number of clusters k = 2 

and 3 

Methods 𝒘𝒉𝒆𝒏 𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 𝒌
= 𝟐 

𝒘𝒉𝒆𝒏 𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 𝒌
= 𝟑 

Mean Standard 

Deviation 

Accuracy       

in (%) 

Mean Standard 

Deviation 

Accuracy 

in (%) 

Forgy 1.584 0.4949 80.0 2.248 0.7476 83.7 

Lloyd 1.496 0.5020 79.1 1.920 0.8092 79.0 

MacQueen 1.504 0.5020 79.1 2.296 0.7831 81.4 

Hartigan 

& Wong 

1.504 0.5020 79.1 2.144 0.8299 78.3 

Modified 

k-means  

1.880 0.3263 86.8 2.295 0.6898 86.5 

Enhanced 

k-means 

1.601 0.4604 81.8 2.234 0.7131 84.3 

 

From the above results of the simulation generated randomly, when the number of clusters 

𝑘 = 2, the modified k-means method performed better than the enhanced k-means method 

and other existing k-means clustering method with minimum standard deviation of 0.3263 

and high accuracy of 86.8 percent, considering the fact that the variance (the total within-

cluster sum of squares) is minimized; it measures the compactness (i.e. goodness) of the 

clustering which is meant to be as small as possible, also, high accuracy indicates how better 
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the method is and it is expressed in percentage. The number of clusters 𝑘 = 3, the modified 

k-means method also performed best with a standard deviation of 0.6898 and accuracy of 

86.5 percent. 

Real-Life Data 

To understand how efficient these methods are under more practical circumstances, we run a 

number of experiments on two data sets which consist of the iris data set, and the wine data 

set. The data sets are both from UC-Irvine Machine Learning Repository. Each experiment 

involves solving k-means problem on a set of points in a real dimensional space. 

Iris Data Set 

The iris flower data set is a multivariate data set with 150 rows (instances) which is divided 

into 3 instances each, where each class refers to a type of iris plant (iris setosa, iris versicolor, 

and iris virginica): the number of attributes is 4 which consist of sepal length, sepal width, 

petal length and petal width (Fisher, 1936). The summary table of the results when the 

number of clusters k is two and three is shown in the Table 2 below: 

Table 2: Summary results of iris data when the number of clusters k = 2 and 3. 

Methods 𝒘𝒉𝒆𝒏 𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 𝒌
= 𝟐 

𝒘𝒉𝒆𝒏 𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 𝒌
= 𝟑 

Mean Standard 

Deviation 

Accuracy       

in (%) 

Mean Standard 

Deviation 

Accuracy 

in (%) 

Forgy 1.3533 0.4796 83.50 1.560 0.8067 82.00 

Lloyd 1.6467 0.4796 83.50 2.4933 0.7396 85.20 

MacQueen 1.3533 0.4796 83.50 1.9333 0.5983 91.50 

Hartigan 

& Wong 

1.6467 0.4796 83.50 2.080 0.8633 79.10 

Modified 

k-means  

1.8014 0.3148 90.29 1.8622 0.6765 87.68 

Enhanced 

k-means 

1.7823 0.3325 89.70 1.9467 0.8035 82.45 

 

From the above experiments and summary table on iris data set, it is observed that when the 

number of clusters k = 2, the modified k-means method performed better than the enhanced 

k-means method and also the other existing methods with standard deviation of 0.3148 and 

accuracy rate of 90.29 percent. Also, when the number of clusters k = 3, the MacQueen’s 

method performed better than the proposed methods and every other existing methods with 

standard deviation of 0.5983 and 91.50 percent accuracy; the modified k-means method 

performed better than the enhanced k-means method, Forgy’s method, Lloyd’s method and 

Hartigan & Wong’s method with minimum standard deviation of 0.6765 and 87.68 percent 

accuracy. 

Wine Data Set 

The wine data set is a multivariate data with 178 numbers of rows (instances) and three 

classes with 13 attributes (columns). The attributes of data set are alcohol, malic acid, ash, 
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alkalinity of ash, magnesium, phenols, flavanoids, nonflavanoid phenols, proanthocyanins, 

color intensity, hue, 0D280/0D315 of diluted wines and proline. The output of the 

experiments when the number of clusters k = 2 and 3 will be summarized in Table 3 below: 

Table 3: Summary results of wine data when the number of clusters k = 2 and 3. 

Methods 𝒘𝒉𝒆𝒏 𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 𝒌
= 𝟐 

𝒘𝒉𝒆𝒏 𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 𝒌
= 𝟑 

Mean Standard 

Deviation 

Accuracy       

in (%) 

Mean Standard 

Deviation 

Accuracy 

in (%) 

Forgy 1.0785 0.2692 91.45 2.5946 0.7476 83.7 

Lloyd 1.9209 0.2689 91.80 2.1763 0.8092 79.0 

MacQueen 1.0785 0.2689 91.80 2.1307 0.7831 81.4 

Hartigan 

& Wong 

1.9215 0.2689 91.80 2.2389 0.8299 78.3 

Modified 

k-means  

1.9190 0.2673 91.96 2.1805 0.4923 85.27 

Enhanced 

k-means 

1.9125 0.2655 92.15 2.4489 0.6282 76.20 

 

From the above summary table on wine data set, it was observed that when the number of 

clusters k = 2, the enhanced k-means method performed better than the modified k-means 

method and other methods with a minimal standard deviation of 0.2655 and accuracy of 

92.15 percent. When the number of clusters k = 3, the MacQueen’s method outperformed 

every other method with standard deviation of 0.4310 and accuracy of 88.10 percent. The 

performance of the modified k-means method was relatively efficient than the enhanced k-

means method, Forgy’s method and Hartigan and Wong,s method with standard deviation of 

0.4923 and accuracy of 85.27 percent. 

 

CONCLUSION 

In this paper, we have presented a modified k-means method that updates its clusters 

centroids depending on if a point is added to the cluster or if a point is removed from the 

cluster and also the enhanced k-means clustering method that uses the Minkowski’s distance 

in calculating between each data points and the cluster centroids which yielded excellent 

results in terms of minimizing the total intra-cluster variance, and it was also shown to be 

more accurate than a variety of other methods while comparing its performance with them. 

From experimental results, the modified k-means method outperformed the enhanced k-

means method and other existing methods in the simulated data and also in the wine data 

when the number of clusters 𝑘 = 2 𝑎𝑛𝑑 3; the enhanced k-means method performed better 

than other methods in the wine data when the number of clusters 𝑘 = 2, while the 

MacQueen’s method outperformed the other methods when the number of clusters 𝑘 = 3. 

Our future research will be considering these methods with respect to their iterative time 

complexity using the personal computer time. 
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