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ABSTRACT: The goal of this study was to compare two different methods of classification; 

Linear Discriminant Analysis and Multinomial Logistic Regression to make the choice between 

the two, depending on the characteristics of the data.  Since both are appropriate for the 

development of linear classification models, Linear Discriminant Analysis makes more 

assumptions like normality and equal covariance among the explanatory variables on the 

underlying data, but when violated it is assumed that the Multinomial Logistic Regression is a 

more flexible and more robust method of analysis. In this work, some guidelines for proper 

choice were set up which was based on some predictive accuracy. The performance of the 

methods was studied by a real dataset and a simulated dataset. We started with the real dataset 

where all the assumptions failed, also, we performed an appropriate transformation on the real 

dataset and Linear Discriminant Analysis was performed on it. Next we compare with 

simulated data where all the assumptions of Linear Discriminant Analysis are satisfied. From 

the result where the assumptions were violated, Multinomial Logistic Regression performs 

better than Linear Discriminant Analysis, also the result from the analysis performed on the 

transformed data shows that the Multinomial Logistic Regression also performed better, and 

whenever the assumptions hold as in the case of the simulated data, Linear Discriminant 

Analysis slightly performs better. Hence Multinomial Logistic Regression serves as an 

alternative whenever the assumptions of discriminant analysis fail instead of transforming the 

data.    

KEYWORDS: Linear Discriminant Analysis, Multinomial Logistic Regression, Data, 

Classification & Predictive Modeling 

 

 

INTRODUCTION 

Background of Study 

In the society today, where we have existence of diverse populations which are made up of 

variety or similar features, a situation may arise where we may be interested in knowing exactly 

which of these entities have actually the same characteristics or which of these entities are of 

different character. Hence, the problem of discrimination, classification and allocation sets in. 

For example, given a set of students with observed performance on an examination, we may 

wish to divide their standard of performance into success and failure and the points where we 

affect these divisions are arbitrary; (Ogum, 2002).  
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Linear Discriminant Analysis (LDA) makes assumptions of normality and equality of the 

unknown variance-covariance matrices about the underlying data, Multinomial Logistic 

Regression (MLR) makes no assumptions on the distribution of the data. Therefore, when the 

assumptions of the data are met, it is expected that the Linear Discriminant Analysis (LDA) 

produces accurate and good results than Multinomial Logistic Regression. This study puts its 

focus on the evaluation and comparison on the performance of both Linear Discriminant 

Analysis (LDA) and Multinomial Logistic Regression. Since the normality assumption is a 

popular issue studied by many researchers, however in practice, the assumptions are nearly 

always violated and therefore will check the performance of both methods with simulations. 

So setting some guidelines for proper choice between the two methods is required.  

The major aim of this work is to compare the ability of Linear Discriminant Analysis (LDA) 

and Multinomial Logistic Regression (MLR) in classification and predictive modeling using 

real dataset and simulated dataset. Other objectives to observe include; to determine whether 

or not the group mean vectors are equal, to construct classification function using both Linear 

Discriminant Analysis (LDA) and Multinomial Logistic Regression (MLR), to evaluate the 

performance of the classification functions using APER and to determine how these two 

classification functions- how Linear Discriminant Analysis (LDA) and Multinomial Logistic 

Regression (MLR) behave when real dataset and simulated dataset are used. This study covers 

a sample 50 real dataset having eight (8) predictive variables on Multiple Banking, Age of 

Applicant, Collateral, Years of Experience in Business, Interest Charged, Age of Account 

before Facility, Amount Granted and Tenor in months; extracted from work done by Ugwuanyi 

(2014) and simulated dataset for a sample of 100. 

 

 LITERATURE REVIEW 

According to Efron (1975), he studied the relative efficiency of Logistic Regression and 

discriminant analysis. He presented that while LR is less efficient, estimates will have greater 

variance than LDA when the data are multivariate normal, and it is robust to departures from 

normality. He found that typically, LR is between one half and two thirds as effective as normal 

discrimination.  

Hossain et al. (2002)., compared the performance of Multinomial Logistic Regression (MLR) 

and Linear Discriminant Analysis (LDA) models to predict arrival time at the hospital. The 

goal was to determine the best statistical methods for prediction of arrival intervals for patients 

with acute myocardial infarction symptoms. One model for Multinomial Logistic regression 

and two models Linear Discriminant Analysis were developed using a training dataset. Correct 

classifications were 62.6% by MLR, 62.4% by LDA using proportional prior probabilities, and 

48.1% using equal prior probabilities of the groups.  

Kiang (2003) used a simulated datasets and compared the performance of neural networks and 

a decision tree method, and three statistical method Linear Discriminant Analysis (LDA), 

Logistic Regression Analysis and Kth nearest-neighbor (kNN) models in terms of the 

misclassification rates and used synthetic data to introduce imperfections such as nonlinearity, 

multicollinearity, unequal covariance and to understand the strengths and limitations of 

different classification methods and the effects of data characteristics on their performance in 

a controlled setting. Kiang concluded that Neural Network and Logistic Regression methods 
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provide the best relative performance under most scenarios and he showed that there is no 

single method that clearly outperforms all methods in all problem situations and the Logistic 

Model is superior to Discriminant Analysis in all cases, especially when the normality, 

linearity, and identical covariance assumptions do not hold and only the normality assumption 

has an on Discriminant Analysis.  

Other researchers on this area includes Press and Wilson (1978), Maroco et al (2011), 

Ugwuanyi (2014), Antonogeorgos et al (2009), Polar et al (2004), Majed (2012), Manel (1999), 

Montgomery et al (1987), Brenn and Arnesen (1985). 

 

METHODOLOGY 

Data for this study is from a secondary source. It was extracted from a work done by Ugwuanyi 

(2014) on “evaluation of loans and advances using Discriminant Analysis”. From the nature of 

the data, a random sample of 50 performing credits and non-performing credits was selected 

from five selected commercial banks by the method of simple random sampling and the second 

dataset was a simulated data with a sample of size 100, which Linear Discriminant Analysis 

and Multinomial Logistic Regression Analysis were used for data analysis. 

 Discriminant Analysis 

Discriminant Analysis is a multivariate technique that is concerned with separating distinct sets 

of objects and with allocating new objects into previously defined groups (Johnson and 

Wichern, 2007). Discriminant Analysis is a powerful statistical tool that is concerned with the 

problem of classification. This problem of classification arises when an investigator makes a 

number of measurements on an individual and wishes to classify the individual into one of the 

several population groups on the basis of these measurements (Morrison, 1967). Once a 

Discriminant Analysis is contemplated, it may be important to check whether or not the 

research data satisfy the assumptions of Discriminant Analysis. Some of the assumptions to be 

examined include; equality of group covariance matrices and normality assumption.  

Prior to discussing the above mentioned assumptions we shall first discuss the first step in the 

conduct of Discriminant Analysis - test of equality of mean vectors. If no significant differences 

are found, constructing a classification rule will probably be a waste of time (Ogum. 2002).   

To test the hypothesis that the mean vectors of the two groups under study are equal, the 

Hotelling’s 2T distribution will be used (Ogum, 2002). 

 Hotelling 2T  Distribution for Two Samples 

According to Onyeagu (2003), Hotelling 2T distribution is a multivariate generalization of the 

student’s t-distribution for testing equality of group mean vectors; the hypotheses of interest 

are; 

H01:  The group means vectors of the research data are equal 

H11: The group means vectors of the research data are not equal  

  (3.1) 

The Hotelling's 2T  test statistic is given as, 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 4, Issue 1, 2021 (pp. 10-31) 

13 

www.abjournals.org 

      (3.2) 

Where 

   (3.3) 

Thus, equation (3.2) follows an F distribution with p  and u degrees of freedom, where  
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Fisher’s Linear Discriminant Function assumes that the population covariance matrices across 

the groups are equal, because a pooled estimate of the common covariance matrix is used. To 

determine whether the covariance matrices for the groups under study are equal, the Box’s M 

test will be used (Box, 1949). The calculation of Box’s M test proceeds as follows. Suppose 

we have k groups measured on each of p variance, with 
in  observations per group. Then, we 

estimate the within-group covariance as;  

   
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The value of M is then calculated by 
   
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  (3.6) 

 

Where, 




k

i

inN
1

           

 (3.7) 

The Chi-square and F-ratio are used to test the significance of the value of M. These tests 

proceed as follows 
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We then carry out the following hypotheses: 
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Therefore, the F statistic when  ,02

12  AA  is given by 
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We shall reject the null hypothesis of equality of covariance matrices at a specified level of 

significance, , if  
21, VVFF  , otherwise do not reject.  
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The Chi-square test statistic for conducting test of equality of covariance matrices when

)00( 2

12

2

12  AAorAAeither   is given as )1( 1

2 AM                                    (3.18) 

Multivariate Normality 

Discriminant Analysis assumes that data for the independent variables represent a sample from 

a multivariate normal distribution. To determine whether multivariate normality assumption is 

justified we shall employ the Q-Q plots from any Statistical software, precisely SPSS.  

Outliers 

Outliers are unusual observations that do not seem to belong to the pattern of variability 

produced by other observations. To check for the existence of outliers for a single variable, we 

make a dot plot and then look for observations that are far from the others, however, when the 

number of variables, observations n is large, dot plots are not feasible because the large number 

of scatter plots p(p - 1)/2 may prevent viewing them all. Here a large value of 

   2 1
T

j j jd X X X X  S
 will suggest an unusual observation, even though it cannot be 

seen visually. The steps for detecting outliers are outlined below; 

Step 1. Make a dot plot for each variable. 

Step 2. Make a scatter plot for each pair of variables. 

Step 3. Calculate the standardized values  jk

jk

kk

x x
z

s




 for j=1,2,…,n and each column k = 

1,2, ... , p. Examine these standardized values for large or small values. In step 3, "large" must 

be interpreted.  

Step 4. Calculate the generalized squared distances    2 1
T

j j jd X X X X  S
. Examine 

these distances for unusually large values. In a chi-square plot, these would be the points 

farthest from the origin. In step 4, "large" is measured by an appropriate percentile of the chi-

square distribution with p degrees of freedom. If the sample size is n = 100, we would expect5 

observations to have values of 2

jd that exceed the upper fifth percentile of the chi-square 

distribution. A more extreme percentile must serve to determine observations that do not fit the 

pattern of the remaining data. 

Theoretical Consideration 

This theoretical consideration has three aspects in terms of data transformation to near 

normality, which are as follows:  
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Original Scale  Transformed Scale 

❖ Counts y    

❖ Proportion,    Logit (  =  

❖ Correlations, r   Fisher’s  

The Data Themselves 

The theoretical transformation mentioned above may sometimes not improve the normality in 

question. It is more convenient to let the data suggest a transformation. A useful family of 

transformation for this purpose is the family of power transformation. The final choice should 

always be examined by a Q-Q plot or other checks to see whether the tentative normal 

assumption is satisfactory. 

Fisher’s Linear Discriminant Function 

The steps for deriving Fisher’s linear Discriminant Function (FLDF) are stated below: (Johnson 

and Wichern, 2002) 

Step 1:  Obtain the FLDF using 
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Step 2: For population 1 )( 1 , evaluate the discriminant function in equation by substituting the 

mean value of 
pxxx ,...,, 21

 and denote the values as 1Y . That is, 

   1
1 21 1 1 2.36

T
TY X X X a X  S

  

Step 3: For population 2 )( 2 , evaluate the discriminant function in equation by substituting the 

mean values of  
pxxx ,...,, 21

 and denote the values as 
2Y . That is, 

  1
1 22 2 2 (2.37)

T
TY X X X a X  S

 

Step 4:  Obtain the critical value of the discriminant function as 

   

     
 

1 1
1 2 1 21 2

1 2

1
1 2 1 2 1 2

2 2

2.38
2 2

T T

Critical

T
T

X X X X X XY Y
Y

X X X X a X X

 



  
 

  
 

S S

S

 

Step 5: Obtain the Discriminant scores,
0y , for the population 1 )( 1  and population 2 )( 2  

respectively by substituting the values of 
pxxx ,...,, 21

 for each individual into the 

Discriminant function in equation (3.19).   

Step 6: State the classification Rules as follows: 

(a) Allocate the individual 
0x to population 1 )( 1  if the Discriminant score,

0y , is at least the 

critical value of the Discriminant Function. That is, if  
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(b) Allocate an individual 
0x  to population 2 )( 2  if the Discriminant score 

0y  is less than 

the critical values of the Discriminant Function. That is, if 
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The objective of building a classification rule is to correctly classify as many future units as 

possible. A good discriminant function should result in a few misclassifications. In other words, 

the probabilities of misclassification should be small. To judge how well the discriminant 

function performs in assigning an observation to the correct population, we shall use the 

Apparent Error Rate (APER) (Johnson and Wichern, 2002). 

The APER is defined as the fraction of observations in the training sample that are misclassified 

by the sample discriminant function. A sample estimate of the error rate can be obtained by 

trying out the discriminant function on the same data set that has been used to compute the 

discriminant function. This is called Substitution or Resubstitution Method (Render, 2002). 

The result can be displayed in a classification table called Confusion Matrix, which shows the 

actual versus predicted group membership. For 
1n  from population 1 )( 1 and 2n  from 

population 2 )( 2 , the confusion matrix has the form shown in table 3.1. 

Table 3.1: Layout of Confusion Matrix for Discriminant Analysis 

Actual Membership                    Predicted Membership Number of 

Observations To Population1  1  To Population2  2  

From Population1  1  
Cn1

 
Cm nnn 111   1n  

From Population2  2  
Cm nnn 222   

Cn2
 2n  

 

Where,  

Cn1
= number of 1 items correctly classified as 1 items 

mn1
= number of 1 items misclassified as 2 items 

Cn2
= number of 2 items correctly classified as 2 items 

mn2
= number of 2 items misclassified as 1 items 

The apparent error rate is then given as 

 1 2

1 2

2.47m mn n
APER

n n






 

which is recognized as the proportion of items in the training set that are misclassified. 

The APER is intuitively appealing and easy to calculate. Unfortunately, it tends to 

underestimate the actual error rate (AER), and the problem does not disappear unless the 

sample sizes n1and n2 are very large. Essentially, this optimistic estimate occurs because the 

data used to build the classification function are also used to evaluate it. We can also compute 

error rates which are better than the apparent error rate, and do not require distributional 

assumptions. One procedure is to split the total sample into a training sample and a validation 

sample. The training sample is then used to construct the classification function, while the 

validation sample is used to evaluate the performance of the classification function. In this case 

the error rate is determined by finding the proportion of misclassified observation in the 
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validation sample. Although this method overcomes the bias problem in APER by not using 

the same data to both build and judge the classification function, it suffers from two main 

defects: 

(i)  It requires large samples. 

(ii)  The function evaluated is not the function of interest. Ultimately, almost all of the data 

must be used to construct the classification function. If not, valuable information may 

be lost.  

A second approach that seems to work well is called Lachenbruch's "holdout" procedure. 

(Johnson and Wichern, 2007). The steps for this procedure are; 

Step 1. Start with the 1  group of observations. Omit one observation from this group, and 

develop a  

classification function based on the remaining n1-1, n2 observations. 

Step 2. Classify the "holdout" observation, using the function constructed in Step 1. 

Step 3. Repeat Steps 1 and 2 until all of the 1  observations are classified. Let  H

mn1
be the 

number of  

holdout (H) observations misclassified in this group. 

Step 4. Repeat Steps 1 through 3 for the 1  observations. Let  H

mn2
be the number of holdout 

observations  

misclassified in this group. 

Thus, estimates of P(2/1)and P(1/2) of the conditional misclassification probabilities are given 

by 

( )

1

1

ˆ(2 /1) (2.48)
H

mn
P

n


 

( )

2

2

ˆ(1/ 2) (2.49)
H

mn
P

n


 

and the total proportion misclassified,    )/( 21

)(

21 nnnn H

m

H

m  , is, for moderate samples, a nearly 

unbiased estimate of the expected actual error rate, E(AER). 

( ) ( )

1 2

1 2

ˆ ( ) (2.50)
H H

m mn n
E AER

n n






 

Multinomial Logistic Regression 

Regression Analysis has become an integral component of any data analysis concerned with 

describing the relationship between a response variable and one or more explanatory variables. 
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This response variable is always quantitative in nature. A situation where the response variable 

becomes dichotomous, that is can only take two values say 0 and 1, regression analysis 

becomes insignificant hence Multinomial Logistic Regression comes into play. Even though 

the response may be a two outcomes qualitative variable, we can always code the two cases 

say 0 and 1 for instance. If we are analyzing groups; we can say group 1 = 0 and group 2 = 1, 

then the probability of 1 is a parameter of interest. It represents the proportion in the population 

which is coded 1. The mean of the distribution of 0 and 1 is p, and variance p(1-p) since: 

Mean   =  0 x (1-p) + 1 x p = p      (3.36) 

Variance  = 

      (3.52) 

The probability model of 1 is given by 

P = E(Y/X) =   

   

The Logit Model 

Instead of modeling the probability of Y directly with a linear model, we first consider the odd 

ratios.  

  Odds =         

 (3.39) 

This is the probability of 1 to the probability of 0. This is used when we want to predict the 

probability that a case will be classified into one as opposed to the other of the two categories 

of the independent variables. If we know one probability, we know the other.  From the linear 

model in 3.53, X can be categorical or continuous, but Y (p) is always categorical. The value 

Y must lie between 0 and 1. To solve this problem we replace the probability that Y=1 with 

the odds that Y=1. The odds that Y = 1, written odd (Y=1) is the ratio of the probability that Y 

= 1 to the probability that Y  1.  The odds that y = 1 is given as:  

Odds =         (3.40)  

In Logistic regression for a binary variable, we model the natural log of the odds ratios which 

is called Logit (Y); thus:  

  Logit (Y) = In(odds) =    

The equation for the relationship between dependent variables and independent variables then  

becomes: Logit (Y) =   
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This is the Logistic Regression model which is Linear in its predictor’s variables. Because it is 

easier for most people to think in terms of probability, we can convert from the Logit or log 

odds to the probability of Y, by exponentiating: 

 Odds(Y=1) =   

 Odds(Y=1) = 

      

We can then convert the odds back to the probability that (Y=1) by the formula 

 P(Y=1) =       (3.44) 

This gives P(Y)  =           (3.45) 

This equation has the desired property that no matter what values we substitute for the B’s and 

the X’s; P will always be a number between 0 and 1. 

Logistic Classification Rule 

Assign X to population 1 if the estimated discriminant scores is greater than 1 

(Y) = > 1 (3.46) 

Assign X to population 2 if the estimated discriminant scores is less than o 

(Y) = < 0 (3.47) 

Alternatively;  

Assign X to population 1 if the probability function is equal to1 

P(Y)  =    = 1  (3.48) 

Assign X to population 2 if the probability function is less than 1 

P(Y)  =   < 1  (3.49) 
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DATA PRESENTATION, VALIDATION, ANALYSIS AND INTERPRETATIONS 

Data Presentation 

Data for this study are presented on Table 1, Table 2, and Table 3 of Appendix 1 of this work.  

Validation of Assumptions of the Data 

Before testing the assumptions, we shall first test for equality of mean vectors. The test is 

presented hereunder.   

Test of Equality of Mean Vectors Using Hotellings’ T2 –Distribution for Real Dataset 

Therefore, we shall test the following hypotheses; 

   

 

   

 

The Hotelling's T2 test statistic is given as 

      

Where  

 

       

D2 = 1.80500802 

  => 

 

  =>  

 

 

Conclusion: Since, 

, we therefore reject the null hypothesis, 

0H ,and conclude that there is a significant difference between the mean vectors of the 

performing credits and non-performing credits at .05.0  
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Test of Equality of Mean Vectors Using Hotellings’ T2 –Distribution for Simulated Dataset 

 

Where  

 

 D2 = 4.170330265 

  => 

 

  => 

 

Conclusion: Since,

, we therefore reject the null hypothesis, 

0H ,and conclude that there is a significant difference between the mean vectors of the 

simulated data at .05.0  

Test of Equality of Covariance Matrices Using Box M test for Real Dataset 

Applying equations (3.6) – (3.17) on data of table 4.1 of Appendix 1, we obtain the following 

results. 

We then carry out the following hypotheses: 

  

 

0 1 2

1 2

: cov

: cov

H The ariance matrices are equal

H The ariance matrices are unequal





 

 

 

The test statistic for conducting Box’ M test of equality of covariance matrices is the Chi-

square test statistic, given by   9879224.220)984171.225)(022108843.01(1 1

2  MA  

Conclusion: Since, 27.23988.220 2

,

2

1
 V ,we reject the null hypothesis, H0, and 

conclude that the two covariance matrices are not equal. 

Test of Equality of Covariance Matrices Using Box M test for Simulated Dataset 

Applying equations (3.6) – (3.17) on data of table 4.3 of Appendix 1, we obtain the following 

results 

 We then carry out the following hypotheses: 
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  

 

0 1 2

1 2

: cov

: cov

H The ariance matrices are equal

H The ariance matrices are unequal





 

 

 

The test statistic for conducting Box’ M test of equality of covariance matrices is the Chi-

square test statistic, given by   343258591.0)5222411.7)(95436751.01(1 1

2  MA  

Conclusion: Since, 352.0343.0 2

,

2

1
 V , we do not reject the null hypothesis, H0, and 

conclude that the two covariance matrices are equal.  

Multivariate Normality Test for Real Dataset, Simulated Dataset and Transformed Dataset 

With the aid of Statistical Package SPSS, we carry out the Q-Q plots for normality test and the 

results for these are presented on Figure 1 and Figure 2 and figure 3 of Appendix 2   

Estimations for Discriminant Analysis on the Real Dataset 

Applying equation 3.16 on data of Table 1 of Appendix 1, we obtain the Linear Discriminant 

function on the real dataset:  

         

(4.1) 

 

Where: 
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Applying equation (3.27) and (3.28) on data of Table 1 of Appendix 1, we obtain the Linear 

Discriminant mean of population I and population II respectively. 

       

And                                   (4.3) 

Applying equation (3.29) on data of Table 1 of Appendix 1, we obtain the critical value as 

837941291.3
2

 92.7800604124.89582216

2

21 






yy

YCritical

   (4.5) 

Applying equation (4.1) on the data of Table 1 appendix 1, we obtain the discriminant scores 

in the Table 4 presented in Appendix 1: 

Applying the Linear Discriminant classification rule as given in equation (3.30) and (3.31) on 

Table 4 of Appendix 1, we obtain the Confusion Matrix given in the table 4.1 below: 

Table 4.1 Confusion Matrix of the Real Dataset 

Actual 

Membership 

 Predicted Membership 

  

 

 

 

 

 

34 7 

 

 

16 43 

 TOTAL 50 50 

 

Applying equation (3.35) on dataset of Table 1, we obtain the error rate as follows: 

           APER =      (4.7)  

Hence the overall probability of Misclassification is  

    APER * 100 = 0.23*100 = 23%    (4.8) 

Estimations for Discriminant Analysis on the Transformed Dataset 

With the help of statistical packages, precisely MINITAB 17, discriminant analysis was applied 

on the transformed dataset of table 2 of appendix 1, summary results is given below: 
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Table 4.2 Confusion Matrix of the Transformed Dataset 

Actual 

Membership 

 Predicted Membership 

  

 

 

 

 

 

39 9 

 

 

11 41 

 TOTAL 50 50 

 

           APER =      (4.9)  

Hence the overall probability of Misclassification is  

APER * 100 = 0.20*100 = 20%       (4.10) 

Estimations for Discriminant Analysis on the Simulated Data 

Applying equation (3.16) on data of Table 3 of Appendix 1, we obtain the Linear Discriminant 

function as: 

      (4.11) 

Applying equation (3.30) and (3.31) on dataset of Table 3 of Appendix 1, we obtain the Linear 

Discriminant mean of population I and population II respectively; 

 

       

   (4.12) 

Applying equation (3.35) on dataset of Table 3 of Appendix 1, we obtain the critical value as 

  (4.13) 

Applying equation (4.11) on the data of Table 1 of Appendix 1, we obtain the discriminant 

scores which are presented on the dataset of table 5 of Appendix 1. 

Applying the Linear Discriminant classification rule as given in equation (3.30) and (3.31) on 

Table 5 of Appendix 1, we obtain the Confusion Matrix given in the table 4.3 below: 
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Table 4.3 Confusion Matrix of the Simulated Dataset 

Actual 

Membership 

 Predicted Membership 

   

 96 20 

 4 80 

 TOTAL 100 100 

 

Applying equation (3.35) on data of Table 4.8, we obtain the error rate as follows: 

           APER =     (4.14)  

Hence, the overall probability of Misclassification is  

APER * 100 = 0.12*100 = 12%       (4.15) 

Estimations of Multinomial Logistic Regression on the Real Life Data 

With the aid of statistical package, MINITAB 17 software, we obtain the estimate of Logistic 

Regression Model using the dataset on Table 1 of Appendix 1, as follows: 

            

 (4.16) 

Applying equation (4.16) to the data of Table 1of Appendix 1, we obtain the Discriminant 

scores and probability scores as presented in Table 6 of Appendix 1:  

Applying the Logistic classification rule as given in equation (3.48) and (3.49) on Table 6 of 

appendix 1, we obtain the Confusion Matrix given in the table below: 

Table 4.4 Confusion Matrix for the Real Dataset 

Actual 

Membership 

 Predicted Membership 

   

 41 7 

 9 43 

 TOTAL 50 50 
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APER =        

 (4.17)  

Hence the overall probability of Misclassification is APER * 100 = 0.16*100 = 16% 

 (4.18) 

Estimations for Multinomial Logistic Regression on the Simulated Data 

With the aid of statistical package, MINITAB 17 software, we obtain the estimate of Logistic 

Regression Model using the dataset on Table 3 of Appendix 1, as:  

  

    (4.19) 

 Applying equation (4.19) to the data of Table 3 of Appendix 1, we obtain the Discriminant 

scores and probability scores which is also displayed in Table 6 of Appendix 1: 

Applying the Logistic classification rule as given in equation (3.48) and (3.49) on Table 6 of 

Appendix 1, we obtain the Confusion Matrix given in the table below: 

Table 4.5 Confusion Matrix Simulated Dataset 

Actual 

Membership 

 Predicted Membership 

   

 91 17 

 9 83 

 TOTAL 100 100 

 

APER =       

    (4.20)  

Hence probability of Mis-classification is  

APER * 100 = 0.13*100 = 13%    (4.21) 

 

FINDINGS 

● The Hotelling’s T2 distribution indicated that the mean vectors of the performing credits 

and those of Non-performing credits are significantly different, since the mean vectors 

are different there is need for discriminant analysis. 

● The real dataset violated the discriminant assumptions, which are; normal and that of 

equality of covariance matrices using Q-Q plot and Box’s M test respectively.  

● The simulated dataset is multivariate normal and showed equality of covariance using Q-

Q plot and Box’s M test respectively.  
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● The critical value of the discriminant was found to be approximately

837941291.3criticalY  

● The classification rule for allocating customers  into performing credits and non-

performing credits for Linear Discriminant Analysis were found to be: 

 (a) Allocate customer s )( 0x to performing credit group )( 1 if

. 

 (b) Allocate customers )( 0x to Non-performing group )( 2 if

 

● The classification rule for allocating customers  into performing credits and non-

performing credits  for Multinomial Logistic Regression is as given: Assign X to 

population 1 if the estimated discriminant scores is greater than 1; (Y) = 

> 1 Assign X to 

population 2 if the estimated discriminant scores is less than 0 

(Y) = < 0   

Alternatively;  

Assign X to population 1 if the probability function is equal to1 

P(Y)  =    = 1   

Assign X to population 2 if the probability function is less than 1 

P(Y)  =  < 1 

● The Fisher Linear Discriminant Function indicated that about 23% were misclassified, 

while that of Multinomial Logistic Regression gave 16% based on the real dataset. The 

simulated data gave the result of misclassification as 12% and 13% for Linear 

Discriminant Analysis and Multinomial Logistic Regression, respectively. Also the 

transformed dataset gave 20% of misclassification.  

 

CONCLUSION 

In this experimental study we have compared two different methods of classification: Linear 

Discriminant Analysis and Multinomial Logistic Regression in terms of the classification 

accuracy and model performance. The performance evaluation was carried out on a real dataset 

and also performed a simulated study to examine the group and data characteristics that may 

affect the performance of LDA and MLR. As a conclusion this study was very helpful for us 

to make the choice between the two methods easier and to understand how the two models 

behave under different data and group characteristics. 
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