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ABSTRACT: Many problems in natural and engineering 

sciences such as heat transfer, elasticity, quantum mechanics, 

water flow, and others are modelled mathematically by partial 

differential equations. Some of these problems may be linear, 

nonlinear, homogeneous, non-homogeneous, and order greater 

or equal one. Finding the theoretical solution to these problems 

with less cumbersome techniques is an active area of research in 

the aforementioned field. In this research paper, we have 

developed a new application of the double Laplace transform 

method to solve homogeneous and non-homogeneous linear 

partial differential equations (pdes) with higher-order derivatives 

(i.e order 𝑛 where 𝑛 ≥ 2) in science and engineering. We 

discussed a brief theory of double Laplace transforms that helped 

in its application. The main advantage of our method is the 

reduction of computational effort in finding solution to pdes. 

Another major benefit of our method is solving problems in the 

form of (21) directly by transforming to an algebraic equation 

where the inverse double Laplace transform is implemented for 

analytical solution, unlike other integral transform methods that 

would first transform to a system of ODEs before they are solved, 

is it also very effective in solving linear high-order partial 

differential equations and yield fast convergence. We present a 

well-simplified solution for easier comprehension by upcoming 

researchers. 
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INTRODUCTION 

Many problems in natural and engineering sciences are modelled mathematically by 

differential equations [13], [10] and [16]. In physics, for instance, the heat flow and the wave 

propagation phenomena are well defined by partial differential equations [20]. The dispersion 

of a chemically reactive material is characterized by partial differential equations [7]. In 

addition, most physical phenomena of fluid dynamics, quantum mechanics, electricity, plasma 

physics, propagation of shallow-water waves, chemical reaction-diffusion, and many other 

models are governed by partial differential equations [14] and [8]. Some of these problems may 

be linear, nonlinear, homogeneous, non-homogeneous, and order greater or equal one [2]. 

Finding the exact solution to these problems with a less cumbersome technique is active 

research in the aforementioned field [7]. Laplace and Fourier's transforms were found very 

effective for the solution of linear ordinary differential equations [9]. In the case of linear partial 

differential equations such as wave, heat, or Laplace equation similar consideration hold, 

however with much difficulty as the ODEs that are evolving are often complicated and the 

inverse Laplace transform does not exist for them [9], this method failed for many linear PDEs 

especially of variable coefficient [9]. The method of characteristics works well with generally 

first order and hyperbolic PDEs [17] and the method of separation of variables works generally 

for most second-order linear PDEs [19] and [1]. The third-order linear dispersive wave 

equation and fourth-order linear Euler Bernoulli equation govern long water waves in relatively 

shallow water for very small amplitude and the deflection of an elastic beam under the action 

of a load [11] respectively are higher-order PDEs. The solution obtained by Homotopy 

Perturbation Method for linear Partial differential equations in some cases is divergent [12]. 

The authors [3] used the Sumudu transform to solve the linear telegraphic equation, the 

transform resulted in a complicated ODE that its solution form utterly another problem. 

Moreover, [4] use the numerical discontinuous Galerkin finite element method to solve linear 

time-dependent partial differential equations with higher-order derivatives but it is important 

to investigate the analytical solution in other to understand phenomena between them [7]. 

Debnath (2016) applied the double Laplace transform to solve the second-order wave and the 

heat equation, consequence of his idea; the main aim of this research is to develop a new 

application of double Laplace transform to solve homogeneous and non-homogeneous higher-

order linear partial differential equations in science and engineering. 

 

BRIEF THEORY OF DOUBLE LAPLACE TRANSFORM 

Let 𝑓(𝑥, 𝑡) be a function of two variables 𝑥 and 𝑡 defined in the positive quadrant of the 𝑥𝑡-

plane. The double Laplace transform of the function 𝑓(𝑥, 𝑡) as given by [18] is defined by  

𝐿𝑥𝐿𝑡{𝑓(𝑥, 𝑡)} = 𝐹(𝑝, 𝑠) = ∫
∞

0
𝑒−𝑝𝑥 ∫

∞

0
𝑒−𝑠𝑡𝑓(𝑥, 𝑡)𝑑𝑡𝑑𝑥    

       (1) 

whenever that integral exists, here 𝑝 and 𝑠 are complex numbers and 𝑥, 𝑡 > 0 

The inverse double Laplace transform, 𝐿𝑥
−1𝐿𝑡

−1{𝐹(𝑝, 𝑠)} = 𝑓(𝑥, 𝑡) is defined by [5] as the 

complex double integral formula 
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𝐿𝑥
−1𝐿𝑡

−1{𝐹(𝑝, 𝑠)} = 𝑓(𝑥, 𝑡) =
1

2𝜋𝑖
∫

𝑐+𝑖∞

𝑑−𝑖∞
𝑒𝑝𝑥𝑑𝑝

1

2𝜋𝑖
∫

𝑐+𝑖∞

𝑑−𝑖∞
𝑒𝑠𝑡𝐹(𝑝, 𝑠)𝑑𝑠                                

(2) 

where 𝐹(𝑝, 𝑠) must be an analytic function for all 𝑝 and 𝑠 in the region defined by the 

inequalities Re 𝑝 ≥ 𝑐 and Re 𝑠 ≥ 𝑑 where c and d are real constants to be chosen suitably, 

where we follow [15] to define the Laplace transform of a function 𝑓(𝑡), 𝑡 > 0as  

𝐿{𝑓(𝑡)} = 𝐹(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡, 𝑅𝑒(𝑠) > 0            

(3) 

similarly 

The inverse Laplace transform, 𝐿𝑡
−1{𝐹(𝑠)} = 𝑓(𝑡) is defined by [5] as the complex double 

integral formula 

𝐿𝑡
−1{𝐹(𝑠)} = 𝑓(𝑡) =

1

2𝜋𝑖
∫

𝑐+𝑖∞

𝑐−𝑖∞
𝑒𝑠𝑡𝐹(𝑠)𝑑𝑠, 𝑐 ≥ 0            

(4) 

Double Laplace Transform of Partial Derivative  

Consider the partial differential equation of the form [8], 

∑𝑁
𝑛=0 𝑎𝑛

𝜕𝑛𝑢(𝑥,𝑡)

𝜕𝑡𝑛 = ∑𝑀
𝑚=1 𝑏𝑚

𝜕𝑚𝑢(𝑥,𝑡)

𝜕𝑥𝑚 + 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑅+
2                                                       

(5) 

Where𝑎𝑛, 0 ≤ 𝑛 ≤ 𝑁; 1 ≤ 𝑚 ≤ 𝑀 are given coefficients, 𝑁, 𝑀 are positive integers, 𝑎, 𝑏 are 

integers and 𝑓(𝑥, 𝑡), is the source term and the following initial and boundary conditions 

respectively 

𝜕𝑛𝑢(𝑥,0)

𝜕𝑡𝑛 = 𝑔𝑛(𝑥), 𝑛 = 0,1, … … … , 𝑁 − 1, 𝑥 ∈ 𝑅+                       

(6) 

and 

𝜕𝑚𝑢(0,𝑡)

𝜕𝑡𝑚 = 𝑓𝑚(𝑡), 𝑛 = 0,1, … … … , 𝑀 − 1, 𝑡 ∈ 𝑅+                   

(7) 

Further, we assume that the function 𝑓, 𝑔𝑛, 𝑛 = 0,1, … … … , 𝑁 − 1 𝑎𝑛𝑑 𝑓𝑚, 𝑚 = 0,1, … , 𝑀 − 1 

are such that problems (1.1), (1.2), and (1.3) have solution(s). 

𝐿𝑥𝐿𝑡 {
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
} = 𝑠𝑈(𝑝, 𝑠) − 𝐿𝑥{𝑢(𝑥, 0)}         

(8) 

𝐿𝑥𝐿𝑡 {
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2 } = 𝑠2𝑈(𝑝, 𝑠) − 𝑠𝐿𝑥{𝑢(𝑥, 0)} − 𝐿𝑥 {
𝜕𝑢(𝑥,0)

𝜕𝑡
}                                             

𝐿𝑥𝐿𝑡 {
𝜕𝑛𝑢(𝑥,𝑡)

𝜕𝑡𝑛 } = 𝑠𝑛𝑈(𝑝, 𝑠) − ∑𝑛−1
𝑘=0 𝑠𝑛−1−𝑘𝐿𝑥 {

𝜕𝑘𝑢(𝑥,0)

𝜕𝑡𝑘 }                                                           (9) 
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And 

𝐿𝑥𝐿𝑡 {
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
} = 𝑝𝑈(𝑝, 𝑠) − 𝐿𝑡{𝑢(0, 𝑡)}        

(10) 

𝐿𝑥𝐿𝑡 {
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 } = 𝑝2𝑈(𝑝, 𝑠) − 𝑝𝐿𝑡{𝑢(0, 𝑡)} − 𝐿𝑡 {
𝜕𝑢(0,𝑡)

𝜕𝑥
}      

(11) 

𝐿𝑥𝐿𝑡 {
𝜕3𝑢(𝑥,𝑡)

𝜕𝑥3 } = 𝑠3𝑈(𝑝, 𝑠) − 𝑠2𝐿𝑡{𝑢(0, 𝑡)} − 𝑠𝐿𝑡 {
𝜕𝑢(0,𝑡)

𝜕𝑥
} − 𝐿𝑡 {

𝜕2𝑢(0,𝑡)

𝜕𝑥2 }    

(12) 

𝐿𝑥𝐿𝑡 {
𝜕4𝑢(𝑥,𝑡)

𝜕𝑥4 } = 𝑠4𝑈(𝑝, 𝑠) − 𝑠3𝐿𝑡{𝑢(0, 𝑡)} − 𝑠2𝐿𝑡 {
𝜕𝑢(0,𝑡)

𝜕𝑥
} − 𝑠𝐿𝑡 {

𝜕2𝑢(0,𝑡)

𝜕𝑥2 } −

𝐿𝑡 {
𝜕3𝑢(0,𝑡)

𝜕𝑥3 }(13) 

𝐿𝑥𝐿𝑡 {
𝜕𝑚𝑢(𝑥,𝑡)

𝜕𝑥𝑚 } = 𝑝𝑚𝑈(𝑝, 𝑠) − ∑𝑚−1
𝑗=0 𝑝𝑚−1−𝑗𝐿𝑡 {

𝜕𝑗𝑢(𝑥,0)

𝜕𝑥𝑗 }    

  (14) 

and 

𝐿𝑥𝐿𝑡 {
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥𝜕𝑡
} = 𝑝𝑠𝑈(𝑝, 𝑠) − 𝑈(0, 𝑠) − 𝑈(𝑝, 0) − 𝑈(0,0)      

(15) 

Exponential Order  

Debnath, (2016) stated that a function 𝑓(𝑥, 𝑡) is said to be of exponential order 𝑎(> 0) and 

𝑏(> 0) on 0 ≤ 𝑥 < ∞, if there exists a positive constant 𝑘 such that for all 𝑥 > 𝑋 and 𝑡 > 𝑇 

|𝑓(𝑥, 𝑡)| ≤ 𝐾𝑒𝑎𝑥+𝑏𝑡                                                                             (16) 

And we write 

𝑓(𝑥, 𝑡) = 0 (𝑒𝑎𝑥+𝑏𝑡)  as𝑥 → ∞, 𝑡 → ∞                                                     

(17) 

𝑒−𝑎𝑥−𝑏𝑡|𝑓(𝑥, 𝑡)|  = 𝐾𝑒−(𝛼−𝑎)𝑥𝑒−(𝛽−𝑏)𝑡 = 0,   𝛼 > 𝑎, 𝛽 > 𝑏    (18) 

Such a function 𝑓(𝑥, 𝑡) is simply called an exponential order as 𝑥 → ∞, 𝑡 → ∞ and clearly, it 

does not grow faster than 𝐾𝑒𝑎𝑥+𝑏𝑡 as 𝑥 → ∞, 𝑡 → ∞ 

Existence Condition for Double Laplace Transform 

Debnath (2016) stated that if a function 𝑓(𝑥, 𝑡) is a continuous function in every finite interval 

(0, 𝑋) and (0, 𝑇) and of exponential order 𝑒𝑎𝑥+𝑏𝑡 , then the double Laplace transform of  𝑓(𝑥, 𝑡) 

exist for all 𝑝 and 𝑠 provided Re 𝑝 > 𝑎 and Re 𝑠 > 𝑏. 
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Proof 

 we have that, 

|𝐹(𝑝, 𝑠)| = |∬
0

∞
𝑒−𝑝𝑥−𝑠𝑡𝑓(𝑥, 𝑡)𝑑𝑥𝑑𝑡|                                                        

(19) 

≤ 𝐾 ∫
∞

0
𝑒−𝑥(𝑝−𝑎)𝑑𝑥 ∫

∞

0
𝑒−𝑡(𝑠−𝑏)𝑑𝑡  

=
𝐾

(𝑝−𝑎)(𝑠−𝑏)
 for Re 𝑝 > 𝑎, Re 𝑠 > 𝑏 

It follows that  

|𝐹(𝑝, 𝑠)| = 0 𝑜𝑟𝐹(𝑝, 𝑠)   = 0                                (20) 

This result can be regarded as the limiting property of the double Laplace transform. Clearly, 

𝐹(𝑝, 𝑠) = 𝑝𝑠 or 𝑝2 + 𝑠2 is not the double Laplace transform of any function𝑓(𝑥, 𝑡) because 

𝐹(𝑝, 𝑠) does not tend to zero as 𝑝 → ∞ and 𝑠 → ∞ . 

On the other hand, 𝑓(𝑥, 𝑡) = 𝑒𝑎𝑥2+𝑏𝑡2
, 𝑎 > 0, 𝑏 > 0 cannot have a double Laplace transform 

even though it is continuous but is not of the exponential order because 

𝑒𝑎𝑥2+𝑏𝑡2−𝑝𝑥−𝑠𝑡  = ∞ 

Table of Double Laplace transform for some function of two variables 

  Using [6], the following properties hold on 𝑓(𝑥, 𝑡) 

𝐿𝑥𝐿𝑡{𝑓(𝑥, 𝑡)}                                                          𝐹(𝑝, 𝑠) 

1 
1

𝑝𝑞
 

            𝑒(𝑎𝑥+𝑏𝑡)                                                              
1

(𝑝−𝑎)(𝑠−𝑏)
 

            𝑒𝑖(𝑎𝑥+𝑏𝑡)                                                         
(𝑝𝑠−𝑎𝑏)+𝑖(𝑎𝑠+𝑏𝑝)

(𝑝2+𝑎2)(𝑠2+𝑏2)
 

𝑐𝑜𝑠 (𝑎𝑥 + 𝑏𝑡)                                                   
𝑝𝑠−𝑎𝑏

(𝑝2+𝑎2)(𝑠2+𝑏2)
 

𝑠𝑖𝑛 (𝑎𝑥 + 𝑏𝑡)                                                    
𝑎𝑠−𝑏𝑝

(𝑝2+𝑎2)(𝑠2+𝑏2)
k 

𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ (𝑎𝑥 + 𝑏𝑡)                                           
1

2
[

1

(𝑝−𝑎)(𝑠−𝑏)
+

1

(𝑝+𝑎)(𝑠+𝑏)
] 

𝑠𝑖𝑛ℎ (𝑎𝑥 + 𝑏𝑡)                                          
1

2
[

1

(𝑝−𝑎)(𝑠−𝑏)
−

1

(𝑝+𝑎)(𝑠+𝑏)
] 

𝑒−𝑎𝑥−𝑏𝑡𝑓(𝑥, 𝑡)                                                      𝐹(𝑝 + 𝑎, 𝑠 + 𝑏) 

(𝑥𝑡)𝑛                                                                           
(𝑛!)2

(𝑝𝑠)𝑛+1 
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𝑔(𝑥)ℎ(𝑡)                                                                   𝐺(𝑃)𝐻(𝑠) 

𝑓(𝑎𝑥)𝑔(𝑏𝑡)                                               
1

𝑎𝑏
𝐹 (

𝑝

𝑎
) 𝐺 (

𝑠

𝑏
) 𝑎 > 0, 𝑏 > 0 

𝜕𝑓(𝑥,𝑡)

𝜕𝑥
                                                                𝑝𝐹(𝑝, 𝑠) − 𝐹(0, 𝑠) 

𝜕2𝑓(𝑥,𝑡)

𝜕2𝑥
            𝑝2𝐹(𝑝, 𝑠) − 𝑝𝐹(𝑝, 𝑠) − 𝐹(0, 𝑠) −

𝜕𝐹(0,𝑠)

𝜕𝑥
 

𝜕2𝑓(𝑥,𝑡)

𝜕𝑥𝜕𝑡
                                           𝑝𝑠𝐹(𝑝, 𝑠) − 𝑝𝐹(𝑝, 0) − 𝑠𝐹(0, 𝑠) − 𝐹(0,0) 

 

APPLICATION TO HIGHER ORDER PARTIAL DIFFERENTIAL EQUATION 

In this chapter, we present three (3) problems to illustrates the efficiency, applicability, and 

accuracy of the double Laplace transform method to solve higher-order homogenous and non-

homogenous boundary value problems which include second-order linear Klein-Gordon 

equation, linear third-order dispersive equation, and the fourth-order Euler-Bernoulli Equation 

Example 3.1 Solve the homogeneous Klein-Gordon equation 

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2 − 𝑢(𝑥, 𝑡) =
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 , (𝑥, 𝑡)𝜖𝑅+
2                        

(21) 

with initial and boundary conditions 

𝑢(𝑥, 0) = 1 + 𝑠𝑖𝑛𝑥 = 𝑔0(𝑥),
𝜕𝑢(𝑥,0)

𝜕𝑡
= 0 = 𝑔1(𝑥), 𝑥 ∈ 𝑅+                                           

(22) 

𝑢(0, 𝑡) = 𝑐𝑜𝑠ℎ𝑡 = 𝑓0(𝑡),
𝜕𝑢(0,𝑡)

𝜕𝑥
= 1 = 𝑓1(𝑡), 𝑡 ∈ 𝑅+                                                                 (23) 

The Klein-Gordon equation plays an important role in the study of solutions in condensed 

matter physics, quantum mechanics, and relativistic physics [7]. 

Solution Taking the double Laplace transform on both sides of  (21), we have  

𝐿𝑥𝐿𝑡 [
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2 ] − 𝐿𝑥𝐿𝑡[𝑢(𝑥, 𝑡)] = 𝐿𝑥𝐿𝑡 [
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 ]           

(24) 

𝑠2𝑈(𝑝, 𝑠) − 𝑠𝐿𝑥{𝑢(𝑥, 0)} − 𝐿𝑥 {
𝜕𝑢(𝑥,0)

𝜕𝑡
} − 𝑈(𝑝, 𝑠) = 𝑝2𝑈(𝑝, 𝑠) − 𝑝𝐿𝑡{𝑢(0, 𝑡)} −

𝐿𝑡 {
𝜕𝑢(0,𝑡)

𝜕𝑥
}(25) 

Taking the single Laplace transform of the initial and boundary conditions, we have 

𝐿𝑥{𝑢(𝑥, 0)} = 𝐺0(𝑝) =
1

𝑝
+

1

𝑝2+1
, 𝐿𝑥 {

𝜕𝑢(𝑥,0)

𝜕𝑡
} = 𝐺1(𝑝) = 0                                                      

(26) 
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𝐿𝑡{𝑢(0, 𝑡)} = 𝐹0(𝑠) =
𝑠

𝑠2−1
, 𝐿𝑡 {

𝜕𝑢(0,𝑡)

𝜕𝑥
} = 𝐹1(𝑠) =

1

𝑠
                                                                (27) 

Substituting (26 & 27) into (25), we have 

𝑢(𝑝, 𝑠) =
𝑠𝐺𝑜(𝑝)+𝐺1(𝑝)−𝑝𝐹0(𝑠)−𝐹1(𝑠)

(𝑠2−1−𝑝2)
                                                                                         

(28) 

Simplifying and applying the inverse double Laplace transform (2), we obtained the solution 

as 

𝑢(𝑥, 𝑡) = 𝐿𝑥
−1𝐿𝑡

−1 [
1

(𝑠2−1−𝑝2)
[𝑠 (

1

𝑝
+

1

𝑝2+1
) − 𝑝

𝑠

𝑠2−1
−

1

𝑠
]]                                                      

(29) 

Simplifying, we obtain 

𝑢(𝑥, 𝑡) = 𝐿𝑥
−1𝐿𝑡

−1 [
1

(𝑠2−1−𝑝2)
[

(𝑠2−1−𝑝2)

𝑠(𝑝2+1)
+

𝑠(𝑠2−1−𝑝2)

𝑝(𝑠2−1)
]]                                                      

(30) 

𝑢(𝑥, 𝑡) = 𝐿𝑥
−1𝐿𝑡

−1 [
1

𝑠(𝑝2+1)
+

𝑠

𝑝(𝑠2−1)
]                                                                                         

(31) 

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠ℎ𝑡                                                                                                              (32) 

Example 3.2 Solve the linear third-order dispersive non-homogeneous equation. It governs 

long water waves in relatively shallow water for very small amplitude [11]. 

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
=

𝜕3𝑢(𝑥,𝑡)

𝜕𝑥3 + 2𝑒𝑡−𝑥, (𝑥, 𝑡)𝜖𝑅+
2                                                                                            (33) 

 with initial and boundary conditions 

𝑢(𝑥, 0) = 1 + 𝑒−𝑥 = 𝑔0(𝑥), 𝑥 ∈ 𝑅+                                                                                         (34) 

𝑢(0, 𝑡) = 1 + 𝑒𝑡 = 𝑓0(𝑡),
𝜕𝑢(0,𝑡)

𝜕𝑥
= −𝑒𝑡 = 𝑓1(𝑡),

𝜕2𝑢(0,𝑡)

𝜕𝑥2 = 𝑒𝑡 = 𝑓2(𝑡), 𝑡 ∈ 𝑅+                  

(35) 

Solution Taking the double Laplace transform on both sides of (33), we have 

𝐿𝑥𝐿𝑡 [
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
] = 𝐿𝑥𝐿𝑡 [

𝜕3𝑢(𝑥,𝑡)

𝜕𝑥3 ] + 𝐿𝑥𝐿𝑡[2𝑒𝑡−𝑥]           

(36) 

𝑠𝑈(𝑝, 𝑠) − 𝐿𝑥{𝑢(𝑥, 0)} = 𝑠3𝑈(𝑝, 𝑠) − 𝑠2𝐿𝑡{𝑢(0, 𝑡)} − 𝑠𝐿𝑡 {
𝜕𝑢(0,𝑡)

𝜕𝑥
} − 𝐿𝑡 {

𝜕2𝑢(0,𝑡)

𝜕𝑥2 } +

𝐹(𝑝, 𝑠)(37) 

Where 𝐹(𝑝, 𝑠) =
2

(𝑠−1)(𝑝+1)
             (38) 
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Taking the single Laplace transform of the initial and boundary conditions, we have 

𝐿𝑥{𝑢(𝑥, 0)} = 𝐺0(𝑝) =
1

𝑝
+

1

𝑝+1
                                                                                          

(39) 

𝐿𝑡{𝑢(0, 𝑡)} = 𝐹0(𝑠) =
1

𝑠
+

1

𝑠+1
, 𝐿𝑡 {

𝜕𝑢(0,𝑡)

𝜕𝑥
} = 𝐹1(𝑠) =

−1

𝑠−2
, 𝐿𝑡 {

𝜕2𝑢(0,𝑡)

𝜕𝑥2 } = 𝐹2(𝑠) =
1

𝑠−2
,           (40) 

Substituting (38), (39) & (40) into (37), we have 

𝑢(𝑝, 𝑠) =
𝐺0(𝑝)−𝑝2𝐹0(𝑠)−𝑝𝐹1(𝑠)−𝐹2(𝑠)+𝐹(𝑝,𝑠)

𝑠−𝑝3                                                                     

(41) 

Simplifying and taking the inverse double Laplace transform (2), we have 

𝑢(𝑥, 𝑡) = 𝐿𝑥
−1𝐿𝑡

−1 [
1

(𝑠−𝑝3)
[

1

𝑝
+

1

𝑝+1
− 𝑝2 (

1

𝑠
+

1

𝑠−1
) + 𝑝

1

𝑠−1
−

1

𝑠−1
+

2

(𝑠−1)(𝑝+1)
]]                   (42) 

Simplifying, we obtain the solution 

𝑢(𝑥, 𝑡) = 𝐿𝑥
−1𝐿𝑡

−1 [
1

(𝑠−𝑝3)
(

𝑠−𝑝3

𝑝𝑠
+

𝑠−𝑝3

(𝑝+1)(𝑠−1)
)]                                                                              (43) 

𝑢(𝑥, 𝑡) = 𝐿𝑥
−1𝐿𝑡

−1 [
1

𝑝𝑠
+

1

(𝑝+1)(𝑠−1)
]                                                                                                (44) 

𝑢(𝑥, 𝑡) = 1 + 𝑒𝑡−𝑥                                                                                           (45) 

Example 3.3 The Euler-Bernoulli Equation 

It governs the deflection of an elastic beam under the action of a load [11]. 

−
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2 =
𝜕4𝑢(𝑥,𝑡)

𝜕𝑥4 − 𝑥𝑡 − 𝑡2, (𝑥, 𝑡)𝜖𝑅+
2                                                                                      (46) 

with initial and boundary conditions 

𝑢(𝑥, 0) = 0 = 𝑔0(𝑥),
𝜕𝑢(𝑥,0)

𝜕𝑡
=

𝑥5

5!
= 𝑔1(𝑥), 𝑥 ∈ 𝑅+                                                                   (47) 

𝑢(0, 𝑡) =
𝑥4

12
= 𝑓0(𝑡),

𝜕𝑢(0,𝑡)

𝜕𝑥
= 0 = 𝑓1(𝑡),

𝜕2𝑢(0,𝑡)

𝜕𝑥2 = 0 = 𝑓2(𝑡),
𝜕3𝑢(0,𝑡)

𝜕𝑥3 = 0 = 𝑓3(𝑡), 𝑡 ∈ 𝑅+     (48) 

Solution Taking the double Laplace transform on both sides of (46), we have 

𝐿𝑥𝐿𝑡 [−
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2 ] = 𝐿𝑥𝐿𝑡 [
𝜕4𝑢(𝑥,𝑡)

𝜕𝑥4 ] − 𝐿𝑥𝐿𝑡[𝑥𝑡 + 𝑡2]                                                                     (49) 

𝑠2𝑈(𝑝, 𝑠) + 𝑠𝐿𝑥{𝑢(𝑥, 0)} + 𝐿𝑥 {
𝜕𝑢(𝑥,0)

𝜕𝑡
} = 𝑠4𝑈(𝑝, 𝑠) − 𝑠3𝐿𝑡{𝑢(0, 𝑡)} − 𝑠2𝐿𝑡 {

𝜕𝑢(0,𝑡)

𝜕𝑥
} −

𝑠𝐿𝑡 {
𝜕2𝑢(0,𝑡)

𝜕𝑥2 } − 𝐿𝑡 {
𝜕3𝑢(0,𝑡)

𝜕𝑥3 } − 𝐹(𝑝, 𝑠)              

(50) 
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Where 𝐹(𝑝, 𝑠) = −
1

𝑝2𝑠2 −
2

𝑝𝑠3              (51) 

Taking the single Laplace transform of the initial and boundary conditions, we have 

𝐿𝑥{𝑢(𝑥, 0)} = 𝐺0(𝑝) = 0, 𝐿𝑥 {
𝜕𝑢(𝑥,0)

𝜕𝑡
} = 𝐺1(𝑝) =

1

𝑝6                                                                   (52) 

𝐿𝑡{𝑢(0, 𝑡)} = 𝐹0(𝑠) =
2

𝑠5 , 𝐿𝑡 {
𝜕𝑢(0,𝑡)

𝜕𝑥
} = 𝐹1(𝑠) = 0, 𝐿𝑡 {

𝜕2𝑢(0,𝑡)

𝜕𝑥2 } = 𝐹2(𝑠) = 0         (53) 

𝐿𝑡 {
𝜕3𝑢(0,𝑡)

𝜕𝑥3 } = 𝐹3(𝑠) = 0                          (54) 

Substituting (51), (52), (53) & (54), we have 

𝑢(𝑝, 𝑠) =
𝑠𝐺0(𝑝)+𝐺1(𝑝)+{𝑝3𝐹0(𝑠)+𝑝2𝐹1(𝑠)+𝑝𝐹2(𝑠)+𝐹3(𝑠)}−𝐹(𝑝,𝑠)

𝑠2+𝑝4             (55) 

Simplifying and taking the inverse double Laplace transform (2), we have 

𝑢(𝑥, 𝑡) = 𝐿𝑥
−1𝐿𝑡

−1 [
1

(𝑝4+𝑠2)
[

1

𝑝6 + 𝑝3 2

𝑠5 +
1

𝑝2𝑠2 +
2

𝑝𝑠3]]                                                                     (56) 

Simplifying, we obtain the solution 

𝑢(𝑥, 𝑡) = 𝐿𝑥
−1𝐿𝑡

−1 [
1

(𝑝4+𝑠2)
(

𝑝4+𝑠2

𝑝6𝑠2 +
2(𝑝4+𝑠2)

𝑝𝑠5 )]                                                                     

(57) 

𝑢(𝑥, 𝑡) = 𝐿𝑥
−1𝐿𝑡

−1 [
1

𝑝6𝑠2 +
2

𝑝𝑠5]                                                                                                         (58) 

𝑢(𝑥, 𝑡) =
𝑡𝑥5

5!
+

𝑡4

12
                (59) 

 

CONCLUSION  

We have applied double Laplace transform to obtain exact solutions for linear homogeneous 

and non-homogeneous higher order partial differential equations. All of the examples 

considered show that the double Laplace transform method is capable of reducing the volume 

of computational work, solves problems directly by transforming to an algebraic equation 

where the inverse double Laplace transform is implemented for exact solution, unlike other 

integral transform methods that would first transform to a system of ODEs before they are 

solved, very effective in solving linear high order partial differential equations and yield fast 

convergence. 
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