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ABSTRACT: Ridge regression as a solution to multicollinearity 

depends on the value of k, the ridge biasing constant. Since no 

optimum value can be found for k, as k is generally bounded 

between 0 and 1, i.e. 0≤ k ≤1 and it varies from one application 

to another. This has posed a major limitation of ridge regression 

in that ordinary inference procedures are not applicable and 

exact distributional properties are not known; and the choice of 

the biasing constant, k, is a judgmental one. This work examined 

the effect of ridge biasing constant, k, on different sample sizes 

using data combination from gamma and exponential 

distributions when multicollinearity exists. The sample sizes of 

140, 100, 80, 50, 30, 20 and 10 and ridge constants, k=0.01, 0.02, 

. . . ., 0.1 respectively were used in the study. The Anderson 

Darling Test was used to check for the distribution of the data 

which were found to follow gamma and exponential distributions. 

The findings lay credence to how the ridge regression drastically 

remedies the effect of multicollinearity among independent 

variables. The study also revealed that the VIF consistently 

decreased as the ridge constant increased. While the ridge 

regression has a slight effect on the R-squared, sample sizes were 

found not to have any significant change or pattern on the VIFs. 

Since the study has shown that the VIF reduced drastically as the 

ridge constant increases, it is recommended to use a VIF that 

reduces multicollinearity to an acceptable minimum while 

maximizing the R-squared. This study recommends a ridge 

constant of 0.1 as all multicollinearity issues have been remedied 

at more than 90% if not completely. The study recommends using 

a large sample size to help stabilize the R2 values while remedying 

multicollinearity. 
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INTRODUCTION 

Multiple regression analysis is one of the most widely used statistical procedures with its 

applicability to varied types of data and problems, ease of interpretation and robustness to 

violations of the underlying assumptions. Predictive accuracy is calibrated by the magnitude 

of the R2 and the statistical significance of the overall model (Mason &Perreault, 1991). 

In the application of multiple regression, problems may arise when two or more predictor 

variables are correlated. Overall prediction is not affected, but the interpretation of conclusions 

based on the size of the regression coefficients, their standard errors, or the associated t-tests 

may be misleading because of the potentially confounding effects of collinearity among the 

independent variables. This situation is known as multicollinearity (Mason & Perreault, 1991). 

Multicollinearity is a situation in which two or more predictor variables in a multiple regression 

model are highly correlated. Here, the estimates of the coefficient in the multiple regression 

any change erratically in response to small changes in the model or data. A multiple regression 

model with correlated predictors can indicate how well the entire bundle of predictors predict 

the outcome variable, but it may not give valid results about any individual predictor, or about 

which predictors are redundant with respect to others.  

Though no precise definition of collinearity has been firmly established in the literature, 

collinearity is generally agreed to be present if there is a significant linear relationship among 

some of the predictor variables in the Data (Mason and Perreault, 1991).  

Multicollinearity has several potentially undesirable consequences: parameter estimates that 

fluctuate dramatically with negligible changes in the sample, parameter estimates with signs 

that are wrong in terms of theoretical consideration; theoretically, important variables with 

insignificant coefficients, and the inability to determine the relative importance of collinear 

variables. All of these consequences are symptoms of the same fundamental problem: near 

collinearities inflate the variance of the regression coefficients (Stewart 1987). 

Pieces of literature provide numerous suggestions, ranging from simple rules of thumb to 

complex indices for diagnosing the presence of collinearity. Several of the most widely used 

procedures are examining the correlation matrix of the predictor variables, computing the 

coefficient of determination, 𝑅𝑘
2, of each 𝑋𝑘 regressed on the remaining predictor variables, 

and measures based on the eigenstructure of the data matrix X, including variance inflation 

factor (VIF), trace of (𝑋𝐼𝑋)−1, the condition number, ridge regression, etc. A common rule of 

thumb suggests that collinearity is a problem if any of the 𝑅𝑘
2 exceeds the 𝑅2 of the overall 

model (Mason and Perreault, 1991).  

The most common estimator for β is the ordinary least squares estimator, �̂� = (X′X)-1X′Y, 

which is an unbiased estimator. But in the presence of multicollinearity ordinary least squares, 

estimators could become very unstable due to their very large variance, which leads to poor 

prediction. One of the popular methods for handling this problem is ridge regression estimation. 

(Dorugade and Kashid, 2010). 

Ridge regression is the modification of the least-squares method that allows biased estimators 

of the regression coefficient. These biased estimators are preferred over the least-squares 

estimator because they have a larger probability of being close to the true parameter values 
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with smaller mean squared error (MSE) of regression coefficients, (Dorugade and Kashid, 

2010). 

Ridge regression was developed by Hoerl and Kennard in 1970. When multicollinearity exists, 

the matrix X′X, where X consists of the original regressors becomes nearly singular. Since the 

variance of �̂�= σ2(X′X)-1 and the diagonal elements of (X′X)-1 become quite large, so the 

variance of �̂� is to be large. This leads to an unstable estimate of 𝛽 when the ordinary least 

squares is used (Al-Hassan, 2010). 

In ridge regression, a standardized matrix X is used and a small constant, k, which is known as 

the ridge biasing constant is added to the diagonal elements of X′X. The addition of the small 

positive number, k where k ≥ 0 to the diagonal elements of X′X causes X′X to be non-singular. 

Therefore, the ridge estimator is given as�̂�R = (X′X  +kI)-1X′Y. (Dorugade and Kashid, 2010) 

It is obvious that when k = 0, OLS estimators are recovered. As k increases, the ridge regression 

estimators are biased but more precise than OLS estimators, hence they will be closer to the 

true parameters. 

The ridge regression estimator does not provide a unique solution to the problem of 

multicollinearity but provides a family of solutions. These solutions depend on the value of k, 

the ridge biasing constant. No optimum value can be found for k since k is generally bounded 

below by 0 and above by 1, i.e. 0≤ k ≤1 and it varies from one application to another.  

Neter, Wasserman and Kutner (1983) posit that a major limitation of ridge regression is that 

ordinary inference procedures are not applicable and exact distributional properties are not 

known; and the choice of the biasing constant, k, is a judgmental one. While formal methods 

have been developed for making this choice, these methods have their own limitations 

It was shown by Hoerl and Kennard (1970) that if a small enough k value for which the mean 

squared error is less than the mean squared error of the ordinary least squares is chosen, the 

procedure of the ridge regression is successful and  �̂�R becomes stable. The main interest lies 

in finding a value of the ridge biasing constant, k, such that the reduction in the variance is 

attained with an accompanying increase in the stability of the regression coefficients. This 

study seeks to determine the effect of the ridge biasing constant, k for remedying 

multicollinearity when analyzing multiple regression data combinations from specifically 

Gamma and Exponential distributions. 

 

REVIEW OF RELATED LITERATURE 

The history of multicollinearity dates to the paper by Frisch in 1934 who introduced the concept 

to describe a situation where the variables dealt with are subject to two or more relations. Hoerl 

and Kennard, in 1970, introduced ridge regression to handle the problem of multicollinearity. 

At this stage, the main interest lies in finding a value of the ridge parameter which is the ridge 

biasing constant, k, such that the reduction in the variance term of the slope parameter is greater 

than the increase in its squared bias. The authors proved that there is a nonzero value of such 

ridge biasing constant for which the mean squared error (MSE) for the slope parameter using 

ridge regression is smaller than the variance of the ordinary least squares (OLS) estimator of 

the respective parameter (Muniz et al, 2012)  
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Vedide et al (2014), stated that a multiple regression model has got the standard assumptions 

and if the data cannot satisfy these assumptions some problems which have some serious 

undesired effects on the parameter estimates arise. One of the problems is called 

multicollinearity which means that there is a nearly perfect linear relationship between 

explanatory variables used in a multiple regression model. This undesirable problem is 

generally solved by using methods such as ridge regression which gives biased parameter 

estimates. Ridge regression shrinks the Ordinary Least Squares estimation vector of regression 

coefficients towards the origin, allowing a bias but providing a smaller variance. They 

observed, however, that the choice of the biasing constant k in ridge regression is another 

serious issue. 

Yahya and Olaifa (2014), investigated the techniques of the ridge regression model as an 

alternative to the classical ordinary least square (OLS) method in the presence of correlated 

predictors. They observed that one of the basic steps for fitting efficient ridge regression models 

requires that the predictor variables be scaled to unit lengths or to have zero means and unit 

standard deviations prior to parameters' estimations. This was meant to achieve stable and 

efficient estimates of the parameters in the presence of multicollinearity in the data. Their work, 

therefore, examined the impacts of scaled collinear predictor variables on ridge regression 

estimators. Various results from simulation studies underscored the practical importance of 

scaling the predictor variables while fitting ridge regression models. They employed real-life 

data set on import activities in the French economy to validate the results from the simulation 

studies. 

Nagai (2014) said that there are several model selection criteria for selecting the ridge 

parameter in multivariate ridge regression, e.g., the Cp criterion and the modified Cp (MCp) 

criterion and proposed the generalized Cp (GCp) criterion, which includes Cp and MCp criteria 

as special cases. The GCp criterion is specified by a non-negative parameter λ, which is referred 

to as the penalty parameter. He attempted to select an optimal penalty parameter such that the 

Predictive Mean Square Error (PMSE) of the predictor of ridge regression after optimizing the 

ridge parameter is minimized. Through numerical experiments, he verified that the proposed 

optimization methods exhibit better performance than conventional optimization methods, i.e., 

optimizing only the ridge parameter by minimizing the Cp or MCp criterion. 

Fitrianto et al (2014) conducted some simulation studies to compare the performance of the 

ridge regression estimator and the OLS. Simulation studies of several methods for estimating 

the ridge parameters. The performance of each ridge estimator depends on the standard 

deviation (s) and the correlations between explanatory variables (g2). For s = 0.1, the HK 

estimator and HSL estimator have smaller MSE than the OLS estimator for all levels of 

correlations. However, the OLS estimator is reasonably better than the NHSL estimator for all 

levels of correlations for this given value of HK estimator might be recommended to be used 

to estimate the ridge parameter k. The study recommended further investigation of ridge 

estimators in future in order to make any definite statement. 

Hanan Duzan et al (2015) investigated the problem of using Ordinarily Least Squares (OLS) 

estimators in the presence of multicollinearity in regression analysis. An alternative to OLS is 

ridge regression, which is believed to be superior to least-squares regression in the presence of 

multicollinearity. The robustness of this method was investigated and a comparison was made 

with the least-squares method via simulation studies. Their results have shown that the system 

stabilizes in a region of k, in which k is a positive quantity less than one and whose values 
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depend on the degree of correlation between the independent variables. The results illustrate 

that k is a non-linear function of the correlation between the independent variables (r12). 

Pereira et al (2015) used lasso and ridge approaches for predicting corporate bankruptcy since 

they deal well with multicollinearity and display the ideal properties to minimize the numerical 

instability that may occur due to overfitting. The models were employed in a dataset of 2032 

non-bankrupt firms and 401 bankrupt firms belonging to the hospitality industry, over the 

period 2010-2012. The results of the study showed that the lasso and ridge models tend to 

favour the category of the dependent variable that appears with heavier weight in the training 

set when compared to the stepwise methods implemented in SPSS. 

Efendi & Effrihan (2017) discussed the simulation process for evaluating the characteristic of 

Bayesian Ridge regression parameter estimates using several simulation settings based on a 

variety of collinearity levels and sample sizes. The results of the study show that the Bayesian 

method gives better performance for relatively small sample sizes, and for other settings, the 

method does perform relatively similarly to the likelihood method. 

Daoud (2017) posits that when multicollinearity is present, the standard error of the coefficients 

will increase. An increased standard error means that the coefficients for some or all 

independent variables may be found to be significantly different from 0. In other words, by 

overinflating the standard errors, multicollinearity makes some variables statistically 

insignificant when they should be significant.  

Herawati et al (2018) compared the performance of Ordinary Least Square (OLS), Least 

Absolute Shrinkage and Selection Operator (LASSO), Ridge Regression (RR) and Principal 

Component Regression (PCR) methods in handling severe multicollinearity among 

explanatory variables in multiple regression analysis using data simulation. A Monte Carlo 

experiment was carried out to select the best method, it was found that the simulated data 

contain severe multicollinearity among all explanatory variables (ρ = 0.99) with different 

sample sizes (n = 25, 50, 75, 100, 200) and different levels of explanatory variables (p = 4, 6, 

8, 10, 20). The performances of the four methods are compared using Average Mean Square 

Errors (AMSE) and Akaike Information Criterion (AIC). The result shows that PCR has the 

lowest AMSE among other methods. It indicates that PCR is the most accurate regression 

coefficients estimator in each sample size and various levels of explanatory variables studied. 

PCR also performs as the best estimation model since it gives the lowest AIC values compare 

to OLS, RR, and LASSO. 

Schreiber-Gregory (2018) reviewed and provided examples of the different ways in which 

multicollinearity can affect a research project, how to detect multicollinearity and how one can 

reduce it through Ridge Regression applications. 

The data used for this study are secondary data retrieved from the Central bank of Nigeria and 

the Nigerian Bureau of Statistics databases. The data were macroeconomic data of Nigeria from 

the first quarter (Q1)1986 to the fourth quarter (Q4) 2020. The data include Government 

expenditure (GXP), Real Gross Domestic Product (RGDP), Nominal Gross Domestic Product 

(NGDP), Export, Import and international trade (Trade). Data were tested and confirmed to 

follow Gamma and exponential distributions which are being used for the purpose of this study.  

Testing for Multicollinearity 
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The presence of multicollinearity is tested using the Variance Inflation Factor. WonSuk et al 

(2010) defined the variance inflation factor as a measure of how much the variance of the 

estimated regression coefficient bi is "inflated" by the existence of correlation among the 

predictor variables in the model. According to the author, a VIF of 1 means that there is no 

correlation between the ith predictor and the remaining predictor variables, and hence the 

variance of bi is not inflated at all. The general rule of thumb is that VIFs exceeding 10 are 

signs of serious multicollinearity requiring correction. The test for multicollinearity is 

necessary to ascertain the independence of the predictor variables. 

The variance inflation factor for the ith suspected predictor variable is given by: 

𝑉𝐼𝐹𝑖 =
1

1−𝑅𝑖
2          

Where 𝑅𝑖
2  is the R2 (coefficient of determination) value obtained by regressing the ith predictor 

on the remaining predictors. 

Multiple Regression (Ordinary Least Squares Approach) 

Multiple Linear Regression Model is given as: 

Y = 𝛽0 + 𝛽1𝑋1 +  𝛽2𝑋2+. . . +𝛽𝑘𝑋𝑘 +  𝜀  . . .   (1) 

where: 

𝛽0 = a constant term (the Y-intercept) 

𝛽𝑖 = is the rate of change of Y with respect to 𝑋𝑖 . 

𝜀 = error term.   

Where, and are given as: 
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Y is an n × 1 vector of observations on the dependent variable, X is an n × p matrix of 

observations on independent variables, 𝛽is a p × 1 vector of unknown parameters which are 

called regression coefficients and 𝜀is a × 1 vector of random errors which are assumed as 𝜀i 

=N~ (0, σ2) 

Thus, we can matrix-multiply to . The product  has dimension  , that is, it is an n-

dimensional column vector.  

The Least Squares estimate of the multiple regression coefficient 𝛽 is given as: 

   .  .  .   (2) 

Mean Square and Standard Error 

 

MSE = s2 = 
𝑆𝑆𝐸

𝑛− 𝑘
 

Analysis of Variance Table 

SOURCE SUM OF SQUARES DF MEAN SQUARE F- RATIO 

REG SSR=∑ (𝑋𝑖 − 𝑋)2 K-1 MSR=
𝑆𝑆𝑅

𝐾−1
 Fcal=MSR/MSE 

ERROR SSE=∑ (𝑌𝑖 − �̂�)2 n-k MSE=
𝑆𝑆𝐸

𝑛−𝑘
   

TOTAL         SST         n-1     

 

There are two methods of concluding the ANOVA test, both of which produce the same result: 

Firstly, the use of probability value (p-value). The null hypothesis is rejected if this probability 

value is less than or equal to the significance level (α).  

Secondly, the observed value of F with the critical value of F may be compared using the F 

distribution tables. The critical value of F is a function of the degrees of freedom of the 

numerator and the denominator and the significance level (α). If F ≥ Fcritical, the null hypothesis 

is rejected. 

Coefficient of Multiple Determination (R2) 

The coefficient of multiple determination, R2 is the percentage of the variance in the dependent 

variable explained uniquely or jointly by the independent variables. R2 can also be interpreted 

as the proportionate reduction in error in estimating the dependent variable when knowing the 

independent variables. It is the proportion of change in the dependent variable that is 

attributable to the independent variables. The formula is given as: 
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R2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
         

 

SSR is the Sum of Squares Regression while SST is the Sum of Squares Total which is 

alternatively calculated from the ANOVA table as: SSR + SSE 

But SSR = β(𝑋′𝑌) – (
1

𝑛
)𝑌′𝐽𝑌     

SST= 𝑌′𝑌 – (
1

𝑛
)𝑌′𝐽𝑌 

Where J is an n x n square matrix with all elements 1. 

Ridge Regression  

The ridge regression estimator is obtained by solving the normal equations of least squares 

estimation. The normal equations are modified as: 

(𝑋′𝑋 + 𝐾𝐼)�̂�𝑟𝑖𝑑𝑔𝑒 = 𝑋′𝑌 

⇒ �̂�𝑟𝑖𝑑𝑔𝑒 = (𝑋′𝑋 + 𝐾𝐼)−1𝑋′𝑌    .  .  .  (3) 

As 𝐾 → 0, �̂� → 𝛽(𝑂𝐿𝑆) and as 𝐾 → 1, �̂� → 0 

The OLSE is inappropriate to use in the sense that it has very high variance when 

multicollinearity is present in the data. On the other hand, a very small value of 𝛽 ̂may tend to 

accept the null hypothesis H0: β= 0 indicating that the corresponding variables are not relevant. 

The value of biasing parameter controls the amount of shrinkage in the estimates. 

 

METHODOLOGY  

The analysis started by testing the distribution of the macroeconomic data comprising 

Government expenditure (GXP), Real Gross Domestic Product (RGDP), Nominal Gross 

Domestic Product (NGDP), Export, Import and international trade (Trade) from the first 

quarter (Q1) 1986 to the fourth quarter (Q4) 2020 data using the Anderson Darling Test, and it 

was confirmed that the data followed gamma and exponential distributions. 

The Multiple Linear Regression equation obtained from the data using the Ordinary Least 

Square (OLS) approach and the Variance Inflation Factor (VIF) resulting from the OLS 

estimates were calculated using the computer software SPSS.  

The test of multicollinearity using the Variance Inflation Factor (VIF) obtained are as follows: 

NGDP=35.0, RGDP=40.7, Exp=6.7, Import=26.0, and trade=20.0. These indicate the presence 

of significant multicollinearity among the independent variables. The R2value is 92.2%. The 

ridge regression is then fitted and the VIF recalculated. The interest is on the effect of ridge 

regression and sample size on the VIF. The sample size is then varied as 100, 80, 50, 30, 20 

and 10 respectively for various values of the ridge constants of k=0.01, 0.02, … 0.1 

respectively. Also, the ridge parameter (k) that gave the best ridge model was considered. 
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Furthermore, the effect of ridge constant on various sample sizes and VIF was considered. Won 

Suk et al (2010) posits that a VIF of 1 means that there is no correlation between the ith 

predictor and the remaining predictor variables, hence the variance of bi is not inflated at all. 

The general rule of thumb is that VIFs exceeding 10 are signs of serious multicollinearity 

requiring correction.  

R2 and MSE are acceptable values for the model. Predictive accuracy is calibrated by the 

magnitude of the R2 (Mason &Perreault, 1991). 

The Least Squares solution maximizes R-squared, the largest value of R-squared occurs when 

k is zero, which is the OLS estimate (NCSS Statistical Software). 

Table 1 - R2 statistics (Actual R-squared) 

K n=140 n=100 n=80 n=50 n=30 n=20 n=10 

OLS 0.9217 0.8802 0.8408 0.9540 0.9695 0.9861 0.9712 

0.01 0.9191  0.874536 0.8339 0.9514 0.9687 0.9851 0.9697 

0.02 0.9161 0.8688 0.8274 0.9481 0.9676 0.9837 0.9680 

0.03 0.9132 0.8641 0.8221 0.9450 0.9663 0.9822 0.9665 

0.04 0.9105 0.8598 0.8174 0.9422 0.9651 0.9808 0.9654 

0.05 0.9078 0.8558 0.8129 0.9397 0.9640 0.9795 0.9644 

0.06 0.9051 0.8520 0.8085 0.9373 0.9629 0.9784 0.9636 

0.07 0.9025 0.8482 0.8041 0.9351 0.9619 0.9772 0.9629 

0.08 0.8998 0.8444 0.7998 0.9330 0.9609 0.9762 0.9623 

0.09 0.8972 0.8407 0.7955 0.9310 0.9600 0.9752 0.9617 

0.1 0.8945  0.837011 0.7911 0.9291 0.9592 0.9743 0.9612 

 

From the table, the R2 for OLS is the highest, but gradually decreased as k increased. This 

indicates the ridge regression performed better for the data than the OLS estimate. 

Ridge Constant and Model Statistics 

The ridge regression effect on the R2 was assessed using the different sample sizes. In the case 

of n = 140 using k = 0.01, 0.02, 0.03, …0.1. The result revealed that the ridge regression caused 

small changes in the R2 values. As the ridge constant k, increases (from 0.01 to 0.1), the R2 

value for all sample sizes decreases. At k=0.01 the R2 decreased by 0.28%. The R2 also 

decreased by 0.61, 0.92 and 1.21% for k=0.02, 0.03 and 0.04 respectively. Overall, the R2 

decreased by a minimum of 0.08 at k=0.01 and a maximum of 5.90% at k=0.1 and n=100. This 

shows that as k increases, the R2 decreases. The changes in the sample size did not have any 

noticeable change in the values of the R2. 

Table 2: Percentage change in R2 for the selected Ridge Constants and Sample sizes 

K n=140 n=100 n=80 n=50 n=30 n=20 n=10 

0.01 -0.28 -0.62 -0.82 -0.27 -0.08 -0.10 -0.15 

0.02 -0.61 -1.29 -1.59 -0.62 -0.20 -0.25 -0.33 

0.03 -0.92 -1.83 -2.22 -0.94 -0.33 -0.40 -0.48 
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0.04 -1.21 -2.31 -2.78 -1.23 -0.45 -0.54 -0.60 

0.05 -1.51 -2.77 -3.32 -1.50 -0.57 -0.67 -0.69 

0.06 -1.79 -3.20 -3.84 -1.75 -0.69 -0.79 -0.78 

0.07 -2.08 -3.63 -4.35 -1.98 -0.79 -0.90 -0.85 

0.08 -2.37 -4.06 -4.87 -2.20 -0.89 -1.01 -0.92 

0.09 -2.66 -4.48 -5.39 -2.41 -0.98 -1.11 -0.98 

0.1 -2.95 -4.89 -5.90 -2.61 -1.06 -1.20 -1.03 

 

The result revealed that the ridge regression caused a small change in the R2 values. As the 

ridge constant k increases from 0.01 to 0.1, the R2 value for all sample sizes decreased. At 

k=0.01 the R2 decreased by 0.28%. The R2 also decreased by 0.61, 0.92 and 1.21% for k=0.02, 

0.03 and 0.04 respectively. Overall, the R2 decreased by a minimum of 0.08 at k=0.01 and a 

maximum of 5.90% at k=0.1 and n=100.  

This shows that as k increases, the R2 decreases. The changes in the sample size did not have 

any noticeable change in the actual values of the R2.  

 

CONCLUSION 

This study presented the effect of the ridge biasing constant on multicollinear data drawn from 

gamma and exponential distributions. 

The following are the findings of this study: 

1. Overall, the ridge regression was found to have caused a slight change in the R2 values 

of the models. It was found that ask increases, the R2 slightly decreased by a minimum 

of 0.08% and a maximum of 5.9%. 

2. Sample size was found not to have any noticeable change or pattern across all studied 

variables, ridge constant and R2 values.  

3. It was, however, observed that the R2 was relatively higher for small sample sizes 

(n≤30) compared to the large sample sizes (n≥30).  

4. At k= 0.1 all issues of multicollinearity were highly resolved, as the VIF values were 

reduced to values that are indicative of the absence of multicollinearity (VIF 

approximately equal to 1) 

The study validates the effect of ridge regression biasing constant on model statistics (R2). The 

study also revealed that the VIF consistently decreases as the ridge biasing constant increases. 

While the ridge regression has a slight effect on the R2, sample sizes were found not to have 

any significant change or pattern on the VIFs. 
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