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ABSTRACT: In this study, we considered various 

transformation problems for a left-truncated normal distribution 

recently announced by several researchers and then possibly seek 

to establish a unified approach to such transformation problems 

for certain type of random variable and their associated 

probability density functions in the generalized setting. The 

results presented in this research, actually unify, improve and as 

well trivialized the results recently announced by these 

researchers in the literature, particularly for a random variable 

that follows a left-truncated normal distribution. Furthermore, 

we employed the concept of approximation theory to establish the 

existence of the optimal value 𝑦𝑚𝑎𝑥 in the interval denoted by 

 (𝜎𝑎, 𝜎𝑏) ((𝜎𝑝, 𝜎𝑞)) corresponding to the so-called interval of 

normality estimated by these authors in the literature using the 

Monte carol simulation method. 
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INTRODUCTION AND PRELIMINARY 

Let 𝜔 be an element of an appropriate non-empty sample space Ω and 𝑋: Ω ⟶ R (𝑅 =
(−∞,∞)) a real-valued function (random variable) defined onΩ. To eachelement of the event 

Γ𝑋 = {𝜔 ∈ Ω: X(𝜔) = x} ∈ 2Ω                        (1) 

is associated with a probability measure 𝑃: 2Ω ⟶ [0, 1]in the measure space(Ω, 2Ω, 𝑃) and 

then denotes the probability density function (pdf)𝑓 associated with the real-valued function 

(random variable) 𝑋 by 𝑓(𝑥), where 𝑓: X(Ω) ⟶ [0, 1]. 

Let𝛼 be an arbitrary but fixed point of a scalar field ℱ (𝑖. 𝑒 𝛼 ∈ ℱ), then we consider a 

continuous bijective function or transformationℎ𝛼: 𝑋( Ω) ⟶ Rdefine by 

ℎ𝛼(𝑥) = 𝑥
𝛼 ∀ 𝛼 ∈ 𝐷                    (2) 

If 𝑓ℎ𝛼is the function induced by ℎ𝛼 on 𝑓, thenwe denoted the probability density function (pdf) 

𝑔 associated with the real-valued function (random variable) ℎ𝛼 by 𝑓ℎ𝛼(𝑥); 𝑓ℎ𝛼is the 

probability density function induced by ℎ𝛼 on 𝑓 such that 

𝑔: X(Ω) = 𝑓ℎ𝛼: X(Ω) = 𝑓: ℎ𝛼(X(Ω)) ⟶ [0, 1]          (3) 

 

Remark 1.1 

(1). If 𝛼 = 0, then ℎ𝛼 (𝑖. 𝑒. ℎ0)reduces to a constant function. Hence at this point the domain 

of 𝑔 reduces to a singleton set which is not of interest (in terms of data transformations). 

 

(2). If 𝛼 = 1, then ℎ𝛼 (𝑖. 𝑒. ℎ1)reduces to a identity function so that 𝑔(𝑥) = 𝑓(𝑥) ∀ 𝑥 ∈ X(Ω). 

 

Hence in this research, we require that 𝛼 ≠ 0, as such we consider the following propositions: 

 

Proposition 1.2  

If  𝛼 ≤ −1, then 𝑔 is an inverse 𝛼-power transform of 𝑓. 

Proof. 

This easily follows from the fact thatℎ𝛼(𝑥) =
1

𝑥𝛼
 ∀ 𝛼 ≥ 1. 

Proposition 1.3  

If  𝛼 ≥ 1, then 𝑔 is an 𝛼-power transform of 𝑓. 
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Proof. 

This easily follows from the fact thatℎ𝛼(𝑥) = 𝑥
𝛼 ∀ 𝛼 ≥ 1. 

 

Proposition 1.4  

If  0 < 𝛼 < 1, thenthere exist a positive constant 𝑐 such that 𝑔 is a(𝑐 + 1)𝑡ℎ 𝑟𝑜𝑜𝑡 power 

transformation of 𝑓. 

 

Proof. 

If 0 < 𝛼 < 1, then it follows that
1

𝛼
> 1;⟹ 

1

𝛼
= 1 + 𝑐, for some 𝑐 > 0; 

⟹  𝛼 =
1

1+𝑐
, for some 𝑐 > 0, so thatℎ𝛼(𝑥) = 𝑥

1

1+𝑐 ∀ 𝑐 > 0 which is as stated. 

 

Proposition 1.5  

If −1 < 𝛼 < 0, thenthere exist a positive constant𝑐 such that 𝑔 is an inverse (𝑐 + 1)𝑡ℎ 𝑟𝑜𝑜𝑡 
power transform of 𝑓. 

 

Proof. 

If −1 < 𝛼 < 0, then it follows that 0 < −𝛼 < 1;⟹ 0 < 𝛽 < 1, where 𝛽 =–𝛼. Thus by 

proposition 1.4𝛽 =
1

1+𝑐
, for some 𝑐 > 0; 

⟹  𝛼 =
−1

1+𝑐
, for some 𝑐 > 0 which is as stated. 

 

Remark 1.6 

Now, observe in particular; 

(i) In proposition 1.2, if 𝛼 = −1,− 2, then 𝑔 is an inverse, inverse square, transform of 𝑓 

respectively. 

(ii)   In proposition 1.3, if 𝛼 = 1, 2, then 𝑔 is the identity, square, transform of 𝑓 

respectively. 

(iii)   In proposition 1.4, if 𝑐 = 1,⟹ 𝛼 = 1

2
, then 𝑔 is a square root transform of 𝑓. 

(iv)   In proposition 1.5, if 𝑐 = 1,⟹ 𝛼 = −1

2
, then 𝑔 is an inverse square root transform of 

𝑓. 
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The Left Truncated Normal Distribution 

Definition 2.1. Let 𝑋 be a random variable that follow a normal distribution with 𝜇(𝜇 ≠ 0) 
and variance 𝜎2(𝜎2 > 0)(𝑖. 𝑒. 𝑋~(𝜇, 𝜎2)) then the probability distribution function (𝑝𝑑𝑓)[15] 

is given by 

𝑓(𝑥; 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒
−1
2
(
𝑥−𝜇

𝜎
)
2

, 𝑥 ∈ 𝑅                  

(4) 

Lifetime data pertain to the lifetimes of units, either industrial or biological, an industrial or a 

biological unit cannot be in operation forever. Such a unit cannot continue to operate in the 

same condition forever. Any random variable is said to be truncated if it can be observed over 

part of its range. Truncation occurs in various situations. For example, right truncation occurs 

in the study of life testing and reliability of items such as an electronic component, light bulbs, 

etc. Left truncation arises because, in many situations, failure of a unit is observed only if it 

fails after a certain period (for more on this, see [1, 12] and the references therein). 

Unfortunately, often time in practice, the random variable 𝑋 which follow a N(𝜇, 𝜎2) 
distribution do not take values that are less than or equal to zero (𝑋 ≤ 0). As such, it naturally 

calls for one to truncate the 𝑝𝑑𝑓 in (4) to take care of the restriction of the random variable in 

the region X > 0 without alteration to the properties of the 𝑝𝑑𝑓. Hence we seek for such truncated 

normal distribution of 𝑓and then denote it by 𝑓𝑇. It suffices to find a constant 𝑀 such that 

∫ 𝑀𝑓(𝑥)𝑑𝑥
∞

0
= 1, where 𝑀 is the so-called normalizing constant and then define 𝑓𝑇(𝑥) =

𝑀𝑓(𝑥). 

Now, we solve for such 𝑀 by evaluating the integral ∫ 𝑓(𝑥)𝑑𝑥
∞

0
. Observe that If we take  𝑧 =

𝑥−𝜇

𝜎
, then 

∫ 𝑓(𝑥)𝑑𝑥

∞

0

= ∫
1

𝜎√2𝜋
𝑒
−1
2
(
𝑥−𝜇
𝜎 )

2

𝑑𝑥

∞

0

= ∫
1

√2𝜋
𝑒
−1
2
𝑧2𝑑𝑧

∞

−𝜇
𝜎

= Φ(
−𝜇

𝜎
) 

It then follows that  𝑀 =
1

Φ(
−𝜇

𝜎
)
. Hence, the left truncated normal distribution of 𝑓 is given by 

𝑓𝑇(𝑥; 𝜇, 𝜎) =
1

𝜎√2𝜋Φ(
−𝜇

𝜎
)
𝑒
−1
2
(
𝑥−𝜇

𝜎
)
2

, 𝑥 ∈ 𝑅+            (5) 

Observe that 0 ≤ 𝑓𝑇(𝑥; 𝜇, 𝜎) ≤ 1 ∀ 𝑥 ∈ 𝑅+ (𝑅+ = (0,∞)) and by the method of derivation of 

𝑓𝑇(𝑥; 𝜇, 𝜎), we have that ∫ 𝑓𝑇(𝑥; 𝜇, 𝜎)𝑑𝑥
∞

0
= 1. Thus 𝑓𝑇(𝑥; 𝜇, 𝜎) is a proper 𝑝𝑑𝑓. 

 

Distribution Associated with Truncated Normal Distribution under Arbitrary 𝜶-Power 

Transformation 

Let𝛼 be an arbitrary but fixed point of a scalar field ℱ (𝑖. 𝑒 𝛼 ∈ ℱ) andℎ𝛼(𝑥) = 𝑥
𝛼 ∀ 𝛼 ∈ ℱ as 

in equation (2). There is no loss of generality if we put 𝑦 = ℎ𝛼(𝑥) and 𝛼 = 𝑛; ⟹ 𝑦 = 𝑥𝑛. 

Hence by standard result in classical calculus [5], the transformed function 𝑔 induced by ℎ𝛼 on 
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𝑓 is given by 

𝑔(𝑦; 𝜇, 𝜎, 𝑛) = 𝑓𝑇(𝑥; 𝜇, 𝜎)| |
𝑑𝑥

𝑑𝑦
| |               (6) 

Where ||
𝑑𝑥

𝑑𝑦
||is the absolute value of the Jacobian (determinant) of the transformation [5]. If 

𝑦 = 𝑥𝑛, then 

𝑑𝑦 = 𝑛𝑥𝑛−1dx; ⟹ ||
𝑑𝑥

𝑑𝑦
|| =

1

|𝑛|𝑥𝑛−1
 

By substituting appropriately into equation (6) and simplifying, we have 

𝑔(𝑦; 𝜇, 𝜎, 𝑛) =

{
 
 

 
 

𝑦
1
𝑛
−1

|𝑛|𝜎√2𝜋Φ(
−𝜇

𝜎
)
𝑒

−1
2
(
𝑦
1
𝑛−𝜇

𝜎
)

2

, 𝑦 ∈ 𝑅+, 𝑛 ∈ ℱ.
.

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (7) 

It now remain to show that 𝑔(𝑦; 𝜇, 𝜎, 𝑛) given in equation (7) is a well-defined𝑝𝑑𝑓. It suffices 

to show that∫ 𝑔(𝑦; 𝜇, 𝜎, 𝑛)𝑑𝑦
∞

0
= 1. To see this we proceed as follows: 

 

∫ 𝑔(𝑦; 𝜇, 𝜎, 𝑛)𝑑𝑦

∞

0

= ∫
𝑦
1
𝑛
−1

|𝑛|𝜎√2𝜋Φ(
−𝜇
𝜎
)
𝑒

−1
2
(
𝑦
1
𝑛−𝜇
𝜎 )

2

𝑑𝑦

∞

0

= ∫ 𝐾𝑦
1
𝑛
−1𝑒

−1
2
(
𝑦
1
𝑛−𝜇
𝜎 )

2

𝑑𝑦

∞

0

;  𝐾

=  
1

|𝑛|𝜎√2𝜋Φ(
−𝜇
𝜎
)
 

Let 𝑢 = 𝑦
1

𝑛;  ⟹ 𝑑𝑦 = 𝑛𝑦1−
1
𝑛 du, substituting into the integral above gives 

∫ 𝐾𝑦
1
𝑛
−1𝑒

−1
2
(
𝑢−𝜇
𝜎 )

2

𝑛𝑦1−
1
𝑛du

∞

0

= ∫ 𝑛𝐾𝑒
−1
2
(
𝑢−𝜇
𝜎 )

2

du

∞

0

 

Let 𝑧 =  
𝑢−𝜇

𝜎
;⟹ 𝜎𝑑𝑧 = 𝑑𝑢, substituting into the integral above gives 

∫ 𝑛𝜎𝐾𝑒
−1
2
𝑧2dz

∞

−𝜇
𝜎

= ∫
1

√2𝜋Φ(
−𝜇
𝜎
)
𝑒
−1
2
𝑧2dz

∞

−𝜇
𝜎

= (
1

Φ(
−𝜇
𝜎
)
)(

1

√2𝜋
∫ 𝑒

−1
2
𝑧2dz

∞

−𝜇
𝜎

) =
Φ(

−𝜇
𝜎
)

Φ(
−𝜇
𝜎
)

= 1 

This is as required. 

 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 4, Issue 2, 2021 (pp. 101-116) 

106 Article DOI: 10.52589/AJMSS-4CEW6PBO 

  DOI URL: https://doi.org/10.52589/AJMSS-4CEW6PBO 

www.abjournals.org 

The 𝒋𝒕𝒉 Moment about the Mean and the Origin 

In this section, for all fixed 𝑛 ∈ 𝑅, we solved for the 𝑗𝑡ℎ moment of the random variable 𝑌 

about the mean 𝜇, which is also called the 𝑗𝑡ℎ central moment is defined as𝜇𝑗(𝜇, 𝜎, 𝑛) =

𝐸[(𝑌 − 𝜇)𝑗; 𝜇, 𝜎, 𝑛](𝜇𝑗(𝑛) for short). This implies that 

𝜇𝑗(𝑛) = ∫(𝑦 − 𝜇)
𝑗

𝑦
1
𝑛
−1

|𝑛|𝜎√2𝜋Φ(
−𝜇
𝜎
)
𝑒

−1
2
(
𝑦
1
𝑛−𝜇
𝜎

)

2

𝑑𝑦

∞

0

= ∫∑(−1)𝑗−𝑝 (
𝑗

𝑗 − 𝑝
) 𝜇𝑗−𝑝𝑦𝑝

𝑗

𝑝=0

𝑦
1
𝑛
−1

|𝑛|𝜎√2𝜋Φ(
−𝜇
𝜎
)
𝑒

−1
2
(
𝑦
1
𝑛−𝜇
𝜎 )

2

𝑑𝑦

∞

0

 

=∑(−1)𝑗−𝑝 (
𝑗

𝑗 − 𝑝
) 𝜇𝑗−𝑝

𝑗

𝑝=0

∫
𝑦𝑝+

1
𝑛
−1

|𝑛|𝜎√2𝜋Φ(
−𝜇
𝜎
)
𝑒

−1
2
(
𝑦
1
𝑛−𝜇
𝜎 )

2

𝑑𝑦

∞

0

 

 

= ∑ (−1)𝑗−𝑝 ( 𝑗
𝑗−𝑝
) 𝜇𝑗−𝑝

𝑗
𝑝=0 𝐸[𝑌𝑃; 𝜇, 𝜎, 𝑛]      (8) 

and we proceed to compute the 𝑝𝑡ℎ moment about the origin 𝐸[𝑌𝑃; 𝜇, 𝜎, 𝑛] which is given by 

𝐸[𝑌𝑃; 𝜇, 𝜎, 𝑛] = ∫ 𝑦𝑝
𝑦
1
𝑛
−1

|𝑛|𝜎√2𝜋Φ(
−𝜇
𝜎
)
𝑒

−1
2
(
𝑦
1
𝑛−𝜇
𝜎 )

2

𝑑𝑦

∞

0

= 𝐾∫ 𝑦𝑝+
1
𝑛
−1𝑒

−1
2
(
𝑦
1
𝑛−𝜇
𝜎 )

2

𝑑𝑦

∞

0

 

Let 𝑢 = 𝑦
1

𝑛;  ⟹ 𝑑𝑦 = 𝑛𝑦1−
1
𝑛 du, substituting into the integral above and simplifying, we have 

𝐾∫ 𝑦𝑝+
1
𝑛
−1𝑒

−1
2
(
𝑦
1
𝑛−𝜇
𝜎 )

2

𝑛𝑦1−
1
𝑛 du

∞

0

= 𝑛𝐾∫ 𝑢n𝑝𝑒
−1
2𝜎(

𝑢2−2𝑢+1) du

∞

0

= 𝑛𝐾𝑒
−1

2𝜎2∫ 𝑢n𝑝𝑒
−𝑢2

2𝜎2𝑒
𝑢

𝜎2  du

∞

0

= 𝑛𝐾𝑒
−1
2𝜎∫ 𝑢n𝑝𝑒

−𝑢2

2𝜎2 ∑
(
𝑢
𝜎2
)
𝑟

𝑟!

.

𝑟≥0

 du

∞

0

 

Observe that the series ∑
(
𝑢

𝜎2
)
𝑟

𝑟!
.
𝑟≥0  converges uniformly (by ratio test) [3,13], hence by Taylors 

series expansion, for some positive constant 𝑘 (sufficiently large enough) [3,13], there exists a 

number 𝛿(𝑟𝑘) between0 and 
𝑢

𝜎2
 such that 𝛿(𝑟𝑘) ⟶ 0as𝑟 ⟶ ∞, it then follows that as𝑟 ⟶ ∞ 

𝑛𝐾𝑒
−1

2𝜎2∫ 𝑢n𝑝𝑒
−𝑢2

2𝜎2 ∑(
1

𝑟!
(
𝑢

𝜎2
)
𝑟

+
1

𝑟!
(
𝑢

𝜎2
) (𝛿(𝑟𝑘))

𝑟

)

𝑘

𝑟=0

 du

∞

0
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can be approximated by 

𝑛𝐾𝑒
−1

2𝜎2∫ 𝑢n𝑝𝑒
−𝑢2

2𝜎2 ∑
1

𝑟!
(
𝑢

𝜎2
)
𝑟

𝑘

𝑟=0

 du

∞

0

= 𝑛𝐾𝑒
−1

2𝜎2∑
1

𝜎2𝑟𝑟!

𝑘

𝑟=0

∫ 𝑢r+n𝑝𝑒
−𝑢2

2𝜎2

∞

0

𝑑𝑢 

Let 𝑤 =
𝑢2

2𝜎2
;  ⟹ 𝜎2𝑑𝑤 = 𝑢𝑑𝑢, then substituting appropriately into the integral above and 

simplifying, we have 

𝑛𝐾𝑒
−1

2𝜎2 ∑
1

𝜎2𝑟𝑟!
𝑘
𝑟=0 𝜎2 ∫ 𝜎r+n𝑝−1(2𝑤)

r+n𝑝−1

2 𝑒−𝑤
∞

0
𝑑𝑢 =

𝑛𝐾𝑒
−1

2𝜎2 ∑
2
r+np−1

2

𝜎r−n𝑝−1𝑟!
𝑘
𝑟=0 ∫ 𝑤(

r+n𝑝+1

2
)−1𝑒−𝑤

∞

0
𝑑𝑢 =

𝑒
−1

2𝜎2 ∑
2
r+np+1

2

𝜎r𝑟!
𝑘
𝑟=n𝑝 Γ(

r+𝑛𝑝+1

2
)

2𝜎n𝑝+2√2𝜋Φ(
−𝜇

𝜎
)

  

Thus, 

𝐸[𝑌𝑃; 𝜇, 𝜎, 𝑛] =
𝑒
−1

2𝜎2 ∑
2
r+np+1

2

𝜎r𝑟!
𝑘
𝑟=⌊−𝑛𝑝⌋ Γ(

r+𝑛𝑝+1

2
)

2𝜎np+1√2𝜋Φ(
−𝜇

𝜎
)

                                                               (9) 

And 

𝜇𝑗(𝜇, 𝜎, 𝑛) = 𝐸[(𝑌 − 𝜇)
𝑗; 𝜇, 𝜎, 𝑛]

= ∑(−1)𝑗−𝑝 (
𝑗

𝑗 − 𝑝
) 𝜇𝑗−𝑝

𝑗−1

𝑝=0

𝐸[𝑌𝑃; 𝜇, 𝜎, 𝑛] +  𝐸[𝑌𝑗; 𝜇, 𝜎, 𝑛]

= ∑(−1)𝑗−𝑝 (
𝑗

𝑗 − 𝑝
) 𝜇𝑗−𝑝

𝑗−1

𝑝=0

𝑒
−1

2𝜎2 ∑
2
r+np+1

2

𝜎r𝑟!
𝑘
𝑟=⌊−𝑛𝑝⌋ Γ (

r + 𝑛𝑝 + 1
2

)

2𝜎n𝑝+2√2𝜋Φ(
−𝜇
𝜎
)

+ 
𝑒
−1

2𝜎2 ∑
2
r+jn+1
2

𝜎r𝑟!
𝑘
𝑟=⌊−𝑗𝑛⌋ Γ (

r + j𝑛 + 1
2

)

2𝜎𝑗𝑛+2√2𝜋Φ(
−𝜇
𝜎
)

 

= ∑ (−1)𝑗−𝑝 ( 𝑗
𝑗−𝑝
) 𝜇𝑗−𝑝

𝑗
𝑝=0

𝑒
−1

2𝜎2 ∑
2
r+np+1

2

𝜎r𝑟!
𝑘
𝑟=⌊−𝑛𝑝⌋ Γ(

r+𝑛𝑝+1

2
)

2𝜎n𝑝+2√2𝜋Φ(
−𝜇

𝜎
)

                              (10) 

 

where ⌊𝑥⌋ is the greatest integer function less than 𝑥. 

 

It is important to observe that in particular, in equation (9),if we take𝑛 = −1, then 𝑔 is an 

inverse transform of 𝑓 and by putting 𝑘 = 7, 𝜇 = 1 and evaluating𝐸[𝑌𝑃;  1, 𝜎, −1] at 𝑝 = 1, 2 

respectively, we obtain the result in [8]. 
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Remark 4.1 Furthermore observe that: 

(1). Iwueze (2007), for𝜇 = 1, 𝑛 = 1,the authors expressed𝐸[𝑌] in terms of cumulative 

distribution function of the standard normal distribution and 𝐸[(𝑌 − 1)2]in terms of 

cumulative distribution function of the standard normal distribution and Chi-square distribution 

function. 

 

(2). Nwosu, Iwueze and Ohakwe (2010), for 𝜇 = 1, 𝑛 = −1,the authors expressed 𝐸[𝑌]and 

𝐸[(𝑌 − 1)2]in terms of cumulative distribution function of the standard normal distribution 

and Gamma distribution function. 

 

(3). Ohakwe, Dike and Akpanta (2012), for 𝜇 = 1, 𝑛 = 2,the authors expressed𝐸[𝑌]and 

𝐸[(𝑌 − 1)2]in terms of cumulative distribution function of the standard normal distribution. 

 

(4). Nwosu, Iwueze, and Ohakwe. (2013), for 𝜇 = 1, 𝑛 = −1,the authors expressed𝐸[𝑌]and 

𝐸[(𝑌 − 1)2]in terms of cumulative distribution function of the standard normal distribution 

and Chi-square distribution function. 

 

(5). Ibeh and Nwosu (2013), for 𝜇 = 1, 𝑛 = −2,the authors expressed𝐸[𝑌]and 𝐸[(𝑌 − 1)2]in 

terms of cumulative distribution function of the standard normal distribution and Chi-square 

distribution function. 

 

(6). Ajibade, Nwosu and Mbaegbu (2015), for 𝜇 = 1, 𝑛 =
−1

2
,the authors expressed𝐸[𝑌]and 

𝐸[(𝑌 − 1)2]in terms of cumulative distribution function of the standard normal distribution 

and Chi-square distribution function. 

 

Hence, it suffices to say that the expression for the moments is by no means unique. 

Furthermore, the aforementioned authors above seems to be somewhat restrictive in their 

estimation of moments; they all estimated only for the first moment about the origin (mean) 

and the second central moment (variance). Hence, in this paper such restriction is dispensed 

with. 

 

 

 

 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 4, Issue 2, 2021 (pp. 101-116) 

109 Article DOI: 10.52589/AJMSS-4CEW6PBO 

  DOI URL: https://doi.org/10.52589/AJMSS-4CEW6PBO 

www.abjournals.org 

The Moment Generating Function Associated with 𝒈(𝒚; 𝝁, 𝝈, 𝒏) and 𝒇𝑻(𝒙; 𝝁, 𝝈) 

The moment generating function of 𝑌 is given by 

𝑀𝑌(𝑡; 𝜇, 𝜎, 𝑛) = 𝐸(𝑒
𝑡𝑌; 𝜇, 𝜎, 𝑛) = ∫ 𝑒𝑡𝑦𝑔(𝑦; 𝜇, 𝜎, 𝑛)𝑑𝑦

∞

0

= ∫∑
(𝑡𝑦)𝑖

𝑖!

.

𝑖≥0

𝑔(𝑦; 𝜇, 𝜎, 𝑛)𝑑𝑦

∞

0

 

Observe that the series ∑
(𝑡𝑦)𝑖

𝑖!
∞
𝑟=0  converges uniformly (by ratio test) [3,13], hence by Taylors 

series expansion, for some positive constant 𝑙 (sufficiently large enough), there exists a number 

𝜌(𝑖𝑙) between 0 and 𝑡𝑦 such that 𝜌(𝑖𝑙) ⟶ 0 as𝑖 ⟶ ∞ [3,13], it then follows that as𝑖 ⟶ ∞ 

∫∑(
1

𝑖!
(𝑡𝑦)𝑖 +

1

𝑖!
(𝑡𝑦)(𝜌(𝑖𝑙))

𝑖)

𝑘

𝑖=0

𝑔(𝑦; 𝜇, 𝜎, 𝑛)𝑑𝑦

∞

0

 

can be approximated by 

∫∑
1

𝑖!
(𝑡𝑦)𝑖

𝑙

𝑖=0

𝑔(𝑦; 𝜇, 𝜎, 𝑛)𝑑𝑦

∞

0

=∑
𝑡𝑖

𝑖!

𝑙

𝑖=0

∫ 𝑦𝑖𝑔(𝑦; 𝜇, 𝜎, 𝑛)𝑑𝑦

∞

0

 

=∑
𝑡𝑖

𝑖!

𝑙

𝑖=0

∫
𝑦i+

1
𝑛
−1

|𝑛|𝜎√2𝜋Φ(
−𝜇
𝜎
)
𝑒

−1
2
(
𝑦
1
𝑛−𝜇
𝜎 )

2

𝑑𝑦

∞

0

=∑
𝑡𝑖

𝑖!

𝑙

𝑖=0

𝐸[𝑌𝑖; 𝜇, 𝜎, 𝑛] 

=∑
𝑡𝑖

𝑖!

𝑙

𝑖=0

𝑒
−1

2𝜎2 ∑
2
r+n𝑖+1
2

𝜎r𝑟!
𝑘
𝑟=⌊−𝑛𝑖⌋ Γ (

r + 𝑛𝑖 + 1
2

)

2𝜎n𝑖+2√2𝜋Φ(
−𝜇
𝜎
)

 

For the moment generating function of𝑋, recall that at 𝑛 = 1, 𝑦 = 𝑥, it follows that 

𝑔(𝑦; 𝜇, 𝜎, 1) = 𝑓𝑇(𝑥; 𝜇, 𝜎). Hence 

𝑀𝑌(𝑡; 𝜇, 𝜎, 1) = ∫ 𝑒𝑡𝑦𝑔(𝑦; 𝜇, 𝜎, 1)𝑑𝑦

∞

0

= ∫ 𝑒𝑡𝑥𝑓𝑇(𝑥; 𝜇, 𝜎)𝑑𝑥

∞

0

 

= 𝐸(𝑒𝑡𝑋;  𝜇, 𝜎) = 𝑀𝑋(𝑡;  𝜇, 𝜎) = ∑
𝑡𝑖

𝑖!

𝑙
𝑖=0

𝑒
−1

2𝜎2 ∑
2
r+𝑖+1
2

𝜎r𝑟!
𝑘
𝑟=⌊−𝑖⌋ Γ(

r+𝑖+1

2
)

2𝜎𝑖+2√2𝜋Φ(
−𝜇

𝜎
)

              

(11) 
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Existence of the Bell-Shape Curve Associated with 𝒈(𝒚; 𝝁, 𝝈, 𝒏) and 𝒇𝑻(𝒙; 𝝁, 𝝈) 

Recall that𝑓𝑇(𝑥; 𝜇, 𝜎), the left truncated normal distribution of 𝑓, which is given by 

𝑓𝑇(𝑥; 𝜇, 𝜎) =
1

𝜎√2𝜋Φ(
−𝜇
𝜎
)
𝑒
−1
2
(
𝑥−𝜇
𝜎
)
2

, 𝑥 ∈ 𝑅+ 

is normal distribution in the region 𝑋 > 0 with mean 𝜇1(𝜇, 𝜎, 1)and variance 𝜇2(𝜇, 𝜎, 1), where 

𝜇1(𝜇, 𝜎, 1) =  
𝑒
−1

2𝜎2 ∑
2
r+2
2

𝜎r𝑟!
𝑘
𝑟=⌊−𝑗𝑛⌋ Γ (

r + 2
2
)

2𝜎3√2𝜋Φ(
−𝜇
𝜎
)

 

𝜇2(𝜇, 𝜎, 1) = ∑(−1)2−𝑝 (
2

2 − 𝑝
) 𝜇2−𝑝

2

𝑝=0

𝑒
−1

2𝜎2 ∑
2
r+𝑝+1
2

𝜎r𝑟!
𝑘
𝑟=⌊−𝑝⌋ Γ (

r + 𝑝 + 1
2

)

2𝜎𝑝+2√2𝜋Φ(
−𝜇
𝜎
)

 

If we denote this mean and variance of the truncated normal distribution 𝑓𝑇(𝑥; 𝜇, 𝜎) by 𝜇𝑇 and 

𝜎𝑇
2 (i.e. 𝜇𝑇 = 𝜇1(𝜇, 𝜎, 1)and 𝜎𝑇

2 = 𝜇2(𝜇, 𝜎, 1)). It is well known that the shape of 𝑓𝑇(𝑥;  𝜇, 𝜎) 
varies as the value of 𝜎𝑇

2 varies (consequently as 𝜎 varies since 𝜎𝑇
2 depend on 𝜎), hence 𝜎 is 

also the shape parameter for 𝑓𝑇(𝑥;  𝜇, 𝜎). 

Also recall that 𝑔(𝑦; 𝜇, 𝜎, 𝑛), the generalized power transformation of 𝑓𝑇(𝑥; 𝜇, 𝜎), which is 

given by 

𝑔(𝑦; 𝜇, 𝜎, 𝑛) =

{
 
 

 
 

𝑦
1
𝑛
−1

|𝑛|𝜎√2𝜋Φ(
−𝜇
𝜎
)
𝑒

−1
2
(
𝑦
1
𝑛−𝜇
𝜎 )

2

, 𝑦 ∈ 𝑅+, 𝑛 ∈ ℱ.

.
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Is normal distribution in the region 𝑋 > 0 with mean 𝜇1(𝜇, 𝜎, 𝑛)and variance 𝜇2(𝜇, 𝜎, 𝑛), 
where 

      𝜇1(𝜇, 𝜎, 𝑛) =  
𝑒
−1

2𝜎2 ∑
2
r+jn+1

2

𝜎r𝑟!
𝑘
𝑟=⌊−𝑗𝑛⌋ Γ(

r+j𝑛+1

2
)

2𝜎𝑗𝑛+2√2𝜋Φ(
−𝜇

𝜎
)

                                                                      

(12) 

𝜇2(𝜇, 𝜎, 𝑛) = ∑ (−1)2−𝑝 ( 2
2−𝑝

) 𝜇2−𝑝2
𝑝=0

𝑒
−1

2𝜎2 ∑
2
r+n𝑝+1

2

𝜎r𝑟!
𝑘
𝑟=⌊−𝑛𝑝⌋ Γ(

r+𝑛𝑝+1

2
)

2𝜎n𝑝+2√2𝜋Φ(
−𝜇

𝜎
)

                     

(13) 

 

If we denote this mean and variance of the generalized 𝑛-power transform of 𝑓𝑇(𝑥; 𝜇, 𝜎) by 

𝜇𝑇(𝑛) and 𝜎𝑇
2(𝑛) (i.e. 𝜇𝑇(𝑛) = 𝜇1(𝜇, 𝜎, 𝑛)and𝜎𝑇

2(𝑛) = 𝜇2(𝜇, 𝜎, 𝑛)). It follows that for every 
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fixed 𝑛 ∈ 𝑅, the shape of 𝑔(𝑦; 𝜇, 𝜎, 𝑛)varies as the value of 𝜎𝑇
2(𝑛) varies (consequently as 𝜎 

varies since𝜎𝑇
2(𝑛) depend on 𝜎), hence 𝜎 is also the shape parameter for 𝑔(𝑦; 𝜇, 𝜎, 𝑛). Observe 

that. 𝜇𝑇(1) = 𝜇1(𝜇, 𝜎, 1) = 𝜇𝑇 and 𝜎𝑇
2(1) = 𝜇2(𝜇, 𝜎, 1) = 𝜎𝑇

2. 

 

Now, we observe that𝜎𝑇
2(𝑛) (and 𝜎𝑇

2) depend on 𝜎. A common research interest of several 

authors (see [2,6-11,14 ] ) is to find the value of 𝜎 for which 𝜇𝑇(1) = 𝜇𝑇(𝑛) for every fixed 

𝑛 ≠ 1 (𝑛 ∈ 𝑅). This is the so-called normality condition. Furthermore, it is expected that at 

this point 𝜎𝑇
2(1) = 𝜎𝑇

2(𝑛) for every fixed 𝑛 ≠ 1 (𝑛 ∈ 𝑅). Observe that𝑔(𝑦; 𝜇, 𝜎, 𝑛) and 

𝑓𝑇(𝑥; 𝜇, 𝜎)are strictly monotone and have one turning point, furthermore 𝑔(𝑦; 𝜇, 𝜎, 𝑛) > 0 and 

𝑓𝑇(𝑥; 𝜇, 𝜎) > 0 for every 𝑥, 𝑦 ∈ 𝑅+, 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑛 ∈ ℱ.. Which implies that the values 

of𝑥, 𝑦 at these turning points maximizes 𝑓𝑇(𝑥; 𝜇, 𝜎), 𝑔(𝑦; 𝜇, 𝜎, 𝑛) respectively. Consequently, 

by classical calculus, it is well known that these values of 𝑥, 𝑦 at this turning point coincide 

with the mode of 𝑓𝑇(𝑥; 𝜇, 𝜎), 𝑔(𝑦; 𝜇, 𝜎, 𝑛) respectively. We shall determine this values of𝑥, 𝑦 

using the Rolle's theorem. Now we state the following theorem which is equivalent to the (so-

called) normality condition. 

 

Theorem 6.1 

Let 𝑓𝑇(𝑥; 𝜇𝑇 , 𝜎𝑇
. ) be a truncated normal distribution and 𝑔(𝑦; 𝜇𝑇(𝑛),  𝜎𝑇

. (𝑛0), 𝑛0) the 

generalized 𝑛0-power transformation of 𝑓𝑇(𝑥; 𝜇𝑇, 𝜎𝑇
. ) induced by 𝑦 = 𝑥𝑛0 , then 

𝑔(𝑦; 𝜇𝑇(𝑛0), 𝜎𝑇
. (𝑛0), 𝑛0) has a Bell-shape that coincide with𝑓𝑇(𝑥; 𝜇𝑇 , 𝜎𝑇

. ) if there exists a 

sequence {𝜎𝑗}𝑗=1
∞

⊂ (𝛽1, 𝛽2) ⊂ 𝑅+ and at least one point 𝜎0 ∈ (𝛽1, 𝛽2) such that the {𝜎𝑗}𝑗=1
∞

 

converges to 𝜎0 ∈ (𝛽1, 𝛽2) (i.e. 𝜎𝑗 ⟶ 𝜎0 𝑎𝑠 𝑗 ⟶ ∞) and 𝜎0 is a zero solution to the problem 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑔(𝑦; 𝜇𝑇(𝑛0), 𝜎𝑇
. (𝑛0), 𝑛0)                       

(14) 

𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡: 𝑦 = 𝑥0                                        

(15) 

provided,  𝑓𝑇(𝑥; 𝜇𝑇, 𝜎𝑇
. ) ≤ 𝑓𝑇(𝑥0; 𝜇𝑇, 𝜎𝑇

. ) ∀ 𝑥 ∈ 𝑅+. 

 

Proof. 

Observe that 𝑓𝑇(𝑥; 𝜇𝑇, 𝜎𝑇
. ) is bounded above and continuous, hence by boundedness above, it 

follows there exist a positive constant 𝐶 such that 

𝑓𝑇(𝑥; 𝜇𝑇 , 𝜎𝑇
. ) ≤ 𝐶 ∀ 𝑥 ∈ 𝑅+ 

and by continuity in 𝑅+, it follows that there exists a constant𝑢0 ∈ 𝑅+such that 𝐶 =
𝑆𝑢𝑝𝑓𝑇(𝑢0; 𝜇𝑇, 𝜎𝑇

. ), hence we must have  𝑢0 = 𝑥0. This justisfy the existence of such 𝑥0. 
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Hence the problem is equivalent to 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑔(𝑦; 𝜇𝑇(𝑛0), 𝜎𝑇
. (𝑛0), 𝑛0)                       (16) 

𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡: 𝑦 = 𝑢0                         (17) 

Now, suppose for contradiction that there is no such 𝜎 ∈ 𝑅+ (recall that 

𝜎𝑇
.  𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝜎, 𝑖. 𝑒. 𝜎𝑇

.  𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝜎) that satisfies the maximization problem. This 

implies that for every 𝜎 ∈ 𝑅+, the maximization problem becomes 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑔(𝑦; 𝜇𝑇(𝑛0), 𝜎𝑇
. (𝑛0), 𝑛0)               (18) 

𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡: 𝑦 ≠ 𝑢0                                   (19) 

If 𝑦 ≠ 𝑢0, it implies that there is an 𝜀 ≠ 0 such that 𝑦 = 𝑢0 ± 𝜀, hence the 

maximization problem becomes 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑔(𝑦; 𝜇𝑇(𝑛0), 𝜎𝑇
. (𝑛0), 𝑛0)                     (20) 

𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡: 𝑦 = 𝑢0 ± 𝜀                              (21) 

It then follows that 

𝐶 = 𝑆𝑢𝑝{𝑓𝑇(𝑢0 ± 𝜀; 𝜇𝑇, 𝜎𝑇
. ): ∀ 𝜀 ≠ 0} ⟹ ⟸. 

Observe that this is a contradiction to the maximality of 𝐶 at 𝑢0since 𝜀 ≠ 0. And converly, if 

the maximality conditionof 𝐶 holds, it 

⟹ {𝑓𝑇(𝑢0 ± 𝜀; 𝜇𝑇, 𝜎𝑇
. ): ∀ 𝜀 ≠ 0} < 𝐶 

⟹ 𝑓𝑇(𝑢0; 𝜇𝑇, 𝜎𝑇
. ) ≤ 𝐶𝑓𝑜𝑟𝜀 = 0 

⟹ 𝑆𝑢𝑝𝑓𝑇(𝑢0; 𝜇𝑇 , 𝜎𝑇
. ) = 𝐶 

This contradict the fact that 𝜀 ≠ 0. 

Thus we must have that there is at least one 𝜎 ∈ 𝑅+ (for such 𝜎 ∈ 𝑅+, 𝜀 = 0) that satisfies the 

maximization problem. This completes the proof. 

 

We now proceed to solve the maximization problem of equation (16) and equation (17) which 

is equivalent to the maximization problem of equation (14) and equation (15). 

Clearly 𝑔(𝑦; 𝜇𝑇(𝑛0), 𝜎𝑇
. (𝑛0), 𝑛0)is differentiable in the given subset 𝐷 of 𝑅+ and by classical 

optimization theory of calculus, a necessary condition for existence of maximum (extreme) 

point of 𝑔(𝑦; 𝜇𝑇(𝑛0), 𝜎𝑇
. (𝑛0), 𝑛0)is that the derivatives of 𝑔(𝑦; 𝜇𝑇(𝑛0), 𝜎𝑇

. (𝑛0), 𝑛0)must be 

equal to zero [3,13,15]. This implies that 

𝑑𝑔(𝑦;𝜇𝑇(𝑛0),𝜎𝑇
. (𝑛0),𝑛0)

𝑑𝑦
= 0                      (22) 

We now proceed to solve for equation (22). Observe that 
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𝑑𝑔(𝑦;𝜇𝑇(𝑛0),𝜎𝑇
. (𝑛0),𝑛0)

𝑑𝑦
= 𝐾

[
 
 
 
 

( 1

𝑛0
−1) 𝑦

1
𝑛0
−2
𝑒

−1
2
(
𝑦

1
𝑛0−𝜇

𝜎
)

2

−

𝑦
2
𝑛0
−2 1

𝑛0
(
𝑦
1
𝑛0−𝜇

𝜎2
)𝑒

−1
2
(
𝑦

1
𝑛0−𝜇

𝜎
)

2

]
 
 
 
 

=𝐾𝑦
1
𝑛0
−2
𝑒

−1
2
(
𝑦

1
𝑛0−𝜇

𝜎
)

2

[( 1

𝑛0
−1) − 𝑦

1
𝑛0

1

𝑛0
(
𝑦
1
𝑛0−𝜇

𝜎2
)] 

By equation (22) it follows that 

𝐾𝑦
1
𝑛0
−2
𝑒

−1
2
(
𝑦
1
𝑛0−𝜇
𝜎 )

2

[(
1

𝑛0
−1) − 𝑦

1
𝑛0
1

𝑛0
(
𝑦
1
𝑛0 − 𝜇

𝜎2
)] = 0. 

Since 

𝐾𝑦
1
𝑛0
−2
𝑒

−1
2
(
𝑦

1
𝑛0−𝜇

𝜎
)

2

> 0 ∀ 𝑦 ∈ 𝑅+

, we must have that 

(
1

𝑛0
−1) − 𝑦

1
𝑛0
1

𝑛0
(
𝑦
1
𝑛0 − 𝜇

𝜎2
) = 0 

By simplifying the above equation we have 

𝜎2(1 − 𝑛0) − 𝑦
2
𝑛0 + 𝜇𝑦

1
𝑛0 = 0 

Now if we take 𝑣 = 𝑦
1

𝑛0, we obtain 

𝑣2 − 𝜇𝑣 − 𝜎2(1 − 𝑛0) = 0                

(23) 

and if we take 𝑣 = 𝑦
−1

𝑛0, we obtain 

𝜎2(1 − 𝑛0)𝑣
2 + 𝜇𝑣 − 1 = 0                  

(24) 

Thus, the solution to equation (23) and equation (24) is given by 

𝑣 = {

𝜇±√𝜇2−4𝜎2(𝑛0−1)

2

𝜇±√𝜇2−4𝜎2(𝑛0−1)

2𝜎2(𝑛0−1)

                     

(25) 

where (
𝜇

2𝜎
)
2
> 𝑛0 − 1. 
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Solutions relating to equation (24) have been given by virtually all the authors mentioned above 

for specific value of 𝑛0and 𝜇. Using equation (23), we have that 𝑣 = 𝑦𝑚𝑎𝑥

1

𝑛0 . Now, by equation 

(17) it follows that 𝑢0 = 𝑦𝑚𝑎𝑥 = 𝜇. Thus, 

𝑣2 − 𝑢0𝑣 − 𝜎
2(1 − 𝑛0) = 0 𝑖𝑓𝑣 = 𝑢0

1
𝑛0 

And 

𝜎2(1 − 𝑛0)𝑣
2 + 𝑢0𝑣 − 1 = 0 𝑖𝑓𝑣 = 𝑢0

−1
𝑛0  

If we put𝑧0 = 𝑢0
1

𝑛0  and 𝑤0 = 𝑢0
−1

𝑛0, then we have 

𝐺(𝜎) = 0;  𝐺(𝜎) = 𝑧0
2 − 𝑢0𝑧0 + 𝜎

2(𝑛0 − 1) 

And 

𝐻(𝜎) = 0;  𝐻(𝜎) = −𝜎2(𝑛0 − 1)𝑤0
2 + 𝑢0𝑤0 − 1 

This reduces to solving for the zero of the functions 𝐺(𝜎)and 𝐻(𝜎). 

For 𝐺(𝜎), this implies that given0 ≤ 𝛿1 < 𝛿2, if we take 𝜎𝑎 = √
𝑢0𝑧0−𝑧0

2−𝛿1

𝑛0−1
 and 𝜎𝑏 =

√
𝑢0𝑧0−𝑧0

2+𝛿2

𝑛0−1
, then 𝐺 (√

𝑢0𝑧0−𝑧0
2−𝛿1

𝑛0−1
) = −𝛿1 ≤ 0 and 𝐺 (√

𝑢0𝑧0−𝑧0
2+𝛿2

𝑛0−1
) = 𝛿2 > 0 

It follows that 

𝐺 (√
𝑢0𝑧0 − 𝑧0

2 − 𝛿1
𝑛0 − 1

)𝐺 (√
𝑢0𝑧0 − 𝑧0

2 + 𝛿2
𝑛0 − 1

) = −𝛿1𝛿2 < 0 𝑖𝑓𝛿1 ≠ 0 

This implies that there exists a sequence {𝜎𝑗}𝑗=1
∞

⊂ (𝜎𝑎, 𝜎𝑏) and at least one point 𝜎0 ∈

(𝜎𝑎, 𝜎𝑏) such that the {𝜎𝑗}𝑗=1
∞

 converges to 𝜎0 ∈ (𝜎𝑎, 𝜎𝑏) (i.e. 𝜎𝑗 ⟶ 𝜎0𝑎𝑠𝑗 ⟶ ∞) and 𝐺(𝜎0) =

0 

For 𝐻(𝜎), this implies that given𝛾1 = 0 𝑎𝑛𝑑𝛾2 > 0, if we take𝜎𝑝 = √
(𝑢0𝑤0+𝛾1)

(𝑛0−1)𝑤0
2 and 𝜎𝑞 =

√
(𝑢0𝑤0+𝛾2)

(𝑛0−1)𝑤0
2, then 𝐻 (√

(𝑢0𝑤0+𝛾1)

(𝑛0−1)𝑤0
2) = −1 < 0 and 𝐻 (√

(𝑢0𝑤0−1−𝛾2)

(𝑛0−1)𝑤0
2 ) = 𝛾2 > 0 

It follows that 

𝐻(√
𝑢0𝑤0 + 𝛾1
(𝑛0 − 1)𝑤0

2
)𝐻(√

𝑢0𝑤0 − 1 − 𝛾2
(𝑛0 − 1)𝑤0

2
) = −𝛾2 < 0 
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This implies that there exists a sequence {𝜎𝑖}𝑖=1
∞ ⊂ (𝜎𝑝, 𝜎𝑞) and at least one point 𝜎0 ∈ (𝜎𝑝, 𝜎𝑞) 

such that the sequence {𝜎𝑖}𝑖=1
∞  converges to 𝜎0 ∈ (𝜎𝑝, 𝜎𝑞) (i.e. 𝜎𝑖 ⟶ 𝜎0𝑎𝑠𝑖 ⟶ ∞) and 

𝐻(𝜎0) = 0 [1]. This completes the proof. 

(𝜎𝑎, 𝜎𝑏) and (𝜎𝑝, 𝜎𝑞) are intervals of normality corresponding to equation (23) and equation 

(24). This is the so-called interval of normality estimated by above mentioned authors using 

the Monte carol simulation method. 

Furthermore, it follows from equation (25), that we can define the functions 𝐺 and 𝐻 as such 

𝐺(𝜎) =  𝜇 − 2𝑧0 +√𝜇
2 − 4𝜎2(𝑛0 − 1)         

 (26) 

𝐻(𝜎) =  𝜇 − 2𝜎2(𝑛0 − 1)𝑤0 +√𝜇
2 − 4𝜎2(𝑛0 − 1)  

 (27) 

Also, equation (26) and equation (27) are nonlinear problems of finding the zero(s) of 𝐺 and 

𝐻for every given value of 𝜇, which can be solved using any of the iteration formula for finding 

the zero(s) (i.e. root) of a nonlinear equations [4]. 

 

CONCLUSION  

Having considered various transformation problems for a left-truncated normal distribution as 

announced by these researchers in the literature, particularly for a random variable that follows 

a left-truncated normal distribution, we obtained the probability distribution function of 

𝑔(𝑦; 𝜇, 𝜎, 𝑛), called the generalized power transformation of 𝑓𝑇(𝑥; 𝜇, 𝜎), which is a generic 

form of all the distributions studied by above mentioned researchers. Also, moments associated 

with the distribution are similarly obtained, as denoted by 𝜇1(𝜇, 𝜎, 𝑛)  and 𝜇2(𝜇, 𝜎, 𝑛). In 

particular, in equation (25), if we take 𝜇 = 1, 𝑛 = 𝑛0 = −2,
−1

2
; as assumed by the authors in 

[6, 9] for a multiplicative time series model, we obtain the corresponding expressions for their 

𝑦𝑚𝑎𝑥 respectively. Furthermore, we employed the concept of approximation theory to establish 

the existence of 𝑦𝑚𝑎𝑥 in the interval  (𝜎𝑎, 𝜎𝑏) ((𝜎𝑝, 𝜎𝑞)) corresponding to equation (23) and 

equation (24). This is the so-called interval of normality estimated by above mentioned authors 

using the Monte carol simulation method. Thus, the results presented in this research, actually 

unify and as well trivialized the results recently since particularly as we varies the value of 𝑛 

in 𝑔(𝑦; 𝜇, 𝜎, 𝑛) we obtain the corresponding results of the above named researcher. 
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