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ABSTRACT: Covid-19 is an emergency and viral infection with 

its outbreak being termed as one of the great epidemics in the 21st 

century causing so many deaths, which made WHO declare it as a 

pandemic emergency. This virus is new and comes with its 

characteristics of which randomness and uncertainty are among 

its common features. In this paper, we developed a model for 

carrying out an analysis of COVID-19 dynamics using Markov-

chain theory methodology. Here, we employed the use of 

conditional probability distribution as embedded in the Markov 

property of our chain to construct the transition probabilities that 

were used in determining the probability distributions of COVID-

19 patients as well as predicting its future spread dynamics. We 

provide a step-by-step approach to obtaining probability 

distributions of infected and recovered individuals, of infected and 

recovering and of a recovered patient being getting infected again. 

This study reveals that irrespective of the initial state of health of 

an individual, we will always have probabilities 𝑃𝑅𝐼/(𝑃𝐼𝑅 + 𝑃𝑅𝐼) 

of an individual being infected and 𝑃𝑅𝐼/(𝑃𝐼𝑅 + 𝑃𝑅𝐼) of an 

individual recovering from this disease. Also, with increasing ‘𝑛’, 

we have an equilibrium that does not depend on the initial 

conditions, the implication of which is that at some point in time, 

the situation stabilizes and the distribution 𝑋𝑛+1 is the same as 

that of 𝑋𝑛. We envision that the output of this model will assist 

those in the health system and related fields to plan for the 

potential impact of the pandemic and its peak. 
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INTRODUCTION  

COVID-19 is an emergent viral infectious disease which was first reported in December 2019 

in a city in the Chinese province of Hubei, Wuhan; the viral aetiology of this infection known 

as COVID-19 virus belongs to the Betacoronavirus genus which is known for causing 

respiratory (if not gastrointestinal or neurological) diseases in both humans and animals [1,2].   

Its outbreak has been termed as one of the great epidemics in the 21st century causing over 

700,000 deaths with well over 21 million of reported cases of infection throughout 188 

countries/regions of the world [2,3].  In March 2020, Nigeria reported its first case, since then 

there have been over 53,000 confirmed cases of covid-19, including 1,011 deaths with 1.9% 

CFR [4].   

This is a new virus and a completely new situation; so it exhibits its particular characteristics 

and there may be the need for a model to be developed to tackle the real situation; to evaluate 

the spread of the disease within a discrete-time interval, to provide answers to such questions 

as “How many individuals will be infected per day, week, month, etc.?”, will the present 

situation reach equilibrium (in the long-run)? How many people will remain infected or 

recovered? The knowledge of which will help the health system and the authorities involved 

to plan for the potential impact of the pandemic. Also, it is essential to estimate the number of 

infections to be able to analyse the spread of the disease. 

In the last few decades, there were several major outbreaks of infectious diseases such as SARS 

(2003), HIN influenza in 2009, H7N9 influenza in 2013, Ebola in Democratic Republic of 

Congo in 1995. Various mathematical models have been used to determine the trend of disease 

spread and provide optimal control strategies. [5] and [6] developed ordinary differential 

equations stochastic SEIR models to study the dynamics of infectious disease and control 

interventions using the outbreak of Ebola in DRC as a case study, while for Lassa fever [7] 

modified SEIR model using a system of ordinary differential equations to analyse the stabilities 

of the Dynamical System with the addition of demographic effects.  

Meanwhile, the theory of Markov Chain to epidemiology is not new [8,9] since the outbreak of 

COVID-19, a lot of work has been done: [10] developed a discrete-time stochastic epidemic 

model with binomial distributions to study the transmission of the disease. The estimated model 

parameters based on fitting to newly reported data and simulation show the newly confirmed 

cases will continue to decline and the total confirmed cases will reach the peak in February with 

application to COVID-19 cases in China. 

Also [11] compared the distribution of COVID-19 cases based on daily reported data in Iran 

using Normal, Log-normal, and Weibull, their results showed that Weibull distribution was the 

best fit with the data. But, parameters of distributions were different between new cases and the 

daily deaths data. 

In this paper, we develop a model based on Markov chain theory methodology that can be used 

to determine the probability distributions of COVID-19 patients as well as to predict its future 

spread dynamics. Every forecasting model has its advantages and speciality for solving 

complex real-world problems but Markov chains, which is a special case of the stochastic 

process [12] with the Markov property, excels, in that it offers ideal conditions for the study of 

mathematical modelling of various phenomena depending on random-variables [13]. The 

Markov property makes it possible to simplify some predictions about stochastic processes by 
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viewing the future as being independent of the past given the present state of the process 

[14,15]. This property makes the Markov chain adaptable to a situation like this when epidemic 

data is still insufficient and difficult to apply directly to existing mathematical models which 

requires relatively large sample data. 

Also, the tractability and relative ease of calculating quantities of interest make Markov 

modelling attractive in the study of disease dynamics which are often characterized by disease 

states. Here, we made use of discrete, first-order Markov to provide a step-by-step approach to 

obtaining probability distributions of infected and recovered individuals, when an infected will 

recover and a recovered individual may likely get infected again. The knowledge of this is 

useful for characterizing the disease and its course, especially in assisting the policymakers and 

the general population to be more prepared as well as promoting more logical actions. 

 

METHODOLOGY 

The Markov process, which incorporates the stochastic element, is being employed as the main 

component of this model to determine the various probability distributions of infected and 

recovered individuals and the possible transitions for an individual from one state of health to 

another. Here, the probability distribution over the state space at a certain response occasion 

depends only on the recent health condition of an individual. That is, to determine the 

probability distribution of an individual’s next state of health, we only need information about 

the recent state of health. This is referred to as the memoryless or Markovian property i.e., 

 
𝑃{𝑋𝑛+1 = 𝑖𝑛+1|𝑋𝑛 = 𝑖𝑛 , 𝑋𝑛−1 = 𝑖𝑛−1 , ⋯ }

= 𝑃{𝑋𝑛+1 = 𝑖𝑛+1|𝑋𝑛 = 𝑖𝑛 } 
(1) 

With this, the states of health of an individual before ’n’ are assumed to be irrelevant to the 

state of health at occasion ‘n+1’, that is, only the most recent outcome is of use in predicting 

the next outcome. 

The Markov chain becomes homogeneous, if 

 
𝑃{𝑋𝑛+1 = 𝑖𝑛+1|𝑋𝑛 = 𝑖𝑛 , 𝑋𝑛−1 = 𝑖𝑛−1 , ⋯ , 𝑋0 = 𝑖0}

= 𝑃{𝑋𝑛+1 = 𝑖𝑛+1|𝑋𝑛 = 𝑖𝑛 } 
(2) 

is independent of ’n’. 

Majorly, we are interested in using this principle of Markov chain to study the behaviour of 

system Xn, n≥0, n < ∞ as it settles down into a regular pattern. 

In this model and relation to the known characteristics of the COVID-19 pandemic, we assume 

that an individual is in one of the following states: Infected or Recovered Infectious (denoted 

by I). This is the first state where it is assumed that an individual has finished the incubation 

period, may infect other people and start developing clinical signs. It is also assumed that only 

an individual with medium symptoms can get to this state, not those that will die. After this 

state, an individual can remain or move on to Recovered State. 
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Recovered State: This is the state where it is assumed that an infectious individual survived 

the disease but may likely be infected again or develop a natural immunity to the virus. 

From this, we have the following transition probabilities  

 𝑃 {𝑋𝑛+1  =  𝑅 |𝑋𝑛  =  𝐼}  =  𝑃𝐼𝑅   

 𝑃 {𝑋𝑛+1  =  𝐼 |𝑋𝑛  =  𝑅}  =  𝑃𝑅𝐼  (3) 

Similarly, 

 𝑃 {𝑋𝑛+1  =  𝐼 |𝑋𝑛  =  𝐼}  =  1 −  𝑃𝐼𝑅  (4) 

and 

 𝑃 {𝑋𝑛+1  =  𝑅 |𝑋𝑛  =  𝑅}  =  1 −  𝑃𝑅𝐼  (5) 

Transitio

n 

probabili

ty 

matrix: 

 

 𝐼 𝑅 

𝐼 1 −  𝑃𝐼𝑅  𝑃𝐼𝑅 

𝑅 𝑃𝑅𝐼 
1 
− 𝑃𝑅𝐼  

𝑃 = 

 

(6) 

and its graph becomes 

 

with another assumption that the probability of being in the state I initially is λ0(I) and that of 

being in state R is λ0(R). 

That is, 

 𝑃(𝑋0  =  𝐼)  =  𝜆0(𝐼) (7) 

and 
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 𝑃(𝑋0  =  𝑅)  =  𝜆0(𝑅) (8) 

 

by law of Total Probability, 

 𝑃(𝑋0  =  𝐼)  +  𝑃(𝑋0  =  𝑅)  =  1 (9) 

this implies that 𝜆0(𝐼)  +  𝜆0(𝑅)  =  1 

 𝜆0(𝑅)  =  1 −  𝜆0(𝐼) (10) 

 

We employ the use of the following theorems to establish our results. 

 

Theorem 1.1 [15]. A Markov chain {𝑋𝑛 , 𝑛 ≥  0} is completely characterised by the initial 

distribution 𝑉 and the transition probability matrix 𝑃. 

Proof.                  𝑃{𝑋0  =  𝑖0} =  𝑉𝑖0
 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑉, 𝑃{𝑋0  =  𝑖0, 𝑋1  =

 𝑖1} =  𝑃{𝑋1 =  𝑖1 | 𝑋0  =  𝑖0  ·  𝑃𝑋0  =  𝑖0} = 𝑃𝑖0𝑖1
 ·  𝑉𝑖0

 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃 = 𝑉𝑖0
 ·  𝑃𝑖0𝑖1

  

Now, by the induction hypothesis, assume that 

𝑃{𝑋0  =  𝑖0,··· , 𝑋𝑘  =  𝑖𝑘}  =  𝑉𝑖0
𝑃𝑖0𝑖1

, 𝑃𝑖0𝑖1
, 𝑃𝑖1𝑖2

,···, 𝑃𝑖𝑘−1𝑖𝑘
   𝑓𝑜𝑟 𝑘 =  1, 2,···, 𝑛 −  1. 

We shall show that it is true for 𝑘 =  𝑛. 

𝑃{𝑋0  =  𝑖0,··· , 𝑋𝑛  =  𝑖𝑛  =  𝑃{𝑋𝑛  =  𝑖𝑛 |𝑋𝑛−1  =  𝑖𝑛−1,··· , 𝑋0  
=  𝑖0} ⋅  𝑃{𝑋0  =  𝑖0,··· , 𝑋𝑛−1  =  𝑖𝑛−1}𝑃{𝑋𝑛  =  𝑖𝑛|𝑋𝑛−1  =  𝑖𝑛−1}  ·  𝑃{𝑋0  
=  𝑖0, . . . , 𝑋𝑛−1  =  𝑖𝑛−1} 𝑏𝑦 𝑀𝑎𝑟𝑘𝑜𝑣 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. 

= 𝑃𝑖𝑛−1 ,   𝑖𝑛
 ·  𝑉𝑖0

𝑃𝑖0,   𝑖 ,··· , 𝑃𝑖𝑛−1 , 𝑖𝑛−1
 𝑏𝑦 𝑡𝑖𝑚𝑒 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 

= 𝑉𝑖0
𝑃𝑖0,𝑖  ··· 𝑃𝑖𝑛−1,𝑖𝑛

 

This theorem is proved by induction.  

Theorem 1.2 (Chapman Kolmogorov Equation ( [15]). 

𝑃𝑖𝑗
(𝑛)

 =  ∑

𝑟∈𝑆

𝑃𝑖𝑟
(𝑘)

 ·  𝑃𝑟𝑗
(𝑛−𝑘)

 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ≤  𝑘 ≤  𝑛 . 

Proof. Fix an integer ‘𝑘’ such that 0 ≤  𝑘 ≤  𝑛. Then, 
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𝑃𝑖𝑗
(𝑛)

= 𝑃{𝑋𝑛 = 𝑗|𝑋0 = 𝑖} = ∑𝑃{𝑋0 = 𝑗, 𝑋𝑘 = 𝑟 | 𝑋0 = 𝑖}

= ∑

𝑟∈𝑆

𝑃{𝑋𝑛 = 𝑗 | 𝑋𝑘 = 𝑟, 𝑋0 = 𝑖 } ⋅ 𝑃{𝑋𝑘 = 𝑟   𝑋0 = 𝑖}

= ∑

𝑟∈𝑆

𝑃{𝑋𝑛 = 𝑗 | 𝑋𝑘 = 𝑟 } ⋅ 𝑃{𝑋𝑘 = 𝑟   𝑋0 = 𝑖} 𝑓𝑟𝑜𝑚 𝑀𝑎𝑟𝑘𝑜𝑣′𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦

= ∑

𝑟∈𝑆

𝑃{𝑋𝑛−𝑘 = 𝑗 | 𝑋0 = 𝑟 } ⋅ 𝑃{𝑋𝑘 = 𝑟   𝑋0 = 𝑖} 𝑓𝑟𝑜𝑚 𝑡𝑖𝑚𝑒

− ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑

𝑟∈𝑆

𝑃𝑖𝑗
(𝑛−𝑘)

 ·  𝑃𝑖𝑟
(𝑘)

 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡 𝑡ℎ𝑎𝑡𝑃𝑖𝑗
(𝑛)

= 𝑃{𝑋𝑛 = 𝑗 | 𝑋0 = 𝑖 }  ∀ 𝑖, 𝑗 ∈ 𝑆 

Introducing the matrix notation, we have: 

𝑃(𝑛) = [𝑃𝑖𝑗
(𝑛)

]. 

 

Theorem 1.3. ([15] ). 

𝑉𝑛  =  𝑉𝑃𝑛. 

Proof. Using 

                                                          𝑉𝑖
(𝑛)

= 𝑃{𝑋𝑛 = 𝑗 | 𝑋0 = 𝑖} ⋅ 𝑃{𝑋0 = 𝑖} 

= ∑

𝑖∈𝑆

𝑃{𝑋𝑛 = 𝑗 |𝑋0 = 𝑖} 𝑉_𝑖 

where (Vi ) is the initial distribution. Thus, (Vi ) can be re-written in matrix form as: 

𝑉(𝑛) = 𝑉(0) ⋅ 𝑃(𝑛) = 𝑉 ⋅ 𝑃𝑛 

 

 

This theorem establishes the fact that the 𝑛𝑡ℎ  power of the one-step transition probability can 

be used to compute the marginal distribution of 𝑋𝑛. 

Now, to our results. 

Result 1: Let 𝐼 and 𝑅 be two possible states of health of an individual, the probabilities of 

either being infected or recovered at a particular occasion ‘𝑛’ are: 
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𝑃(𝑋𝑛 = 𝐼) =
𝑃𝑅𝐼

𝑃𝐼𝑅 + 𝑃𝑅𝐼
+

(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)𝑛 ⋅ [𝜆0(𝐼)(𝑃𝐼𝑅 + 𝑃𝑅𝐼) − 𝑃𝑅𝐼]

𝑃𝐼𝑅 + 𝑃𝑅𝐼
 

 𝑃(𝑋𝑛 = 𝑅) =
𝑃𝐼𝑅

𝑃𝐼𝑅 + 𝑃𝑅𝐼
+

(1 − 𝑃𝑅𝐼 − 𝑃𝐼𝑅)𝑛 ⋅ [𝜆0(𝐼)(𝑃𝐼𝑅 + 𝑃𝑅𝐼) − 𝑃𝐼𝑅]

𝑃𝐼𝑅 + 𝑃𝑅𝐼
 

Proof. We have: 

𝑃(𝑋𝑛+1 = 𝐼) = 𝑃{𝑋𝑛 = 𝐼 𝑎𝑛𝑑 𝑋𝑛+1 = 𝑅} + 𝑃{𝑋𝑛 = 𝑅 𝑎𝑛𝑑 𝑋(𝑛+1) = 𝐼

= 𝑃{𝑋𝑛 = 𝐼} ⋅ 𝑃{𝑋𝑛+1 = 𝐼 | 𝑋𝑛 = 𝐼} + 𝑃{𝑋𝑛 = 𝑅} ⋅ 𝑃{𝑋𝑛+1 = 𝐼 |𝑋𝑛 = 𝑅
= 𝑃{𝑋𝑛 = 𝐼} ⋅ (1 − 𝑃𝐼𝑅) + 𝑃{𝑋𝑛 = 𝑅} ⋅ 𝑃𝑅𝐼

= (1 − 𝑃𝐼𝑅 ⋅ 𝑃{𝑋𝑛 = 𝐼} + 𝑃{𝑋𝑛 = 𝑅} ⋅ 𝑃𝑅𝐼 

By the law of total probability, 

𝑃{𝑋𝑛 = 𝑅} = 1 − 𝑃{𝑋𝑛 = 𝐼} ∴    𝑃{𝑋𝑛+1 = 𝐼}
= (1 − 𝑃𝐼𝑅) ⋅ 𝑃{𝑋𝑛 = 𝐼} + 𝑃𝑅𝐼(1 − 𝑃{𝑋𝑛 − 𝐼})
= (1 − 𝑃𝐼𝑅) ⋅ 𝑃{𝑋𝑛 = 𝐼} − 𝑃{𝑋𝑛 = 𝐼} ⋅ 𝑃𝑅𝐼

= 𝑃{𝑋𝑛 = 𝐼}[1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼] + 𝑃𝑅𝐼 

∴ At occasion 𝑛 + 1, the probability of an individual becoming infected is: 

𝑃{𝑋𝑛+1 = 𝐼} = (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) ⋅ 𝑃{𝑋𝑛 = 𝐼} + 𝑃𝑅𝐼 

From this, we have: 

𝑃{𝑋𝑛+1 = 𝐼} = (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) ⋅ 𝑃{𝑋0 = 𝐼} + 𝑃𝑅𝐼𝑃{𝑋𝑛+1 = 𝐼}
= (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) ⋅ 𝜆0 + 𝑃𝑅𝐼𝑃{𝑋2 = 𝐼} = (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) ⋅ 𝑃{𝑋0 = 𝐼} + 𝑃𝑅𝐼 

𝑃{𝑋2 = 𝐼} = (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) ⋅ [(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) ⋅ 𝜆0(𝐼) + 𝑃𝑅𝐼] + 𝑃𝑅𝐼𝑃{𝑋2 = 𝐼}
= (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) ⋅ 𝜆0(𝐼) + 𝑃𝑅𝐼(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) + 𝑃𝑅𝐼

= (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)2 ⋅ 𝜆0(𝐼) + 𝑃𝑅𝐼(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) + 𝑃𝑅𝐼  

𝑃{𝑋3 = 𝐼} = (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) ⋅ 𝑃{𝑋2 = 𝐼} + 𝑃𝑅𝐼 

= (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) ⋅ [(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)2 ⋅ 𝜆0(𝐼) + 𝑃𝑅𝐼(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)] + 𝑃𝑅𝐼

= (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)3 ⋅ 𝜆0(𝐼) + 𝑃𝑅𝐼(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)2 + 𝑃𝑅𝐼(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼) + 𝑃𝑅𝐼 

By inspection, then 

𝑃(𝑋𝑚 = 𝐼) = (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)𝑚 ⋅ 𝜆0(𝐼) + 𝑃𝑅𝐼 (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)𝑚−1 + ⋯
+ 𝑃𝑅𝐼(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)𝑃𝑅𝐼

= (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)𝑚 ⋅ 𝜆0(𝐼) + 𝑃𝑅𝐼 ∑

𝑚−1

𝑗=0

(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)𝑗 

using the formula for the sum of finite geometric progression, we have: 
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∑

𝑚−1

𝑗=0

(1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)𝑗 =
1 − (1 − 𝑃𝐼𝑅 − 𝑃𝑅𝐼)𝑚

𝑃𝐼𝑅 + 𝑃𝑅𝐼
𝑃(𝑋𝑚 = 𝐼)

=
𝑃𝑅𝐼

𝑃𝐼𝑅 + 𝑃𝑅𝐼
+ (1 − 𝑃𝑅𝐼 − 𝑃𝐼𝑅)𝑚 ⋅

[𝜆0(𝐼)(𝑃𝐼𝑅 + 𝑃𝑅𝐼) − 𝑃𝑅𝐼]

𝑃𝐼𝑅 + 𝑃𝑅𝐼
 

and by induction 

𝑃(𝑋𝑛 = 𝐼) =
𝑃𝑅𝐼

𝑃𝐼𝑅 + 𝑃𝑅𝐼
+

(1 − 𝑃𝑅𝐼 − 𝑃𝐼𝑅)𝑛 ⋅ [𝜆0(𝐼)(𝑃𝐼𝑅 + 𝑃𝑅𝐼) − 𝑃𝑅𝐼]

𝑃𝐼𝑅 + 𝑃𝑅𝐼
 

so that at any given occasion ‘𝑛’ the probability of an individual becoming infectious is: 

𝑃(𝑋𝑛 = 𝐼) =
𝑃𝑅𝐼

𝑃𝐼𝑅 + 𝑃𝑅𝐼
+

(1 − 𝑃𝑅𝐼 − 𝑃𝐼𝑅)𝑛 ⋅ [𝜆0(𝐼)(𝑃𝐼𝑅 + 𝑃𝑅𝐼) − 𝑃𝑅𝐼]

𝑃𝐼𝑅 + 𝑃𝑅𝐼
 

where ’n’ represents discrete time interval which may be days, weeks, or months depending on 

the occurrence. 

Similarly, the probability of recovery at a particular (𝑛 +  1) occasion can be obtained as: 

𝑃(𝑋𝑛+1 = 𝑅) = 𝑃(𝑋𝑛 = 𝑅 𝑎𝑛𝑑 𝑋𝑛+1 = 𝑅) + 𝑃(𝑋𝑛 𝑎𝑛𝑑 𝑋𝑛+1 = 𝑅)𝑃(𝑋𝑛+1 = 𝑅)
= 𝑃(𝑋𝑛 = 𝑅) ⋅ 𝑃(𝑋𝑛+1 = 𝑅 | 𝑋𝑛 = 𝑅) + 𝑃(𝑋𝑛 = 𝐼) ⋅ 𝑃(𝑋𝑛+1 = 𝑅|𝑋𝑛 = 𝐼)
∴    𝑃(𝑋𝑛+1 = 𝑅) = 𝑃(𝑋𝑛 = 𝑅) ⋅ (1 − 𝑃𝑅𝐼) + 𝑃(𝑋𝑛 = 𝐼) ⋅ 𝑃𝐼𝑅 

Using the law of total probability 

𝑃(𝑋𝑛 = 𝐼) = 1 − 𝑃(𝑋𝑛 = 𝑅)𝑃(𝑋𝑛+1 = 𝑅) = 𝑃(𝑋𝑛 = 𝑅)(1 − 𝑃𝑅𝐼) + (1 − 𝑃(𝑋𝑛 = 𝑅)) ⋅ 𝑃𝐼𝑅

= (1 − 𝑃𝑅𝐼)𝑃(𝑋𝑛 = 𝑅) + 𝑃𝐼𝑅 − 𝑃(𝑋𝑛 = 𝑅) ⋅ 𝑃𝐼𝑅𝑃(𝑋𝑛+1 = 𝑅)
= (1 − 𝑃𝑅𝐼 − 𝑃𝐼𝑅) 

where; P(X0 = R) = λ0(R) 

 

  From this, 

 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 4, Issue 1, 2021 (pp. 94-106) 

102 

www.abjournals.org 

 

P{X1 = R} = (1 − PRI − PIR) · P{X0 = R} + PIR 

 = (1 − PRI − PIR) · λ0 + PIR 

P{X2 = R} = (1 − PRI − PIR) · P{X1 = R} + PIR 

 = (1 − PRI − PIR)[(1 − PRI − PIR) · P(X0 = R) + PIR] + PIR 

 = (1 − PRI − PIR)(1 − PRI − PIR) · λ0(R) + PIR(1 − PRI − PIR) + PIR 

 = (1 − PRI − PIR)2 · λ0(R) + PIR(1 − PRI − PIR) + PIR 

P{X3 = R} = (1 − PRI − PIR) · P{X2 = R} + PIR 

 = (1 − PRI − PIR)[(1 − PRI − PIR)2 · P(X0 = R) + PIR(1 − PRI − PIR) 

+ PIR] + PIR 

 = (1 − PRI − PIR)3 · P(X0 = R) + PIR(1 − PRI − PIR)2 + PIR(1 − PRI 

− PIR) + PIR 

 = (1 − PRI − PIR)3 · λ0(R) + PIR(1 − PRI − PIR)2 + PIR(1 − PRI − 
PIR) + PIR 
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By inspection, 

By induction 

 

 

∴ The probability that an individual will recover from a particular occasion ’n’ is: 

 

 

At times, it may be of interest to obtain the probability distribution or to estimate the number 

of infected individuals that may likely recover after ’n’ steps (’n’ number of times) or those 

that might have recovered but may likely be infected again, to this we have the following 

result: 

The result I: In ’n’ number of times, the probabilities of an infected individual being 

recovered and that of the recovered individual being infected are: 

 

and 

 

Proof. In equation, 

 

Set λ0(R) = 0 

 

while the probability that an individual who has recovered can get infected again can thus be 

obtained by setting λ0(I) = 0 in the equation 
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Result II: In ’n’ number of times, the probabilities of an infected person remaining infectious 

and that of a recovered person remaining in recovery state are: 

 

Proof. In equation, 

 

Set λ0(I) = 1 

∴ P(I, I) = Probability of an individual remaining infected in several steps 

 

while that of a recovered individual remaining in recovered state Pn(R, R), can be obtained by 

setting λ0(R) = L in equation 

 

 

 

 

In the long-run, that is, as n −→ ∞, our model converges to: 

 

 

 

 

So, for large ’ n ’, our model becomes: 

P 
n 

= 

I R 

I 
P RI 

P IR + P RI 
+ 
P IR (1 − P IR − P RI ) n 

P IR + P RI 
P IR 

P IR + P RI 
− 
(1 − P RI − P IR ) n · P IR 

P IR + P RI 

R 
P RI 

P IR + P RI 
− 
P RI (1 − P IR − P RI ) n 

P IR + P RI 
P IR 

P IR + P RI 
+ 
P RI (1 − P RI − P IR ) n 

P IR + P RI 
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This means that each row of our model (transition matrix Pn) converges to an 

equilibrium distribution  

This shows that our Pn converges to a fixed matrix 

 as n −→ ∞ 

This implies that for large ’n’ no matter which state we start in, we will always have 

probabilities about  of an individual being infected and 

 of an individual recovering from this disease. 

Another implication is, we will always have an equilibrium that does not depend upon the 

initial conditions as the memory of the past dies out with increasing ’n’, this means that at 

some point in time the situation stabilises and the distribution of Xn+1 will be the same as the 

distribution of 𝑋𝑛  at equilibrium. 

 

REFERENCES 

[1]. Cui J. Li and Shi Z. Li (2019 March). Origin and evolution of pathogenic 

coronaviruses, Nature Reviews/ Microbiology, 17, 181-193 doi:10.1038/s 41579 - 018 - 

0118-9. 

[2]. Catrin Sohrabi, Zaid Alsafi and Riaz Agha (May 2020). World Health Organization 

declares global emergency: A review of the 2019 novel coronavirus (COVID-19). 

International Journal of Surgery. London, England.  

[3]. World Health Organization: Coronavirus Disease (Covid-190) Situation Report-209. 

[4]. Nigeria Centre for Disease Control: COVID-19 Situation Report 182 (28th August 

2020). 

[5]. Chowell G., Castillo- Chavez C., Fenimore P., Christopher M., Kribs-Zaleta C., Arriola 

L. (2004). Model parameters and outbreak control for SARS, Emerg. Infect. Disease 

(10), 1258 1263. 

[6]. Lekone P., Finkenstadt B., (2006). Statistical inference in a Stochastic Epidemic SEIR 

model with control intervention: Ebola as a case study. Biometrics. 

[7]. Oni O.V, Akanle Y.O., Ibrahim-Tiamiyu S. (2018). Inclusion of Birth and Death Rate 

in the Modelling of Lassa fever in Nigeria. International Journal of Scientific Research 

in Mathematical and Statistical Sciences Vol.5, Issue-4, pp.22-32. 

[8]. Alfonso Vivanco-Lira and Leon Guanajuato (2020): Predicting COVID-19 distribution 

in Mexico through a discrete and time-dependent Markov chain and a SIR – like the 

model. 

[9]. Elise F. Zipkin, Christopher S. Jennelle and Evan G. Cooch (2010): A primer on the 

application of Markov chains to the study of wildlife disease dynamics. British 

Ecological S257-259. MIT Press, Boston, Massachusetts, USA. 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 4, Issue 1, 2021 (pp. 94-106) 

106 

www.abjournals.org 

[10]. Sha He and Sanyi Tang (2020). A discrete Stochastic Model of the COVID-19 

Outbreak: Forecast and Control. Mathematical Biosciences and Engineering, 2020 

17(4): 2792 - 2804. 

[11]. Gholami E., Mansori K., Soltani-Kermanshashi M. (2020).  Statistical Distribution of 

novel coronavirus in Iran, Int. Journ. One Health, 6(2): 143 - 146. 

[12]. Vidyadhar G.K. (1995). Modelling and Analysis of Stochastic Systems. Chapman and 

Hall/CRC17. 

[13]. Kemeny J.G. and Snell J.L., (1976). Finite Markov chains. Springer - Verlag. New 

York; USA.  

[14]. Bishop Y.M., Fienberg S. & Holland P.W. (1971) Discrete multivariate analysis: theory 

in practice. Models for Measuring Change: Contingency Tables and Markov Models, 

pp. 257 - 259. MIT Press, Boston, Massachusetts, USA. 

[15]. Elgharbi S., Esghir M., Ibrinchi O., Abarda A., El Hajji S., Elbernoussi S., Grey 

Markov model for the prediction of the electricity production and consumption. 

Springer New York; New York, NY, USA 2020; Volume 81, pp. 206-219.  


