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ABSTRACT: Count data are common in many fields and often 

modelled with the Poisson model. However, the equidispersion 

assumption (variance = mean) related to the Poisson model is 

often violated in practice. While much research has focused on 

modelling overdispersed count data, underdispersion has 

received relatively little attention. Alternative models are 

therefore needed to handle overdispersion (variance > mean) 

and underdispersion (variance < mean). This study assessed the 

relative performance of the Poisson model and its alternatives 

(COM-Poisson, Generalized Poisson Regression, Double 

Poisson and Gamma Count) to model underdispersed count data. 

Using a Monte Carlo experiment, the simulation plan considered 

various underdispersion levels (𝑘 (variance/mean) = 0.2, 0.5 and 

0.81), 𝑘 = 1 as a control, and sample sizes (𝑛 = 20, 50, 100, 
300 and 500). Results showed that the Poisson model is not 

robust to handle underdispersion but it is the best performer when 

𝑘 = 1. The COM-Poisson model best fitted severe 

underdispersed data (𝑘 = 0.2). It is also the best performer 

model for moderate underdispersed count data (𝑘 = 0.81). 

However, when 𝑘 = 0.5, the Double Poisson model and 

Generalized Poisson model outperformed other models for 

relatively large sample sizes (𝑛 = 100, 300 and 500). Our 

finding suggests that none of the models suits all situations. 

Therefore, in practice, several of these models need to be tested 

to select the best one. 

KEYWORDS:  Poisson model, Underdispersion models, Count 

data, COM-Poisson, Gamma Count, Double Poisson, 
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INTRODUCTION 

Count data are commonly produced in many scientific disciplines from both experimental and 

observational study designs. The Poisson distribution is appropriately used in the regression 

analysis of count responses for which the mean and variance are almost equal (Famoye, 1993). 

The resulting Poisson regression model indeed strongly relies on the equidispersion assumption 

(variance equals mean). However, due to variability of experimental material, omitted 

unobserved variables, or lack of independence between individual item responses (Kokonendji 

et al., 2008), real count data often exhibit a variance greater than mean (overdispersion) or 

smaller than mean (underdispersion). In either of these cases, the standard Poisson model is no 

longer applicable. 

Overdispersion is more frequently reported and handled using overdispersion models 

(Kokonendji, 2014). While underdispersion is considered rarer and has received much less 

attention, it may have been prominently hidden by the use of popular equidispersion and 

overdispersion models (Sellers & Morris, 2017). Many record processes can actually lead to 

underdispersed data. Indeed, underdispersion can result from the data generating mechanism 

(Sellers et al., 2012). For instance, the condensed Poisson model results from reporting only 

every second event in a Poisson process (Chatfield & Goodhardt, 1973). In addition to such 

inherently underdispersed populations, observed underdispersion can be caused by a small 

sample size (Kokonendji et al., 2008), the mechanism of data collection (Kokonendji, 2014) or 

low sample mean value (Lord & Mannering, 2010). Underdispersion can also be a sign of over-

fitting, meaning that the count model contains too many explanatory variables, leading to 

deficient variation (Sellers et al., 2012; Sellers & Morris, 2017). 

Underdispersion mostly impacts estimated standard errors, although it can also induce incorrect 

estimation of regression parameters (Kokonendji et al., 2008). Indeed, it is well known that 

ignoring underdispersion in the regression analysis of count data leads to upward-biased 

standard errors, thus under estimating the statistical significance of associated explanatory 

variables (Sellers & Premeaux, 2020; Forthmann et al., 2020). Therefore, alternative methods 

have been proposed and used to deal with underdispersed count data. Pure underdispersion 

models, such as the continuous parameter binomial model (King, 1989) and the condensed 

Poisson model (Sellers & Morris, 2017), are rarely used in practice. Indeed, applied scientists 

often turn to flexible count models which can account for both underdispersion and 

overdispersion in observed count data. Most popular examples include, among others, the 

Conway-Maxwell-Poisson (CMP or COM–Poisson) model (Conway & Maxwell, 1962), the 

Generalized Poisson (GP) model (Consul & Jain, 1973), the Double Poisson (DP) model 

(Efron, 1986) and the Gamma Count (GC) model (Oh et al., 2006). 

Several studies have compared alternatives to the Poisson model for handling underdispersed 

count data. For instance, Wang and Famoye (1997) and Husai and Bagmar (2015) have 

compared the Poisson model with the GP model using data related to household fertility 

decisions. The estimated parameters from both Poisson and GP model are quite similar, but as 

expected, the standard errors for parameter estimates from the Poisson model are smaller than 

those from the GP model (Husain & Bagmar, 2015). Lord et al. (2010) have compared the CMP 

model with the Poisson and GC model. They found that the CMP model fit is not significantly 

different from both other model fits. Instead, CMP provides a practical tool for modeling count 

data that have various levels of dispersion. Zou et al. (2013) showed that the performance of 

DP model is comparable to that of the CMP model in terms of goodness of fit, but the CMP 
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model provides a slightly better fit in all the considered datasets. 

However, studies comparing the performance of alternatives to the Poisson model for 

underdispersed count data were limited to one or two approaches, in addition to the basic 

Poisson model. To guide applied scientists in the choice of the appropriate model to handle 

underdispersed count data, this work targets four of the most popular flexible models in 

addition to the Poisson model. Our purpose is to assess the robustness of the Poisson model to 

underdispersion and compare it with its alternatives through Monte Carlo simulations. 

Specifically, this study assesses the relative performance of the Poisson, the Generalized 

Poisson, the Conway-Maxwell-Poisson, the Gamma Count and the Double Poisson regression 

models in underdispersed count data.  

 

THEORETICAL UNDERPINNING 

Poisson Model 

Poisson model is the basic regression technique on which a variety of count models are based. 

Let 𝜆 be a positive real and Y a random variable. The probability distribution function of the 

Poisson law is:  

 𝑃(𝜆) =
𝑒−𝜆𝜆𝑦

𝑦!
, 𝑦 = 0,1,2, . .. (1) 

The Poisson regression model is defined for each count 𝑦𝑖 through a log link function which 

expresses the Poisson distribution parameter 𝜆𝑖 (Expected number of counts, 𝑖 = 1,2, … , 𝑛) in 

terms of a linear function of a matrix of explanatory variables 𝑋𝑖 (Frome, 1983):  

 𝑙𝑛(𝜆𝑖) = 𝛽𝑋𝑖 (2) 

𝑋𝑖 is the 𝑖𝑡ℎ row of the regression covariate matrix, and 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑘) is the unknown 𝑘-

dimensional vector of partial regression coefficients. The mean and the variance of 𝑌𝑖 are given 

by 𝐸(𝑌𝑖|𝑋𝑖) = 𝑉𝑎𝑟(𝑌𝑖|𝑋𝑖) = 𝜆𝑖. The regression parameters in 𝛽𝑗(𝑗 = 1,2, . . . , 𝑘) express the 

effect of the explanatory variable 𝑋𝑖 on the expected count. More specifically, 𝛽𝑗 gives the 

relative change (%) in the mean count for every unit increase in 𝑋𝑖. 

The relationship between the mean and variance implies a goodness-of-fit index, 𝐺𝑂𝐹 =
𝑉𝑎𝑟(𝑌)

𝐸(𝑌)
= 1, i.e., equidispersion is established (Sellers et al., 2017). If 𝐺𝑂𝐹 is greater than 1, 

data are overdispersed and when it is less than 1, data are underdispersed. For these cases, the 

poisson model is no longer suitable. 

The parameter 𝛽 can be estimated by the maximum likelihood approach. The likelihood 

function is given by: 

         𝐿(𝛽) = ∏𝑛
𝑖=1 𝑝(𝑌𝑖 = 𝑦𝑖|𝜆𝑖) = ∏𝑛

𝑖=1

𝑒−𝜆𝑖𝜆
𝑖

𝑦𝑖

𝑦𝑖!
. (3) 
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 The log-likelihood function is given by: 

 

 𝐿(𝛽) = ∑𝑛
𝑖=1 [−𝜆𝑖 + 𝑦𝑖𝑙𝑛𝜆𝑖 − 𝑙𝑛(𝑦𝑖!)] (4) 

            = ∑𝑛
𝑖=1 [−𝑒𝑥𝑝(𝑋𝑖

⊤𝛽) + 𝑦𝑖𝑋𝑖
⊤𝛽 − 𝑦𝑖!]. 

 

 By differentiating the equation (4) with respect to 𝛽𝑗 and equating each of the results to zero 

we get 

 

 𝑔𝑖 =
𝜕𝑙𝑛𝐿

𝜕𝛽𝑗
= ∑𝑛

𝑖=1 [−𝑒𝑥𝑝(𝑋𝑖
⊤𝛽)𝑋𝑖𝑗 + 𝑦𝑖𝑋𝑖𝑗] = 0, 𝑗 = 1,2, . .. (5) 

 

 The Hessian is the matrix of second derivatives of the likelihood with respect to the parameter: 

 

 𝐻 =
𝜕2𝑙𝑛𝐿

𝜕𝛽𝑗𝜕𝛽𝑗
⊤ = − ∑𝑛

𝑖=1 (𝑋𝑖
⊤𝑋𝑖𝑒𝑋𝑖

⊤𝛽). (6) 

 

 The iterative algorithm of Newton-Raphson is used to find the estimated 𝛽:  

 

 𝛽(𝑖 + 1) = 𝛽(𝑖))𝐻−1(𝑖)𝑔𝑖 . (7) 

 

The asymptotic variance-covariance matrix of estimator is the inverse of the observed 

information matrix (Hessian matrix):  

 𝑣̂𝑎𝑟𝑎𝑠𝑦(𝛽̂) = [− ∑𝑛
𝑖=1 (𝑋𝑖

⊤𝑋𝑖𝑒𝑋𝑖
⊤𝛽)]

−1
. (8) 

 

Hence, standard errors are square roots of the diagonal elements of the inverse of the 

information matrix. 

Generalized Poisson Regression (GPR) 

The generalized Poisson regression (GPR) model is often used to deal with overdispersed count 

data, although it can as well be used to model underdispersed data. This method was introduced 

by Consul and Jain (1973). GPR can model both overdispersion and underdispersion. Suppose 

𝑌𝑖 is a count response variable that follows a generalized Poisson distribution, the probability 
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mass function of 𝑌𝑖, 𝑖 = 1,2. . . , 𝑛 is given as follows (Famoye, 1993):  

 𝑃(𝑌𝑖 = 𝑦𝑖) = (
𝜆𝑖

1+𝛼𝜆𝑖
)

(1+𝛼𝑦𝑖)𝑦𝑖−1

𝑦𝑖!
𝑒𝑥𝑝 [−

𝜆𝑖(1+𝛼𝑦𝑖)

1+𝛼𝜆𝑖
] , 𝑦𝑖 = 0,1,2, . . ., (9) 

  

where 𝜆𝑖 = 𝑒𝑥𝑝(𝑋𝑖𝛽), 𝑋𝑖 is the matrix of explanatory variables, 𝛽 is a vector of regression 

parameters and 𝛼 is the dispersion parameter. 

The mean and variance of 𝑌𝑖 are given by:  

 

 𝐸(𝑌𝑖) = 𝜆𝑖 , (10) 

          𝑉𝑎𝑟(𝑌𝑖) = 𝜆𝑖(1 + 𝛼𝜆𝑖)2. (11) 

 

 When 𝛼 > 0, then the variance is larger than the mean, and this represents the situation of 

overdispersion. However, when 𝛼 < 0, the variance is smaller than the mean, and this 

represents the situation of underdispersion. The estimates of 𝛼 and 𝛽 in the GPR are obtained 

using the method of maximum likelihood.  

The log-likelihood function is given by:  

𝐿(𝛼, 𝛽) = ∑𝑛
𝑖=1 [−𝑙𝑛 (

𝜆𝑖

1+𝛼𝜆𝑖
) + (𝑦𝑖 − 1)𝑙𝑛(1 + 𝛼𝑦𝑖) −

𝜆𝑖(1+𝛼𝑦𝑖)

1+𝛼𝜆𝑖
− 𝑙𝑛(𝑦𝑖!)]. (12) 

 

 The maximum likelihood equations for estimating 𝛼 and 𝛽 are obtained by taking the partial 

derivatives of the log-likelihood function and equating to zero, giving:  

 
𝜕𝑙𝑛𝐿

𝜕𝛼
= ∑𝑛

𝑖=1 [
−𝜆𝑖𝑦𝑖

1+𝛼𝜆𝑖
+

𝑦𝑖(𝑦𝑖−1)

(1+𝛼𝑦𝑖)
−

𝜆𝑖(𝑦𝑖−𝜆𝑖)

(1+𝛼𝜆𝑖)2] = 0, (13) 

  

 
𝜕𝑙𝑛𝐿

𝜕𝛽𝑗
= ∑𝑛

𝑖=1 [
(𝑦𝑖−𝜆𝑖)

𝜆𝑖(1+𝛼𝜆𝑖)2

𝑑𝜆𝑖

𝑑𝛽𝑗
] = 0, 𝑗 = 1,2, . . . , 𝑞. (14) 

 

 Right from generalized linear model the link function for Poisson regression is 𝑙𝑜𝑔(𝜆𝑖) =
(𝑋𝑖

⊤𝛽). Then substituting 𝜆𝑖 = 𝑒𝑥𝑝(𝑋𝑖
⊤𝛽) on equations (13) and (14) can be rewritten as:  

 

 
𝜕𝑙𝑛𝐿

𝜕𝛼
= ∑𝑛

𝑖=1 [
(𝑦𝑖−𝜆𝑖)

(1+𝛼𝜆𝑖)2] = 0, (15) 
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𝜕𝑙𝑛𝐿

𝜕𝛽𝑗
= ∑𝑛

𝑖=1 [
(𝑦𝑖−𝜆𝑖)𝑥𝑗

(1+𝛼𝜆𝑖)2 ] = 0    𝑗 = 1,2, . . . , 𝑞. (16) 

 

The parameters 𝛼 and 𝛽 are estimated by the Newton-Raphson method. 

Estimation of 𝛼 can also be done by using method of moments where 𝛼 may be estimated by 

equating the Pearson chi-squared with (𝑛 − 𝑞) degree of freedom (Husain & Bagmar, 2015), 

and is given by: 

 
𝜕𝑙𝑛𝐿

𝜕𝛽𝑗
= ∑𝑛

𝑖=1 [
(𝑦𝑖−𝜆𝑖)𝑥𝑗

(1+𝛼𝜆𝑖)2 ] = 𝑛 − 𝑞, (17) 

 

 where 𝑛 denotes the number of values and 𝑞 the number of regression parameters. 

 

Conway Maxwell Poisson Regression (COM-Poisson) 

The conway Maxwell Poisson Regression, commonly named the COM-Poisson distribution, 

is a generalization of the Poisson distribution, first introduced by Conway and Maxwell (1962) 

for modelling queues and service rates. The COM-Poisson distribution has recently been 

reintroduced by statisticians for analyzing count data subjected to either over or 

underdispersion (Lord et al., 2010; Lord & Mannering, 2010). Its probability mass function is:  

 𝑃(𝑌 = 𝑦) =
1

𝑍(𝜆,𝜈)

𝜆𝑦

(𝑦!)𝜈   ,    𝑦 = 0,1,2. .. (18) 

 

where 𝑌 is a discrete count; 𝜆 is a centering parameter that is approximately the mean of the 

observation in many cases (𝜆𝑖 = 𝑒𝑥𝑝(𝑋𝑖𝛽) with 𝛽 a vector of regression parameters, 𝑋𝑖 the 

matrix of explanatory variables); and 𝜈 is the dispersion parameter of the COM-Poisson v, 

distribution. 

Thus, 𝑍(𝜆, 𝜈) is given by:  

 

 𝑍(𝜆, 𝜈) = ∑∞
𝑛=0

𝜆𝑛

(𝑛!)𝜈 
  . (19) 

 

The mean and the variance of 𝑌 are given by:  

 𝐸(𝑌) =
𝜕𝑙𝑜𝑔𝑍(𝜆𝑖,𝜈)

𝜕𝑙𝑜𝑔𝜆𝑖
 , (20) 
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                             𝑉𝑎𝑟(𝑌) =
𝜕𝐸(𝑌)

𝜕𝑙𝑜𝑔𝜆𝑖   
 . (21) 

The 𝜆 is approximately the mean when 𝜈 is close to one and it differs substantially from the 

mean for small 𝜈. These approximations fail for either 𝜈 > 1 (i.e., underdispersion) or 𝜆1/𝜈 <
10 (i.e., low expected values). In many cases, a more useful parameterization for the COM-

Poisson involves substituting 𝜇 = 𝜆1/𝜈, where 𝜇 is approximately the mode of 𝑌 (Lord et al., 

2010; Lynch et al., 2014). 

The log-likelihood function is given by:  

 (22) 

                       

which is acquired as:  

 (23) 

  

Then, the likelihood is a function of sufficient statistic 𝑌 and 𝑙𝑜𝑔(𝑌!), for example, 𝜃 =

(𝑙𝑜𝑔(𝜆, 𝜈). Parameter Estimation can be determined by applying Newton Rhapson method. 

Loglikelihood gradient is measured as (Hayati et al., 2018):  

 (24) 

 

 and the second derivation is:  

(25) 

 

 Newton Rhapson formula is estimated as:  

(26) 

Initial value probably appears for iteration that MLE from Poisson is acquired as 
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Gamma Count Model 

Gamma model was proposed by Oh et al. (2006) to analyze crash data exhibiting 

underdispersion. Lord and Mannering (2010) once employed this model as an alternative to 

handle underdispersion. The Gamma Count probability model for count data is given as:  

𝑃(𝑦𝑖 = 𝑗) = 𝐺𝑎𝑚𝑚𝑎(𝛼𝑗, 𝜆𝑖) − 𝐺𝑎𝑚𝑚𝑎(𝛼𝑗 + 𝛼, 𝜆𝑖),    𝑗 = 0,1,2, . . . ,    𝑖 = 1, . . . 𝑛,          (27) 

 

 where 𝜆𝑖 = 𝑒𝑥𝑝(𝑋𝑖𝛽), 𝛽 is a vector of regression parameters, 𝑋 is the matrix of explanatory 

varibles and 𝛼 is the dispersion parameter,  

 𝐺𝑎𝑚𝑚𝑎(𝛼𝑗, 𝜆𝑖) = 1,    𝑖𝑓    𝑗 = 0 (28) 

 𝐺𝑎𝑚𝑚𝑎(𝛼𝑗, 𝜆𝑖) =
1

𝛤(𝛼𝑗)
∫

𝜆𝑖

0
𝑡𝛼𝑗−1𝑒−𝑡𝑑𝑡,    𝑖𝑓    𝑗 > 0. (29) 

 

 The conditional mean and variance functions are given by:  

𝐸(𝑦𝑖) = ∑∞
𝑖=1 𝑗𝐺𝑎𝑚𝑚𝑎(𝛼𝑗, 𝜆𝑖), (30) 

 𝑣𝑎𝑟(𝑦𝑖) = ∑∞
𝑖=1 𝑗2[𝐺𝑎𝑚𝑚𝑎(𝛼𝑗, 𝜆𝑖) − 𝐺𝑎𝑚𝑚𝑎(𝛼𝑗 + 𝛼, 𝜆𝑖)] − 𝐸(𝑦𝑖|𝑋𝑖)2       (31) 

  

For 𝛼 > 1, the model shows underdispersion; for 𝛼 < 1, the model exhibits overdispersion; 

for 𝛼 = 1, it is equidispersion meaning the gamma model reduces to Poisson model. 

The log-likelihood function is given by:  

𝐿(𝑦𝑖|𝛼, 𝜆) = ∑𝑛
𝑖=1 𝑙𝑜𝑔(𝐺𝑎𝑚𝑚𝑎 (𝑦𝑖𝛼, 𝛼𝑒𝑥𝑝(𝜆𝑖) − 𝐺𝑎𝑚𝑚𝑎(𝑦𝑖(𝛼 + 1), 𝛼𝑒𝑥𝑝(𝜆𝑖)))      (32) 

 Parameter estimation requires numerical maximization of equation (32).  

Double Poisson Model (DP) 

Based on the double exponential family, Efron (1986) proposed the Double Poisson 

distribution. The Double Poisson model, based on the distribution, has two parameters 𝜇 and 

𝜃. Zou et al. (2013) and Zou et al. (2011) give the approximate probability mass function 

(p.m.f) as per the following equation:  

 𝑃(𝑌 = 𝑦) = 𝑓𝜇,𝜃(𝑦) = (𝜃
1

2𝑒−𝜃𝜇)(
𝑒−𝑦𝑦𝑦

𝑦!
)(

𝑒𝜇

𝑦
)𝜃𝑦,    𝑦 = 0,1,2. . ., (33) 

where 𝜃 is the dispersion parameter, 𝜇 = 𝑒𝑥𝑝(𝑋𝑖𝛽), 𝛽 is a vector of regression parameters, and 

𝑋 is the covariate matrix. The exact double Poisson density is given as: 

 𝑃(𝑌 = 𝑦) = 𝑓𝜇,𝜃(𝑦) = 𝑐(𝜇, 𝜃)𝑓𝜇,𝜃(𝑦), (34) 
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where the factor 𝑐(𝜇, 𝜃) can be calculated as:  

 
1

𝑐(𝜇,𝜃)
= ∑∞

𝑦=0 𝑓𝜇,𝜃(𝑦) ≈ 1 +
1−𝜃

12𝜇𝜃
(1 +

1

𝜇𝜃
). (35) 

 

with 𝑐(𝜇, 𝜃) being the normalizing constant nearly equal to 1. The constant 𝑐(𝜇, 𝜃) ensures that 

the density sums to unity. The expected value and the standard deviation (SD), referring to the 

exact density 𝑓𝜇,𝜃, are estimated as follows:  

 𝐸(𝑌) ≈ 𝜇, (36) 

  

 𝑆𝐷(𝑌) ≈ (
𝜇

𝜃
)

1

2
. (37) 

 

Thus, the Double Poisson model allows for both overdispersion (𝜃 < 1) and underdispersion 

(𝜃 > 1). When 𝜃 = 1, the Double Poisson distribution collapses to the Poisson distribution. In 

DP model, particular focus should be given to the use of the normalizing constant which 

includes an infinite series (Zou et al., 2013). The infinite series is as follows:  

 ∑∞
𝑦=0 𝑓𝜇,𝜃(𝑦). (38) 

 

Therefore, the log-likelihood function is given by:  

𝐿(𝜇, 𝜃|𝑌) = ∑𝑛
𝑖=0 {

1

2
(𝜃) − 𝜃𝜇 − 𝑦𝑖 + 𝑦𝑖𝑙𝑛𝑦𝑖 − 𝑙𝑛𝛤(𝑦𝑖 + 1) + 𝜃𝑦𝑖(𝑙𝑛𝜇 − 𝑙𝑛𝑦𝑖 + 1) −

𝑙𝑛(𝑐(𝜇, 𝜃))}.                                                                                 (39) 

 

Parameter estimations requires numerical maximization of equation (39).  

 

METHODOLOGY 

Data Generation Process 

To evaluate the robustness of Poisson model and its alternatives to handle underdispersed count 

data, a simulation study was conducted. The simulation was done by mimicking the work of 

Nkegbe and Shankar (2014) on the adoption intensity of soil and water conservation practices 

by smallholders where their data exhibited underdispersion. 

To conduct the simulation, we used SHLAB (Total self-help labour for 2008/09 agricultural 

year (in man-days)) as covariate (𝑥1) because it is significant in the model, and the response 

variable (𝑦) was the number of conservation practices adopted. Thereby, the coefficients 𝛽0 
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and 𝛽1 take respectively the values −0.2088 and 0.0029 following the result of (Nkegbe & 

Shankar, 2014). The mean 𝜇 is expressed as:  

 𝐸(𝑦|𝑆𝐻𝐿𝐴𝐵) = 𝜇 = 𝑒𝑥𝑝(−0.2088 + 0.0029 × 𝑆𝐻𝐿𝐴𝐵) (40) 

In R software, the response variable 𝑦 was generated using the Generalized Condensed Poisson 

distribution (GCP) which is a mixture of the Asynchronous counting distribution introduced 

by Whittlesey and Haight (1961). The Erlang count (asynchroneous Poisson) distribution, with 

mean 𝜇 and condensing coeffcient (shape) 𝑚, is denoted 𝐴𝑃(𝜇, 𝑚) and has probability mass 

function (Whittlesey & Haight, 1961): 

 𝑓𝑎𝑝(𝑦|𝜇, 𝑚) = ∑𝑚−1
𝑡=1−𝑚

𝑚−|𝑡|

𝑚
𝑓𝑝(𝑚𝑦 + 𝑡|𝜆), (41) 

where 𝑓𝑝 =
𝑒−𝜇𝜇𝑦

𝑦!
, 𝜆 = 𝑚𝜇 and 𝑦 is the response variable. 

We considered a positive real 𝑚 ∈ 𝑅    (𝑚 ⩾ 1) and let 𝑚0 = ⌊𝑚⌋ the integral part of 𝑚. The 

Generalized Condensed Poisson distribution (GCP) with mean 𝜇 and condensing coefficient 

(shape) 𝑚 was denoted 𝐺𝐶𝑃(𝜇, 𝑚) defined as the mixture of 𝐴𝑃(𝜇, 𝑚0) and 𝐴𝑃(𝜇, 𝑚0 + 1) 

with respective mixing probabilities 1 − 𝜌 and 𝜌, where 𝜌 = (𝑚 − 𝑚0)
𝑚0+1

𝑚
. This implicit 

definition actually gives an algorithm to generate variates from 𝐺𝐶𝑃(𝜇, 𝑚). The 𝐺𝐶𝑃(𝜇, 𝑚) 

has probability distribution function: 

 𝑓(𝑦|𝜇, 𝑚) = 1 − 𝜌𝑓𝑎𝑝(𝑦|𝜇, 𝑚) + 𝜌𝑓𝑎𝑝(𝑦|𝜇, 𝑚0 + 1) (42) 

 

The core advantage of this distribution over other underdispersion distributions is that it is easy 

to simulate. If the shape parameter 𝑚 = 1, the Asynchronous/Condensed Poisson distribution 

reduces to Poisson distribution. The parameter 𝑚 can be set in such a way that the 

underdispersion level or parameter of underdispersion (𝑘 = 𝑣𝑎𝑟/𝑚𝑒𝑎𝑛) takes a fixed value 

(0 < 𝑘 ⩽ 1) given a fixed expectation value. 

In our simulation, we have considered three different values of 𝑘 (0.81, 0.5 and 0.2) and 𝑘 = 1 

as a control. These three values were selected from the underdispersion levels that we found 

from the review (Nkegbe & Shankar, 2014; Min et al., 2017). Five sample sizes were 

considered in our simulation (20, 50, 100, 300 and 500) inspired by the works of Hayati et al. 

(2018). 
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Table 1: Simulation Scenario 

Source of 

data 

 

Parameters Sample 

size 

Level of 

underdispersion 

Model 

Comparison 

Number of 

replications 

𝑌 generates 

from 

Asynchron

ous/Conde

nsed 

Poisson 

distribution  

𝛽0 = −0.2088 

 

𝛽1 = 0.0029 

𝑛 = 20,  
50,  

100,  
300  

𝑎𝑛𝑑 500 

𝑘 = 0.81, 0.5, 

and 0.2 

 

A control 𝑘 = 1 

Poisson, 

COM-

Poisson 

Double 

Poisson 

and Gamma 

count 

 

 

 

1000 

times 

  

Fitting Models Studied to Simulated Data 

In this study, the software R version 3.5.2 was used for computations. We used the glm function 

of the package MASS with the option 𝑓𝑎𝑚𝑖𝑙𝑦 = 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝑙𝑜𝑔) for Poisson model, the glm.cmp 

function of the package COMPoissonReg for COM-Poisson model, the vglm function of the 

package VGAM for Generalized Poisson Regression, the gamlss function of the package gamlss 

with the option family = DPO for Double Poisson regression and the renewalCount function 

of the package Count for Gamma Count regression. 

After each model estimation, parameter estimates as well as their standard deviations and 95% 

confidence intervals were extracted. 

Performance Measures 

For each combination 𝑛 and 𝑘, models were compared following performance measures 

(Morris et al., 2019). The 5 different models were compared using Relative Bias (RBias) and 

Root Mean Squared Error (RMSE). The slope indicates the relative relationship between 

simulated and measured values. For the slope 𝛽1, we get:  

 

 𝐵𝑖𝑎𝑠 =
1

𝑁
∑𝑁

𝑖=1 𝛽̂1𝑖 − 𝛽1;     𝑅𝐵𝑖𝑎𝑠 =
𝐵𝑖𝑎𝑠

𝛽1
× 100, (43) 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑𝑁

𝑖=1 (𝛽̂1𝑖 − 𝛽1)2, (44) 

where 𝛽̂1𝑖 is the estimated parameter, 𝛽1 is the true value and i=1...N, N is the number of 

simulations. 

The model showing the low values of these statistics is the best. Relative Bias and RMSE were 

plotted and analysed. 
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RESULTS 

Performance of Poisson Model Against Alternatives 

Figure 1 shows boxplots of relative bias of Poisson model and its alternatives. The Generalized 

Poisson Regression, Poisson, Double Poisson and COM-Poisson model showed the lowest 

values of the Relative Bias. The Gamma Count model has the highest median value. Moreover, 

the dispersion around the median values of relative bias was large for the Gamma Count model. 

 

 

 

   

Figure 1: Relative performance of Poisson model and its alternatives irrespective of 

underdispersion levels and sample size 

 

The Effect of Underdispersion and Sample Size 

Figure 2 shows relative bias of slopes of the five models according to the values of 𝑘 for each 

sample size. The relative bias is close to zero for Double Poisson, Generalized Poisson 

Regression and Poisson model along the level of underdispersion 𝑘 for all sample sizes. 

However, relative bias for COM-Poisson model were close to zero for sample size 𝑛 = 50. It 

also shows relative constant values of relative bias which is close to zero when 𝑘 is between 

0.2 and 0.5 for low sample size (𝑛 = 20). The COM-Poisson model has relative bias close to 

zero when the dispersion is 0.2, 0.81 or 1. The relative bias of Gamma Count model is close to 

zero when the dispersion is between 0.81 to 1. In summary, Gamma Count model is more 

biased compared to other alternative models. 
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Figure 2: Plots of relative bias against sample size for Poisson model and its alternative 

 

Figure 3 shows values of RMSE for Poisson model and its alternatives. The COM-Poisson 

model is the best performer model when the level of underdispersion is 0.2. The performance 

of Poisson model is quite similar that of the Double Poisson and Generalized Poisson for all 

combination of 𝑛 and 𝑘. The COM-Poisson model is also the best performer model when 𝑘 is 

0.81 for most sample sizes (𝑛 = 50, 100, 300 and 500). When 𝑘 = 1 for sample sizes (𝑛 =
50, 100, 300 and 500), we note the best behavior for all models but the Poisson model is the 

best performer. 
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Figure 3: Variation of Root Mean Square Error against sample size for Poisson model 

and its alternatives. 

 

DISCUSSION 

Underdispersion occurs when the variance is lower than the mean. The dispersion index 

(variance to mean ratio) takes values between 0 and 1. A dispersion value of 1 means that the 

variance is equal to the mean and thus the Poisson model hypothesis holds. However, this is 

not always the case. According to the literature, several models have been developed to treat 

cases of underdispersion (Sellers & Shmueli, 2010; Famoye & Wang, 1997; Zou et al., 2013). 

Four alternative models have been studied here. Results of the Monte Carlo simulation show 

that the Poisson model performs poorly for underdispersed count data. This supports findings 

of Lynch et al. (2014) and Barakat (2016) on the low performance of Poisson model to handle 

underdispersed count data. Therefore, it remains the best model in the case of equidispersion 

(𝑘 = 1). 
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For its alternatives, the results of the simulation showed that the COM-Poisson model is the 

best performer compared to other models when the underdispersion is severe (equal to 0.2). 

The COM-Poisson model yielded the best performance when the dispersion was moderate 

(0.81) for sample sizes (𝑛 = 50, 100, 300 and 500). For low sample sizes (𝑛 = 20 and 50) 

and the level of underdispersion equal to 0.5, the COM-Poisson was also found to be the best 

model. However, Double Poisson and Generalized Poisson Regression models outperformed 

COM-Poisson model for relatively large sample sizes (𝑛 = 100, 300 and 𝑛 = 500) for the 

same level of underdispersion (𝑘 = 0.5). The effectiveness of the COM-Poisson model to 

handle different levels of underdispersion of count data was also demonstrated by Sellers & 

Shmueli (2010). Our results partly support the performance of COM-Poisson but highlight that 

COM-Poisson model is not always the best in all situations for each combination of 𝑛 and 𝑘. 

The elegance of the COM-Poisson regression model lies in its ability to address applications 

containing a wide range of dispersion in a parsimonious way. Geedipally et al. (2008) and Wu 

et al. (2013) used the Bayesian approach of the COM-Poisson regression model to estimate 

parameters. They found that the COM-Poisson is a flexible method for analyzing count data 

and also Bayesian estimation provides an attractive alternative for estimating the coefficients 

of the model compared to the method of the maximum likelihood where the likelihood equation 

for the COM-Poisson is complex, making analytical and numerical maximum likelihood 

estimation difficult. Contrary of the suggestion of Zou et al. (2013), the maximum likelihood 

estimation of the parameters of COM-Poisson was greatly simplified when compared to the 

Bayesian estimating method. Moreover, for Double Poisson, Generalized Poisson Regression 

and Gamma Count models, the maximum likelihood estimation of the parameters was often 

used. Famoye (1993) found that the bounded dispersion parameter when underdispersion 

occurs greatly diminishes the applicability of the Generalized Poisson Regression model to 

count data. This was shown by our results on the limits of GPR when the underdispersion is 

severe or moderate. 

Therefore, Hayati et al. (2018) found that the COM-Poisson model is more flexible in dealing 

data with underdispersion than Generalized Poisson Regression because the underdispersion 

value area is wider than the Generalized Poisson Regression model. However, results showed 

that no model is better in all situations, so the use of a model depends on the situation we have. 

Therefore, in practice, all alternatives should be tested first and the best selected. 

 

CONCLUSION AND RECOMMENDATION 

To evaluate the performance of the Poisson model and its alternatives following different 

underdispersion parameters and sample sizes, the Monte Carlo simulation approach was used. 

Results show that the Poisson model is not very effective to handle underdispersion count data 

compared to its alternatives. All alternative models studied showed their effectiveness in 

handling underdispersed count data. However, the COM-Poisson model shows better statistical 

performance in case of severe underdispersion than other models. Moreover, the Generalized 

Poisson Regression and Double Poisson models have results quite similar in term of 

performance. It is suggested that further research should be conducted using real datasets to 

confirm the findings of in this research. 
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