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ABSTRACT: The work constructed a modified central composite 

design from a rotatable central composite design augmented with 

seven center points adapted from the work of Wu and Li (2002). 

The comparison of the robustness of the CCD and MCCD to 

missing observation was investigated at various design points of 

factorial, axial and center points’ when the model is non-standard, 

using A-efficiency and the Losses associated. The results of the 

evaluations of the designs to missing observations are presented, 

and the MCCD is shown to be more A-optimal while the CCD is 

more robust and relatively A-efficient to a missing observation.  
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INTRODUCTION 

Many experimenters are saddled with the investigation of fitting the input and output 

relationship in an experiment, when some observations of the experimental unit may not be 

available due to unexplainable situations. These unexplainable situations may occur due to a 

number of reasons, which may include, but not limited to natural causes, man-made causes or 

machine error, etc. These may result in missing observations or incomplete data; Subramani 

(2004) and Ahmed L. A. (2016) calls it non-orthogonal data. Missing observations could 

grossly affect the statistical power of a test. Several methods had been proposed to handle 

missing observations in a project, these include substitution, the use of robust statistics, robust 

design methods etc. (Wallin 2009; Iwundu 2017).  

This study is focused on how experimental design may be robust when an observation is 

missing using the concept of A-efficiency and the loss principle therefrom. The literatures on 

robustness in missing observations are replete, these can be seen in the works of Akhtar and 

Prescott (1986) that applied the minimax loss criterion in the evaluation and generation of 

CCDs, which was further used to generate 26 runs on the four factor classical CCDs. Taguchi 

et. al (2000) opines that robust designs enable engineers to efficiently gather technological 

information required to produce high quality, low-cost products, when some observations are 

not in place. Gremyr (2005) used the term robust design methodology (RDM) to mean the 

systematic efforts to achieve insensitivity to noise factors when some observations are missing. 

Furthermore, the effect of missing observations on predictive capability of central composite 

design was studied by Yakubu et.al. (2014). They concluded that the precision of the model 

estimates and design prediction properties were adversely affected when an observation is 

missing. Smucker et. al (2017) opine that optimal designs fared better than classical designs in 

terms of robustness when some design points are missing. Alrweili et. al (2019) worked on the 

‘robustness of response surface designs to missing data’ where minimax loss response surface 

designs are constructed, which turned out to be more robust than the original designs,  

The identification and removal of one or more observations in a design measure, which may 

not effectively contribute to the performance of a project was handled extensively in the work 

of Iwundu (2017) with the help of the Hat Matrix. Akram (2002) also utilized the hat matrix to 

study the robustness of CCDs when some observations are missing. 

Rotatability in designs as a concept was introduced by Box and Hunter (1957), and its unique 

property is that the variances estimate of the response are at points equidistant from the center 

of the design. Das and Narasimham (1962) constructed a rotatable design from a Balance 

incomplete block design (BIBD). 

Experimental models are the heartbeat of every project, as they help the researcher to extract 

experimental data for analysis and such a model is always assumed prior to the commencement 

of an experiment. Therefore, this study opted for the second-order non-standard polynomial 

model, but in practice the second-order standard polynomial model is the most preferred model 

in most projects, however, not all the terms in the standard second-order model maybe 

statistically significant, resulting in the removal of some parameter of a standard model. The 

model that is generated as a result of the removal of some parameters in a standard model is 

called a non-standard model (Myers et. al 2009; Iwundu 2018; Iwundu and Jaja 2017; Alrweili 

et. al 2019). 
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The general form of a second-order response surface model is normally presented as  
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Where y is the response surface and ix
 are the input variables and iaa ,0 are the linear regression 

parameters while ija
 are the interaction parameters, iia

are the quadratic parameters and is the 

stochastic error term. Furthermore, the second-order model is normally used to fit a central 

composite design (CCD), which was introduced by Box and Wilson (1951). Now for a k- 

factorial central composite design is composed of full or fractional factorial design (
pkk or −22

) coded as +1 and -1, axial portion made up of k2  points, such that each coordinate axis has 

two points  at a distance from the design center and cn
center point at the origin of the design. 

The total number of design points associated with a CCD is caf nnnn ++=
 

The analysis of this study is done with the aid of the A-optimality criterion. Smucker et. al 

(2017) opine that the A-optimality criterion is used to minimize the average prediction variance 

across a design surface, which is a way of assessing the design capability to estimate the 

underlying model. The A-optimality minimizes the trace of the covariance matrix; an A-

optimal criterion is that which 

1)(min −XXtrace T           1.2 

This work will build a modified central composite design from the rotatable central composite 

design with the aid of the leveraging capability of the hat-matrix. The primary aim of this study 

is to use the A-efficiency and its loss principle to compare the performance of the central 

composite design and the modified central composite design when an observation is missing.  

 

MATERIALS AND METHODS 

Consider a second order non-linear response surface model in k variables and n design points 

shown in equation 1.1 above, which may be expressed as: 

−−−
+= AXY

         2.1 

Where Y is the 1n response vector, X is the pn model matrix, A is the 1p  vector of 

parameters, and −


is the 1n vector of random error assumed to have zero mean and constant 

variance 
2 . 

Based on the regression model in eqn 2.1 the standard least square estimate of the parameter A 

is given as  

yXXXA TT )(ˆ =
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Such that the fitted model of the response variable Y  is  

HyyXXXXAXY TT === )(ˆˆ
        2.2 

This is used to estimate the response variable at any point in the design region. Where 

}{ ijhH =
 is the hat matrix and its diagonal elements are the leverage values of the design with 

the property that trace value of the hat matrix is the number of the model parameters.  

The A- optimality is geared to improve the precision of the estimates of the model parameters 

by minimizing the trace of the variance-covariance matrix. This is expressed in the form 

1)(min −XXtrace T

           2.3 

in the presence of any missing observations, the response vector and the model matrix are 

partitioned as presented below:  
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Where mX are the missing observations and rX are the remaining observations, the complete 

information matrix is expressed as follows: 

r
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T XXXXXX +=
         2.4 

 Now the ordinary least square estimator of the remaining data points in the design is  

r

T
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The variance of the estimator is 

1)(*)ˆvar( −= r

T

rr XXA  

The A-optimality minimizes the variance of the parameter estimate with a view to increase the 

precision of the parameter, but whenever some observations are missing, the variance is 

increased that makes it less precise as a result the differential increase in variance given by 
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The efficiency of the design with respect to the missing observation is  
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The relative loss in A-optimality measures the amount of reduction in the precision of the 

parameter estimates when some observations are missing and is given as  

)(
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          2.7 

This expression is used to estimate the relative loss incurred when some observations are 

missing in the designs. 

 

RESULTS   

This work is based on the real-life data culled from the work of Wu and Li (2002) for the 

impregnating and dying on the mechanical properties of a 32/ OAlPCoMo
(solution of 

ammonium heptamolybdate, cobalt nitrate and phosphoric acid) hydrotreating catalyst. The 

support was commercial 32OAl−
(3.82mm cylindrical extrudates).  The experiment was 

carried out by the techniques of co-impregnating using a pore filling method. After drying at 

C0200 for 3h, 30g of support was co-impregnated with 60ml of a mixed aqueous solution of 

ammonium heptamolybdate, cobalt nitrite and phosphoric acid, which was left at room 

temperature for 2h. The drying in air was carried out in a drying cupboard, with putting in the 

samples after temperature reached the present value. 

Table 3.1: Experimental range and levels of the factors 

Factors Units Notations Range and levels 

-2 -1 0 +1 +2 

Impregnating 

temperature 
C0

 iT
 

20 35 50 65 80 

Impregnating time H 
it  

4 6 8 10 12 

Drying temperature C0

 dT
 

100 125 150 175 200 

Drying time H 
dt  

4 6 8 10 12 

 

Design 

The controlling factors are the four variables of Impregnating temperature, Impregnating time, 

Drying temperature and Drying time shown in table 3.1 above with their experimental ranges 

and levels where the higher and lower limits of each factor were coded at -2 and +2 

respectively. A four factors rotatable central composite design with seven center points 

consisting of 31 experimental runs was implored. 

Now the fifteen parameter second-order standard model was used to model the results as 

presented below the interest of this research is the first response represented by (
3/, cmg ): 
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 +++++++++++++++=
2

4444

2

3333

2

2222

2

111134342424232341413131212443322110 xxxxxxxxxxxxxxy
 

 +++++++++++++++=
2

4444

2

3333

2

2222

2

111134342424232341413131212443322110 xxxxxxxxxxxxxxy
 

Table 3.2: Central Composite Rotatable Design and Experimental Results Central 

rotatable design and experimental results 

No. Central composite design Experimental results 

1x  2x  3x
 3x

 
3/, cmg  NL,

−

 
m  

1 -1 -1 -1 -1 1.72 24.9 4.63 

2 -1 -1 -1 1 1.78 26.5 3.74 

3 -1 -1 1 -1 1.70 39.2 4.53 

4 -1 -1 1 1 1.72 40.6 4.14 

5 -1 1 -1 -1 1.82 37.3 4.32 

6 -1 1 -1 1 1.83 41.0 3.28 

7 -1 1 1 -1 1.74 33.6 4.89 

8 -1 1 1 1 1.79 35.3 3.60 

9 1 -1 -1 -1 1.78 30.0 2.77 

10 1 -1 -1 1 1.81 35.0 2.79 

11 1 -1 1 -1 1.71 35.2 3.33 

12 1 -1 1 1 1.74 34.5 3.55 

13 1 1 -1 -1 1.78 36.1 3.61 

14 1 1 -1 1 1.86 36.6 2.86 

15 1 1 1 -1 1.74 34.0 3.53 

16 1 1 1 1 1.72 35.2 3.32 

17 -2 0 0 0 1.70 33.7 5.01 

18 2 0 0 0 1.78 28.3 3.76 

19 0 -2 0 0 1.76 38.6 3.53 

20 0 2 0 0 1.87 40.1 4.17 

21 0 0 -2 0 1.82 36.6 4.04 

22 0 0 2 0 1.74 43.6 3.59 

23 0 0 0 -2 1.77 33.5 3.70 

24 0 0 0 2 1.76 31.8 3.28 

25 0 0 0 0 1.70 32.3 3.66 

26 0 0 0 0 1.72 30.9 3.37 

27 0 0 0 0 1.79 31.4 3.60 

28 0 0 0 0 1.76 29.1 4.07 

29 0 0 0 0 1.77 28.2 3.63 

30 0 0 0 0 1.75 28.4 3.98 

31 0 0 0 0 1.77 33.5 3.63 
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Model Selection Method, Design Matrix and Hat Matrix 

From the above real life data a stepwise backward elimination procedure was applied and a 

posterior regression model was generated based on the following statistics obtained from mini 

tab 16 with R-Sq(adj) 63.30, Mallows Cp 4.7, S-0.0282,R-sq 73.09  only for the first response 

y1. The non-standard model generated with a few of the parameters dropped is as follows: 

+++−−+−++= 2

3

2

2312143211 0075.0162.00075.00125.001.00283.00225.00083.0744.1 xxxxxxxxxxy
 

The above model is further represented as follows: 

 +++++++++= 2

333

2

222311321124433221101 . xxxxxxxxxxy
 

 

 The design matrix linked to the selected model and the design is a 931 matrix shown below: 
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The information matrix XX T
 is 
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48    16    0     0     0     0     0     0     24

16    48    0     0     0     0     0     0     24

0     0     16    0     0     0     0     0     0  

0     0     0     16    0     0     0     0     0  

0     0     0     0     24    0     0     0     0  

0     0     0     0     0     24    0     0     0  

0     0     0     0     0     0     24    0     0  

0     0     0     0     0     0     0     24    0  

24    24    0     0     0     0     0     0     31

XX T

 

The determinant of the information matrix is 2.2613e+012 

The normalized information matrix is
XX

N

T1
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1.5484  

0.5161  

0        

0        

0        

0        

0        

0        

0.7742

0.5161    0         0         0         0         0         0    0.7742    

1.5484    0         0         0         0         0         0    0.7742    

0         0.5161    0         0         0         0         0         0      

0         0         0.5161    0         0         0         0         0      

0         0         0         0.7742    0         0         0         0      

0         0         0         0         0.7742    0         0         0      

0         0         0         0         0         0.7742    0         0      

0         0         0         0         0         0         0.7742    0      

0.7742    0         0         0         0         0         0         1.0000 

)(
1

XX
N

T

 

The determinant of the normalized information matrix is 0.0855 

The associated hat matrix 
TT XXXXH 1)( −=  is as presented below: 

 

0.3277    0.2444    0.1194    0.0361    0.1194    0.0361   -0.0889   -0.1723   -0.0056   -0.0889    0.0361   -0.0473    0.0361   -0.0473    0.0777   -0.0056 
    0.2444    0.3277    0.0361    0.1194    0.0361    0.1194   -0.1723   -0.0889   -0.0889   -0.0056   -0.0473    0.0361   -0.0473    0.0361   -0.0056    0.0777 

    0.1194    0.0361    0.3277    0.2444   -0.0889   -0.1723    0.1194    0.0361    0.0361   -0.0473   -0.0056   -0.0889    0.0777   -0.0056    0.0361   -0.0473 

    0.0361    0.1194    0.2444    0.3277   -0.1723   -0.0889    0.0361    0.1194   -0.0473    0.0361   -0.0889   -0.0056   -0.0056    0.0777   -0.0473    0.0361 
    0.1194    0.0361   -0.0889   -0.1723    0.3277    0.2444    0.1194    0.0361    0.0361   -0.0473    0.0777   -0.0056   -0.0056   -0.0889    0.0361   -0.0473 

    0.0361    0.1194   -0.1723   -0.0889    0.2444    0.3277    0.0361    0.1194   -0.0473    0.0361   -0.0056    0.0777   -0.0889   -0.0056   -0.0473    0.0361 

   -0.0889   -0.1723    0.1194    0.0361    0.1194    0.0361    0.3277    0.2444    0.0777   -0.0056    0.0361   -0.0473    0.0361   -0.0473   -0.0056   -0.0889 
   -0.1723   -0.0889    0.0361    0.1194    0.0361    0.1194    0.2444    0.3277   -0.0056    0.0777   -0.0473    0.0361   -0.0473    0.0361   -0.0889   -0.0056 

   -0.0056   -0.0889    0.0361   -0.0473    0.0361   -0.0473    0.0777   -0.0056    0.3277    0.2444    0.1194    0.0361    0.1194    0.0361   -0.0889   -0.1723 
   -0.0889   -0.0056   -0.0473    0.0361   -0.0473    0.0361   -0.0056    0.0777    0.2444    0.3277    0.0361    0.1194    0.0361    0.1194   -0.1723   -0.0889 

    0.0361   -0.0473   -0.0056   -0.0889    0.0777   -0.0056    0.0361   -0.0473    0.1194    0.0361    0.3277    0.2444   -0.0889   -0.1723    0.1194    0.0361 

   -0.0473    0.0361   -0.0889   -0.0056   -0.0056    0.0777   -0.0473    0.0361    0.0361    0.1194    0.2444    0.3277   -0.1723   -0.0889    0.0361    0.1194 
    0.0361   -0.0473    0.0777   -0.0056   -0.0056   -0.0889    0.0361   -0.0473    0.1194    0.0361   -0.0889   -0.1723    0.3277    0.2444    0.1194    0.0361 

   -0.0473    0.0361   -0.0056    0.0777   -0.0889   -0.0056   -0.0473    0.0361    0.0361    0.1194   -0.1723   -0.0889    0.2444    0.3277    0.0361    0.1194 

    0.0777   -0.0056    0.0361   -0.0473    0.0361   -0.0473   -0.0056   -0.0889   -0.0889   -0.1723    0.1194    0.0361    0.1194    0.0361    0.3277    0.2444 
   -0.0056    0.0777   -0.0473    0.0361   -0.0473    0.0361   -0.0889   -0.0056   -0.1723   -0.0889    0.0361    0.1194    0.0361    0.1194    0.2444    0.3277 

    0.1026    0.1026    0.1026    0.1026    0.1026    0.1026    0.1026    0.1026   -0.0641   -0.0641   -0.0641   -0.0641   -0.0641   -0.0641   -0.0641   -0.0641 

   -0.0641   -0.0641   -0.0641   -0.0641   -0.0641   -0.0641   -0.0641   -0.0641    0.1026    0.1026    0.1026    0.1026    0.1026    0.1026    0.1026    0.1026 
    0.1362    0.1362    0.1362    0.1362   -0.0304   -0.0304   -0.0304   -0.0304    0.1362    0.1362    0.1362    0.1362   -0.0304   -0.0304   -0.0304   -0.0304 

   -0.0304   -0.0304   -0.0304   -0.0304    0.1362    0.1362    0.1362    0.1362   -0.0304   -0.0304   -0.0304   -0.0304    0.1362    0.1362    0.1362    0.1362 

    0.1362    0.1362   -0.0304   -0.0304    0.1362    0.1362   -0.0304   -0.0304    0.1362    0.1362   -0.0304   -0.0304    0.1362    0.1362   -0.0304   -0.0304 
   -0.0304   -0.0304    0.1362    0.1362   -0.0304   -0.0304    0.1362    0.1362   -0.0304   -0.0304    0.1362    0.1362   -0.0304   -0.0304    0.1362    0.1362 

    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641 

   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026   -0.0641    0.1026 
    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 
    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 
    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

0.1026   -0.0641    0.1362   -0.0304    0.1362   -0.0304    0.1026   -0.0641    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 
    0.1026   -0.0641    0.1362   -0.0304    0.1362   -0.0304   -0.0641    0.1026    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

    0.1026   -0.0641    0.1362   -0.0304   -0.0304    0.1362    0.1026   -0.0641    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

    0.1026   -0.0641    0.1362   -0.0304   -0.0304    0.1362   -0.0641    0.1026    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 
    0.1026   -0.0641   -0.0304    0.1362    0.1362   -0.0304    0.1026   -0.0641    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

    0.1026   -0.0641   -0.0304    0.1362    0.1362   -0.0304   -0.0641    0.1026    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

    0.1026   -0.0641   -0.0304    0.1362   -0.0304    0.1362    0.1026   -0.0641    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 
    0.1026   -0.0641   -0.0304    0.1362   -0.0304    0.1362   -0.0641    0.1026    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

   -0.0641    0.1026    0.1362   -0.0304    0.1362   -0.0304    0.1026   -0.0641    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 
   -0.0641    0.1026    0.1362   -0.0304    0.1362   -0.0304   -0.0641    0.1026    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

   -0.0641    0.1026    0.1362   -0.0304   -0.0304    0.1362    0.1026   -0.0641    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

   -0.0641    0.1026    0.1362   -0.0304   -0.0304    0.1362   -0.0641    0.1026    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 
   -0.0641    0.1026   -0.0304    0.1362    0.1362   -0.0304    0.1026   -0.0641    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

   -0.0641    0.1026   -0.0304    0.1362    0.1362   -0.0304   -0.0641    0.1026    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

   -0.0641    0.1026   -0.0304    0.1362   -0.0304    0.1362    0.1026   -0.0641    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 
   -0.0641    0.1026   -0.0304    0.1362   -0.0304    0.1362   -0.0641    0.1026    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192    0.0192 

    0.2436   -0.0897   -0.0385   -0.0385   -0.0385   -0.0385    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 

   -0.0897    0.2436   -0.0385   -0.0385   -0.0385   -0.0385    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 
   -0.0385   -0.0385    0.5609    0.2276   -0.1058   -0.1058   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385 

   -0.0385   -0.0385    0.2276    0.5609   -0.1058   -0.1058   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385 

   -0.0385   -0.0385   -0.1058   -0.1058    0.5609    0.2276   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385 
   -0.0385   -0.0385   -0.1058   -0.1058    0.2276    0.5609   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385   -0.0385 

    0.0769    0.0769   -0.0385   -0.0385   -0.0385   -0.0385    0.2436   -0.0897    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 

    0.0769    0.0769   -0.0385   -0.0385   -0.0385   -0.0385   -0.0897    0.2436    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 
    0.0769    0.0769   -0.0385   -0.0385   -0.0385   -0.0385    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 

    0.0769    0.0769   -0.0385   -0.0385   -0.0385   -0.0385    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 

    0.0769    0.0769   -0.0385   -0.0385   -0.0385   -0.0385    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 
    0.0769    0.0769   -0.0385   -0.0385   -0.0385   -0.0385    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 

    0.0769    0.0769   -0.0385   -0.0385   -0.0385   -0.0385    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 

    0.0769    0.0769   -0.0385   -0.0385   -0.0385   -0.0385    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 
    0.0769    0.0769   -0.0385   -0.0385   -0.0385   -0.0385    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769    0.0769 
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The above hat matrix showed constant diagonal values at the factorial at 0.3277 as well as at 

the center points 0.0769 respectively, while the axial distances have two distinct values of 

0.2436 and 0.5609, which indicates that the coordinates with the higher values contributes more 

while the ones with the lower values are less influential and therefore are removed. The reduced 

CCD as presented below will be without the following axial coordinates )0,0,0,2(   and 

)2,0,0,0(  all other components are as in the CCD. The new design i s a 427  modified 

central composite design MCCD 
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The design matrix is built from the model and the design which is a 927  matrix as shown 

below: 
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The information matrix of the MCCD is  



































=

48    16    0     0     0     0     0     0     24    

16    48    0     0     0     0     0     0     24    

0     0     16    0     0     0     0     0     0     

0     0     0     16    0     0     0     0     0     

0     0     0     0     16    0     0     0     0     

0     0     0     0     0     24    0     0     0     

0     0     0     0     0     0     24    0     0     

0     0     0     0     0     0     0     16    0     

24    24    0     0     0     0     0     0     27

XX T

 

The determinant of the information matrix is 6.9578e+011 
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The normalized information matrix for the MCCD is 
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Table 3.3: The optimality of CCD and MCCD with replicated center points for the non-

standard model. 

Design Design points Determinant a-opt 

CCD 31 2.2613e+012 0.4453 

MCCD 27 6.9578e+011 0.5226 

 

 

Optimality Values for CCD and MCCD When One Observation is Missing. 

Table 3.4:   CCD Optimality 

Design type Design points N Det A-opt 

Full 31 2.2613e+012 0.4453 

Factorial 30 1.5202e+012 0.4598 

Axial 30 1.7105e+012 0.4563 

Axial 30 9.9294e+011 0.4836* 

Center  30 2.0874e+012 0.4453 

 

Table 3.5:   MCCD Optimality 

Design type Design points N Det A-opt 

Full 27 6.9578e+011 0.5226 

Factorial 26 4.3728e+011 0.5543 

Axial 26 2.9957e+011 0.5766* 

Center  26 6.1848e+011 0.5404 
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The Robustness CCD and MCCD to one missing design point 

The Robustness of CCD and MCCD to one missing design point of factorial, axial or 

center point using design efficiencies (A-efficiency)  

Table 3.6 CCD Efficiency Values 

Design type design points N Det rA-eff 

Full 31 2.2613e+012  

Factorial 30 1.5202e+012 0.9685 

Axial 30 1.7105e+012 0.9759 

Axial 30 9.9294e+011 0.9208 

Center  30 2.0874e+012 1.0000* 

 

 

Table 3.7:  MCCD Efficiency Values 

Design type design points N Det rA-eff 

Full 27 6.9578e+011  

Massing factorial 26 4.3728e+011 0.9428 

Missing axial 26 2.9957e+011 0.9063 

Missing Center 26 6.1848e+011 0.9671* 

 

The Robustness of CCD and MCCD to one missing design point of factorial, axial or 

center point using loss criteria (A-efficiency)  

Table 3.8: Losses in relative efficiency for CCD 

Design type design points N Loss A-eff 

Full 31  

Factorial 30 0.0315 

Axial 30 0.0241 

Axial 30 0.0792 

Center  30 0.0000* 

 

Table 3.9:  Losses in Relative Efficiency for MCCD 

Design type design points N Loss A-opt 

Full 27  

Massing factorial 26 0.0572 

Missing axial 26 0.0937 

Missing Center  26 0.0329* 

. 
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Table 3.10 Model Terms CCD Real life data 

Term Standard Error* VIF Rᵢ² Power 

A 0.2041 1 0.0000 99.7 % 

B 0.2041 1 0.0000 99.7 % 

C 0.2041 1 0.0000 99.7 % 

D 0.2041 1 0.0000 99.7 % 

AB 0.2500 1 0.0000 96.9 % 

AC 0.2500 1 0.0000 96.9 % 

B² 0.1851 1.00775 0.0077 99.9 % 

 

Table 3.11 Model Terms MCCD real life data 

Term Standard Error* VIF Rᵢ² Power 

A 0.2500 1 0.0000 96.6 % 

B 0.2041 1 0.0000 99.6 % 

C 0.2041 1 0.0000 99.6 % 

D 0.2500 1 0.0000 96.6 % 

AB 0.2500 1 0.0000 96.6 % 

AC 0.2500 1 0.0000 96.6 % 

B² 0.1976 1.04167 0.0400 99.9 % 

C² 0.1976 1.04167 0.0400 99.9% 

 

 

DISCUSSIONS 

The work started with the finding a suitable non-standard model using the raw data on table 

3.2, notice that the data has three response variables but this work concentrated its effort on the 

first response variable with its output as
3/, cmg . First, a regression equation was set up using 

the output from minitab via the backward elimination strategy and the model of equation 3.1 

was generated. 

Now equation 3.1 is a classical nine parameters non-standard model which has some interaction 

and quadratic terms removed. The generated non-standard model of equation 3.1 was tested to 

ascertain that the model parameters are statistically significant and that the model is balanced 

using the standard error, VIF, and adjusted R-square in table 3.10 and 3.11 respectively. 

Table 3.3 gives the A-optimality values of the CCD and MCCD when the designs are complete 

and the values of the A-optimal designs shows that the MCCD at this point is the most A-

optimal design compared to the CCD. 

Table 3.4 and table 3.5 presents the A-optimality values when the CCD and MCD have a 

missing observation at the factorial, axial and center points respectively. The results also show 

that the MCCD is the most A-optimal.  
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Table 3.6 and table 3.7 present the relative efficiency of the CCD and MCCD in the presence 

of a missing observation and the result shows that the CCD is most efficient at the various 

factor levels.  

The losses incurred by the designs (CCD and MCCD) are presented on table 3.8 and table 3.9 

shows that the loss at the center point is the lowest and is the minimum of the maximum loss 

(minimax loss) of the respective designs. Comparatively the CCD has a lower Minimax Loss 

compared to the MCCD, this shows that the CCD is more robust than the MCCD. 

 

CONCLUSION 

The model employed in this work is a balanced model as indicated by the available statistics. 

Comparatively the Modified Central Composite Design based on the available statistics is more 

A-optimal, but the CCD is more robust to a missing observation than the MCCD.  
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