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ABSTRACT: In this research, we propose the nonhomogeneous 

Poisson process on geostatistical data by adding a time 

component to be applied in the study case of air pollution in the 

Special Region of Yogyakarta. We use the Bayesian approach to 

inference the model using the MCMC method. And to generate 

samples of the posterior distribution, we wield the Metropolis-

Hastings algorithm, and we obtained it has good convergence for 

this case. And to show the goodness of fit of this model, we had 

the value of DIC.  
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INTRODUCTION 

Poisson process both homogeneous and nonhomogeneous have an important and fundamental 

role both in theory and applications to applied in many study areas, e.g. growth of emission 

factors, especially in the air pollution case [13], [14]. They were applied nonhomogeneous 

Poisson process into this case. To observe air pollution, we use fixed locations in its region. By 

using spatial data that classified by [5] into 3 types, i.e. point, lattice, and geostatistical data, 

we find suitable types of spatial data in the air pollution observation locations is geostatistical 

data. We called its model here by spatial nonhomogeneous poisson model (SNHPP). The 

applications of nonhomogenenous Poisson process in geostatistical data is performed by [12]. 

We called its model here by spatial nonhomogeneous poisson model (SNHPP). By adding time 

component into its data, we obtain data that is called a space-time geostatistical data. 

The SNHPP model inference, we use parametric approach more precisely using Bayesian 

approach. In Bayesian approach, we use Markov Chain Monte Carlo(MCMC) method to 

estimate of its model parameters. We focus to generating samples of posterior distribution 

using Metropolis-Hastings algorithm. Then generating samples, we also should to check its 

convergence, here we use Gelman-Rubin diagnostic, one of the convergence checking technic 

of MCMC samples [6]. And to get the best SNHPP model, we wield DIC value as proposed by 

[10] in Bayesian case. 

The purpose of this research is to modeling SNHPP in the study case of air pollution in 12 fixed 

observed locations in Special Region of Yogyakarta that indicated by 2NO  and 2SO  

concentrations in the air using active method in 2012 to 2015 that measured twice in a year. 

Spatial Autocorrelation Assumption Testing 

The spatial autocorrelation means to measure existence of value dependence level of variable 

that close to each other in the geographic space. The existence of spatial autocorrelation can be 

seen by Moran’I value. Mathematically, statistics test of Global Moran’s I can be written in the 

following equation. 
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where n  is the number of observation unit, ix  is the value of each predictor variables for i -th 

unit, and ijw  is the element of spatial weighting matrix power distance weight between i -th 

and j -th locations. Testing the parameter I  can be done as follows. 

0:0 =IH  (there is no spatial autocorrelation) 

And there are two alternative hypothesis 

0:1 IH  (it has positive autocorrelation) 

0:1 IH  (it has negative autocorrelation) 
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Testing the hypothesis using statistic test as follows. 
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Hypothetical decision making based on the condition of 𝐻0 is rejected if the value of 2/ZZ I   

that means there is correlation between locations [8], [11]. 

Spatial Nonhomogeneous Poisson Process (SNHPP) 

SNHPP is nonhomogeneous Poisson process that used to get geostatistical model using space-

time approach with random intensity process of data that have two additional components, 

those are Gaussian spatial and temporal effect component. [12]. Let geographical space that be 

observation space, 2)=p(with pRD  , there are n  fixed points, Dsss n ,...,, 21 , with observation 

time at the interval ],0( T . So, we obtain ijt , the i-th time observation at the location js , that is

Ttttt jnijjj j
 ......0 21 , with njti ,...,2,1;,...,2,1 == . SNHPP model [Morales, 2016] can be 

formulated as follows. 

 

log )|()|(),( HW tHWt  += ss               (3) 

 

From (3) can be obtained the following equation. 

 

( )( )HW tHWt  |)|(exp),( += ss               (4) 

 

where ),( ts  is intensity function of Poisson process, and .)|(.W  is non-stationary and isotropic 

Gaussian process as follows. 

 

( ) ( ) ,),(~| 2
ss GPW W               (5) 

 

where = )()( ss x  is the process mean, )(sx  is the covariate vector at the location s  based on 

the coefficient vector  . 2  is the process variance, and   is the function of the valid 

correlation i.e. the correlation between ( )WisW , and ( )WjsW ,  for each Dss ji ,  related to the 

isotropic process of |,| ji ss , the distance of Euclidean between is  and js , where the correlation 

|),|exp(),( jiji ssss  −= . The cumulative hazard function )(tH  is the logarithm of hazard 

function )(th  as follows. 
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)log()( 1  tettH −−=               (6) 

So, for each js , we have [7], [12] the general SNHPP with the intensity function as follows. 

 

 t
jj etts −−= 1),(                   (7) 

 

and the function of mean value at the location s  time t  can be formulated in the following 

equation. 

 

( ) t
jj etsm −−= 1),(               (8) 

 

with nje jW

j ,...,2,1, == , the parameter j  is interpreted as the number of events that observed 

in the time interval ],0( T ,   is the detected level of events occurred. 

Prior and Posterior Distribution of Snhpp Model 

Prior distribution that used here is a non-informative prior distribution refers to [12] that 

consists of parameters  ,,,,,' 2jN  as follows. 
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Here, we use the latent variable, jN ' = jj nN −
, that used to facilitate sampling the joint 

posterior distribution [1], [9], [12]. Using the definition of Gaussian process, we get that 

),(~ XNW , where X  is the observed covariate matrix, here we denote that the rows are 

( )jjj yx ,,1=x , where ( )jjj yxs ,=  are the geographic coordinate of monitoring stations and   is 
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the covariance matrix with the element are known, i.e. ( ) njiss jiij ,...,2,1,,,2 ==  . And 

consider the independence of prior distribution each other, we have the prior distribution   as 

follows. 

  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )22,|  W=          (9) 

 

Let ( ),,...,, 21 nWWW=W  ( )2,,,,,  W=  is a set of parameter, and for nj ,...,2,1= , a set of 

data, ( ) ( )njnjjj DDDDtttD
j

,...,,,,...,, 2121 == . We have the likelihood function of SNHPP that can be 

formulated in the following equation. 
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Based on (9) and (10), for nj ,...,2,1= , the latent variable, jN , ( )nNNNN ,...,,' 21= , we have the joint 

posterior distribution   as follows. 

 

( ) ( ) ( ) ( )
=
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And we have the conditional posterior density functions for any parameters use the following 

equation. 
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So, by using Box Tiao writing we obtain the following equations. 
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where −  is a set of parameter   except parameter  (12). 

 

Estimating Parameter and Goodness Of Fit Snhpp Model 

To estimate parameter model of SNHPP of (3), we use parametric approach, i.e. Bayesian 

approach by using the MCMC method. And to generate samples of joint posterior distribution 

in (11), we use Metropolis-Hastings algorithm, where this algorithm can be used when the 

conditional posterior distributions are not easy to identified. Here also, we use the latent 

variable to increasing the accuration of Metropolis-Hastings algorithm in generating the joint 

posterior distribution samples. 

Let the posterior distribution to be sampled in (13) to (18). The estimated parameter is  , 

where ( )2,,,,,  = W . Here we want renewal thi − elements of  , then we choose 

proposal function q , so that. 

( ) ( )iiq = |*, *  for ii =*             (19) 

 

and zero for others. 

These are the steps of Metropolis-Hastings algorithm [2], [4], i.e. let mtt ,...,1,0, = . Firstly, as 

many tht − iterations, we generate ( )t
t q  |*~* . Secondly, choose ( ) *1

t
t = +  for the 

probability equal to ( )*, t
t  , and ( )

t
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After we had generated MCMC samples, we have to check the convergence of MCMC by 

using Gelman-Rubin diagnostic. There are 7 steps to do Gelman-Rubin diagnostic method [6] 

as follows.  

First, we stimulate sequence 2m , each sequence has a length n2 , then did reduction of first 

iterations n , and focus on last iterations n . 

Second, For each scalar parameter, we calculate 
( )
( )

=
−

−
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i
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is each variance against degree of freedom ( )1−n . 

Third, estimating the target mean, ( )= dxxxP , where == ..
ˆ x sample mean of mn the 

stimulated value of x . 

Fourth, estimating the target variance, ( ) ( )dxxPx
2
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 −=  , with the weighted mean W  and B , 

so that B
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W
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n 11
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Fifth, we estimate x  that can improve estimation value of target distribution . by allowing for 

the sampling variability of the estimates, ̂  and 2̂ . By using ̂  as the center, with scale 
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Sixth, we monitoring the convergence of the simulation estimated by the currently variance 

ratio,
( )

2

/ˆ
ˆ

−
=

df

dfWV
R , converging to 1 when →n . 

Seventh, according to [3], when R̂  is less than 1.1 for all scalar estimations, we decided that 

convergence has been achieved. 

Finally, since we have achieved convergence of MCMC, we should measure goodness of fit 

the models, and [10] use a goodness of fit criterion which is widely used in Bayesian modeling 

is Deviance Information Criterion (DIC) that can be formulated as follows. 

( ) ( )( ) xx EDDEDIC ||2 −=             (21) 
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with ( )D  is the model deviance, and x  is the observed data. And for model that have DIC value 

smaller than other, it will be good model, then we choose it. 

Procedure 

We use SNHPP to applied to analysis the semester data of 2NO and 2SO  concentrations in 12 

fixed observed points which is observed in Special Region of Yogyakarta (DIY) in 2012 to 

2015. Data obtained from Environmental Agency of Special Region of Yogyakarta which is 

observed in March and September for each year using active method. It measured using 3/ mg

unit. The steps of analysis of this study as follows. 

First, we use the threshold set by WHO of 2NO  is 3/40 mg  and 2SO  is 3/20 mg , and we get 

the number of concentration data of 2NO  and 2SO  that exceeds the threshold by utilizing the 

counting process. Second, by using the data, we testing the spatial autocorrelation assumption 

wield Global Moran’s I. Third, we determine the fixed geographic coordinates which is be the 

fixed observed point. Fourth, calculating Euclidean distance between fixed observed points 

based on the coordinates ( )ii vu , . Fifth, determining spatial weighted matrix, power distance 

weights. Sixth, simulating MCMC to generate samples of parameter   using Metropolis-

Hastings algorithm. Seventh, estimating parameter ( ) . Eighth, checking the convergence of 

MCMC wield Gelman-Rubin diagnostic. Ninth, measuring goodness of fit SNHPP model 

using DIC. In this analysis, we use software R 3.2.5. 

 

RESULTS AND DISCUSSION 

The result of testing spatial autocorrelation assumption using Global Moran’s I, i.e. test 

statistics IZ , obtained the values of IZ  for 2NO and 2SO  are 2.267, and 2.314. So, for the 

confidence interval 95%, 96.12/05.0 =Z , we have 2/05.0ZZI  , for each 2NO and 2SO  

concentrations data. It means that there are spatial autocorrelation for each data. 

Here, we use the model parameters that proposed by Morales (2016), based on the following 

prior distribution to applied in this data as follows. 

( )001.0,001.0~ Gamma  

( )001.0,001.0~ Gamma  

( )I01000,~ N  

( )005.0,005.01.0~2 Gamma  



















7

3
,

7

4
4~ Gamma  

where the model parameters of ,,  are considered non-informative. 
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We generate 130,000 samples of the conditional posterior distributions, with burn-in 30,000 

by Metropolis-Hastings algorithm. We also do repetition twice for each parameters. And we 

obtain the parameter estimation   as the Table 1. 

Table 1. Parameter Estimation Mean   

Conc. Par. Rep. Mean 50% 2.5% 97.5% 

2SO  

  
1 *10525.2 4−  41027.2 −  410022.1 −  410998.4 −  

2 *10543.2 4−  410253.2 −  410019.1 −  410017.5 −  

  
1 1849.0  1822.0  1379.0  2413.0  

2 0.1851  0.1820   0.1381   0.2417  

  
1 12.8914   12.89   12.55   13.25  

2  *12.8952   12,89   12.55   13.26  

2  
1  *0.1527   0.1494   0.1021   0.2157  

2 0.1523   0.1488   0.1020   0.2157  

2NO  

  
1 *10915.8 5−  510292.7 −  

51052.2 −  
41011.2 −  

2 *10858.8 5−  510285.7 −  510531.2 −  410104.2 −  

  
1 *1708.0  13199.0  03832.0  4479.0  

2 *1684.0  1298.0  03839.0  4436.0  

  
1 *8940.12  89.12  54.12  26.13  

2 *8966.12  90.12  55.12  26.13  

2  
1 *1525.0  1489.0  1020.0  2159.0  

2 *1521.0  1482.0  1020.0  2160.0  

*: the parameter value which has smallest DIC value. 

Then, we earn from checking the convergence of MCMC samples using Metropolis-Hastings 

diagnostic based on estimation value of R̂  for each parameter as follows. 

 

Table 2. Estimation Value of R̂  

Cons. Par. Est. U.L. of C.I. 

2SO  
 , , , 2  1 1 

2NO  

U.L. of C.I.: Upper Limit of Confidence Interval 

Since, the each value of estimation of R̂ are less than 1.1, we can conclude that the MCMC 

sampling has converged. The result of measurement of goodness of fit based on the DIC values 

for each models in repetition as shown on the Table 3. 
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Table 3. DIC's Value Difference of Parameter 2,,,  . 

Par. 

DIC Value Diff. (Repetition) 

Conc. of 2NO  Conc. of 2SO  

R1-R2 R1-R2 
  0 

0 
  -0,05664062 
  0,2617188 

2  -0,1699219 

 

Based on the DIC value difference, if the plus we have got, it is mean the DIC value of first 

repetition is greater than second repetition each parameter, and otherwise. If we have the DIC 

value is zero, it is mean the DIC value of first repetition and second repetition is same. By its 

values, we choose repetition each parameter for the smallest DIC value, we have got the best 

parameter in Table 1. By it, we can establish some of the best models shown in Table 4.  

Table 4. The best of SNHPP model 

Cons. M  Equations 

2NO  
1 Log )exp()exp( 11

1
1

11
)11( 

 ijijjj ttW −=
−  

2 Log )exp()exp( 11
2

1
12

)12(   ijijjj ttW −=
−  

2SO  

1 Log )exp()exp( 11

1
1

11
)21( 

 ijijjj ttW −=
−  

2 Log )exp()exp( 22
1

1
21

)22(   ijijjj ttW −=
−  

3 Log )exp()exp( 11
2

1
12

)23(   ijijjj ttW −=
−  

4 Log )exp()exp( 22

2
1

22
)24( 

 ijijjj ttW −=
−  

Log )11(
j is the 1-st model of 2NO  concentration. 

The log j  value in the 2NO  concentration data is closer to the actual data, but the log j  

value of 2SO  concentration is not close to the actual data. This possibility is influenced by the 

presence of parameter values that do not fit the model that can represent an area. The results of 

mapping the actual log j  values and PPNHS models for each 2NO  and 2SO  concentration 

data can be seen in Figure 2 (a) and 2 (b) respectively. 

In Figure 2(a) we can see the location with the highest level of concentration of 2NO  exposed 

in the air both in Sleman Regency. For the second highest position, there are differences in 

districts that have a concentration of 2NO . For the third position, the highest concentration of 

2NO  is often found in Bantul Regency. And followed by Kulonprogo Regency. At location 

points that showed a concentration of 2NO  more than the threshold set by WHO than other 

Regencies. It means that the position of these points can be said to be higher air pollution which 

is the exposure of 2NO  gas in the air. The cause of the frequent concentration of 2NO  exceeding 

the threshold can be due to gas released from the engine in the vehicle. 
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The highest level regency which has a concentration of 2SO  exposed in the air in Figure 2(b) 

is not obtained the same result between the actual data and the SNHPP model. However, for 

the regency with the next highest level in the second position are both in Gunung Kidul 

Regency, then they will continue with the Kulonprogo Regency. At these locations in this 

regency the concentration of  

                 

(a)                                                                         (b) 

Figure 2: Map of Level of the Number of Semesters which is 2NO  and 2SO  

Concentration Value Exceeds WHO Threshold Based on Observation Location Points 

Based on SNHPP Model and Data in 2012-2015 in the DIY Province 

 

2SO  often exceeds the threshold compared to other Regencies. The frequent causes of this 

occurrence are because the combustion process on motorized vehicles. And by paying attention 

to the observation location points, the observations is carried out at congestion points with the 

number of motorized vehicles operated. 
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CONCLUSION 

In this research, we propose the nonhomogeneous Poisson process on geostatistical data by 

adding time component to applied in the study case of air pollution in Special Region of 

Yogyakarta. From the results that Metropolis-Hastings has a good convergence that is shown 

by the result of Gelman-Rubin diagnostic. In this case, through the values of DIC, we also 

obtain the fit model of SNHPP that involves the repetition therein. 

The conclusions obtained from the results of the discussion and implementation of the SNHPP 

model are: 

1. The value of the Markov Chain Monte Carlo (MCMC) simulation results with the Gibbs 

Sampling algorithm with Metropolis-Hasting steps is obtained almost the entire parameter 

value in the concentration data of 2NO  greater than the parametric value of the 

concentration data 2SO . 

2. By the results of the parameter values obtained for each data, it obtained 

a) The best Spatial Non-Homogeneous Poisson Process Model (SNHPP) for 

concentration data of 2NO . 

b) The best Spatial Non-Homogeneous Poisson Process Model (SNHPP) for 

concentration data 2SO . 

c) Regency/cities with the highest level of the number of semesters that have a 

concentration of 2NO  exceeding the threshold set by WHO are Sleman Regency, 

Bantul Regency, then followed by Kulonprogo Regency. 

d) Regency/city with the highest level of the number of semesters that have a 

concentration value of 2SO  exceeds the threshold set by WHO is Bantul Regency, 

Gunung Kidul Regency, then followed by Kulonprogo Regency. 

Future Research 

The results of the research that has been done, still need depth research, for example by adding 

interpolation for unobserved location points to overcome the limitations of the existing data. In 

addition, there are still parameter values that cannot represent every region. Supported by 

research results [Morales, et al., 2016] there are also parameter values that cannot represent 

each region.  

From these shortcomings, it can be used as a theory development regarding Spatial Non-

Homogeneous Poisson Process to get parameter values that can be represent each location. 

Implementation of the SNHPP model that raises the issue of air pollution in the Special Regions 

of Yogyakarta (DIY) can give you a little picture of the environment especially in DIY, which 

is starting to be exposed to gases that cause pollution air. We are who live in the DIY area, 

especially at points that are often exposed to the gas, can increase tree planting on the edges 

street. In addition, it can reduce the use of motorized vehicles gradually, for example by cycling 

or walking. 

 



African Journal of Mathematics and Statistics Studies  

ISSN: 2689-5323 

Volume 4, Issue 3, 2021 (pp. 186-198) 

198 Article DOI: 10.52589/AJMSS-C4L7KHUC 

  DOI URL: https://doi.org/10.52589/AJMSS-C4L7KHUC 

www.abjournals.org 

REFERENCES 

Achcar, J.A., Dey, D.K., & Niverthi, M. (1996). A Bayesian Approach Using 

Nonhomogeneous Poisson Process for Software Reliability Models. CiteSeer, 1-20. 

DOI: https://doi.org/10.1142/9789812816580_0001 

Albert, J. (2009). Bayesian Computation with R Second Edition. New York: Springer.  

Brook, S., Gelman, A., Jones, G.L., & Meng, Xiao-Li. (2011). Handbook of Markov Chain 

Monte Carlo. Florida: CRC Press. 

Brook, S.P., & Gelman, A. (1998). General Methods for Monitoring Convergence of Iterative 

Simulations. Journal of Computational and Graphical Statistics. 7(4), 434-455. DOI: 

https://doi.org/10.1080/10618600.1998.10474787 

Cressie, N.A.C. (1993).Statistics for Spatial Data. New York: John Wiley and Sons. 

Gelman, A. & Rubin, D.B. (1992). Inference from Iterative Simulation Using Multiple 

Sequence. Journal of Statistical Science, 7(4), 457-511. Available at: 

https://www.jstor.org/stable/2246093 

Goel, A.L. (1983). Technical Report: A Guidebook for Software Reliability Assessment 

Technical Report, University of Syracuse, New York, pp. 1-240. Available at: 

https://apps.dtic.mil/sti/pdfs/ADA139240.pdf 

Griffith, D.A. (2009). Spatial Autocorrelation. Elvesier Inc., 1-10. Available at: 

https://booksite.elsevier.com/brochures/hugy/SampleContent/Spatial-

Autocorrelation.pdf 

Kuo, L., & Yang, T. (1996). Bayesian Computation for Nonhomogeneous Poisson Processes 

in Software Reliability. Journal of American Statistical Association, 91, 763-773. DOI: 

https://doi.org/10.1080/01621459.1996.10476944 

Lawson, A.B. (2009). Bayesian Disease Mapping Hierarchical Modeling in Spatial 

Epidemiology. North Western: CRC Press. 

Lentz, J. (2009). Teaching Modul: Spatial Autocorrelation Statistics, 1-10. Available at: 

http://jenniferalentz.info/Teaching/StudyGuides/SpatialAutocorrelation.pdf 

Morales, F.E.C., Vicini, L., Hotta, L.K., & Achcar, J.A. (2016). A Nonhomogeneous Poisson 

Process Geostatistical Model. Journal of Stoch Environ Res Risk Assess, Springer-

Verlag, 31(2), 493-507. DOI: https://doi.org/10.1007/s00477-016-1275-x 

Szabo, J.G., Bogachev, L.V., & Chen, H. (2010). Multiple Change-point Poisson Model for 

Threshold Exceedances of Air Pollution Concentrations. Cornell University Library, 1-

39. Available at: https://arxiv.org/ftp/arxiv/papers/1012/1012.1879.pdf 

Vicini, L., Hotta, L.K., & Achcar, J.A. 2012. Non-homogeneous Poisson Process in the 

Presence of One or More Change-points: an Application  to Air Pollution Data. Journal 

of Environmental Statistics, 1-27. Available at: http://www.jenvstat.org/v05/i03/paper 

https://doi.org/10.1142/9789812816580_0001
https://doi.org/10.1080/10618600.1998.10474787
https://www.jstor.org/stable/2246093
https://apps.dtic.mil/sti/pdfs/ADA139240.pdf
https://booksite.elsevier.com/brochures/hugy/SampleContent/Spatial-Autocorrelation.pdf
https://booksite.elsevier.com/brochures/hugy/SampleContent/Spatial-Autocorrelation.pdf
https://doi.org/10.1080/01621459.1996.10476944
http://jenniferalentz.info/Teaching/StudyGuides/SpatialAutocorrelation.pdf
https://doi.org/10.1007/s00477-016-1275-x
https://arxiv.org/ftp/arxiv/papers/1012/1012.1879.pdf
http://www.jenvstat.org/v05/i03/paper

