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ABSTRACT: The study investigated the robustness of Quantile 

regression of count data over negative binomial regression, when 

there is overdispersion and presence of outlier. The study made 

use of a complete data and the data with 30% missing data which 

was imputed using Multiple Imputation by Chain Equation 

(MICE) in R and also an outlier was injected into the data during 

imputation of missing values. The Quantile Regression and 

Negative Binomial Regression estimates were compared and their 

model fits were also compared. Results showed that the quantile 

regression for count data provided a better model estimate with 

both complete data and data with multiple imputed value with 

comparison to the negative binomial regression in terms of AIC, 

BIC RMSE and MSE. Hence, Quantile Regression is better than 

the negative binomial regression when the researcher is interested 

in the effect of the independent variable on different points of the 

distribution of the response variable and when there is 

overdispersion and presence of an outlier.  

KEYWORDS: Count Data, Quantile Regression, Negative 

Binomial Regression, Missing Data, Overdispersion and Outlier. 
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INTRODUCTION  

On a daily basis, count data is used in transactions. Some statistical analysis or modelling is 

essential to gain a deeper understanding of such data and to extract the data's key information. 

Different count data may have unique properties that prevent their use with specific count data 

models. A foundation for the study of count data is provided by the Poisson regression model. 

Many practitioners use the Poisson model when analyzing count data, frequently without 

verifying that all of its underlying assumptions are correct. In place of fitting a model naively, 

one should examine whether the model's assumptions are met before choosing a model to 

match a particular set of data. There are instances where these presumptions are broken, 

necessitating the use of an alternative model. Negative binomial and hurdle models are a couple 

of the different models that can be taken into account when modelling count data. It is 

challenging to decide which of the statistical models to use for processing count data based 

solely on intuition.  

During the data collection procedure, incomplete data commonly occurs. They may result from 

incomplete records, such as when people refuse to participate in a census or survey and 

withhold information. The use of partial data has negative effects on the reliability of the 

findings and the validity of the conclusions (Graham, 2009).  Additionally, many complete-

data analysis techniques are not relevant when there are missing data, and current software may 

not function properly. Imputing the missing values to complete the datasets can be 

advantageous. Preferably data collectors use this imputation technique rather than data analysts 

since they may have additional information that increases the precision of imputation models 

(Allison, 2000). When the data collector only fills in the missing values once, data analysts use 

the imputations as though they were actual values, which underestimate the level of uncertainty 

in the inferences (Allison, 2000). Rubin suggests multiple imputation, which preserves the 

benefits of imputation techniques while also enabling analysts to take uncertainty into account 

throughout the imputation process (Allison, 2003). In multiple imputation, the data collector 

takes a selection of various values from a predictive distribution for the missing elements and 

makes repeated releases of the finished datasets. Data collectors can provide secondary data 

analyzers with principled interval estimates in this way (Allison, 2000). Multiple imputation 

(MI) addresses the drawbacks of single imputation by adding a second type of error known as 

"between imputation error" based on variations in parameter estimations across the imputation. 

Each missing item is replaced with two or more acceptable values to illustrate a range of 

possibilities. MI is a simulation-based approach. Instead of trying to replicate each missing 

value as closely as feasible to the actual ones, its aim is to handle missing data so that reliable 

statistical inference can be performed (Schafer, 1997). 

In removing some of its restrictions, multiple imputation has the same ideal qualities as 

maximum likelihood (ML). Any type of data and model can be used with it while using 

conventional software. Every time you use it, it generates a different estimate (ideally just 

slightly different), which can result in scenarios where various researchers obtain various 

results from the same data while using the same methodology. 
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Quantile Regression 

The midpoint of the population of interest is the limit of the predictor effects in linear regression 

analysis. This constraint may only give a partial picture, which may lead to potentially incorrect 

inferences when the assumptions of the conventional linear regression are broken. Koenker and 

Bassett (1978) proposed QR, which involves estimation of the entire distribution of the 

response variable dependent on selected linear predictors, as a way to improve regression 

analysis. This implies that the computation of a comprehensive collection of values that 

represent the conditional quantiles will take the place of the computation of a single value that 

represents the conditional mean. These conditional quantiles can provide a more complete 

picture of the current connection. 

The conditional quantile regression approach is the foundation of the QR framework, which 

has been widely adopted in the literature on applied economics. The conditional regression 

approach is used to determine how a predictor will change at a certain location on the response 

distribution depending on the values of other predictors. Typically, conditional quantile 

regression may produce results that are difficult to understand in the context of policy or 

population, contrary to the unconditional quantile regression technique, which marginalizes the 

predictor impact over the distributions of other predictors in the model and yields results that 

are easier to comprehend (Borah & Basu, 2013). 

The existing quantitative evidence from more typical mean-based analyses might be expanded 

and deepened using QR approaches (Wei et al., 2019). Chernozhukov et al. (2022) detail a 

variety of innovative procedures for accelerating quantile regression computations when the 

necessity to estimate a high number of different quantiles is of interest. Nwakuya (2020) used 

a Bayesian ordinal quantile regression approach to evaluate the mental health of undergraduate 

students based on age. Quantile regression has been used in various research fields. 

Koenker and Bassett (1978) proposed a method to calculate the quantile, given as: 

𝑄�̂�(𝜏) = 𝑎𝑟𝑔𝑚𝑖𝑛⏟ 𝜉𝜏∈𝑅  { ∑

𝑖∈{𝑖|𝑌𝑖≥𝜉𝜏}

𝜏|𝑌𝑖 − 𝜉𝜏|  + ∑

𝑖∈{𝑖|𝑌𝑖<𝜉𝜏}

(1

− 𝜏)|𝑌𝑖 − 𝜉𝜏|}                     (1) 

Koenker and Bassett (1978) remarked that “the case of the median (τ = 1/2) is, of course, well 

known, but the general result has languished in the status of curiosum.” We use the indicator 

function (I(A) = 1 if A is true, and I(A) = 0 if otherwise) to introduce the so-called check 

function: 

𝜌𝜏(𝑒) = 𝑒(𝜏 − 𝐼(𝑒 < 0))       0 < 𝜏 < 1         (2) 

The check function allows us to reformulate the objective function of (3.1) as a single 

expression: 

𝑄�̂�(𝜏) = 𝑎𝑟𝑔𝑚𝑖𝑛⏟ 𝜉𝜏∈𝑅 ∑𝑖 𝜌𝜏(𝑌𝑖 − 𝜉𝜏)                                                            

 (3) 
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Notice that since 𝑄�̂�(𝜏) is not a continuous function of �̂� at 𝜏 =  �̂�, Slutsky’s theorem cannot 

be invoked to claim the consistency for 𝑄�̂�(𝜏) because of the discrete nature of our data. 

According to Machado (2005), the De Moivre-Laplace Theorem, for large n, the probability 

𝑃𝑟 (𝑄�̂�(𝜏) = 0) can be approximated by 1- 𝜙 (√𝑛
𝜏−𝑞

√𝑞(1−𝑞)
). 

Because the estimated quantiles are random variables with the same support as Y, their 

asymptotic distribution cannot be normal when the data is discrete. 

Machado (2005) considered a new random variable Z which is constructed by adding to Y a 

random variable U uniformly distributed in an interval (0,1); this is known as jittering, that is, 

Z = Y + U. Obviously, Z is a continuous random variable with positive density on the interval 

(0, 2) and 𝑄�̂�(𝜏) is defined by:  

𝑄�̂�(𝜏) =  {
𝜏

𝑞
                                𝑞 >  𝜏 1 + 

𝜏−𝑞

(1−𝑞)
          𝑞 <  𝜏      

   (4) 

Interestingly the feature of the random variable Z is such that there is a one-to-one relationship 

between 𝑄�̂�(𝜏) and 𝑄�̂�(𝜏). 𝑄𝑌(𝜏) = ⌈𝑄𝑍(𝜏) −  1⌉ where  ⌈𝜏⌉ denotes the ceiling function which 

returns the smallest integer greater than, or equal to 𝜏. Therefore, data about the quantile of Y, 

the variate of interest, can be acquired from 𝑄�̂�(𝜏). The minimization of the absolute 

deviations, ∑𝑛
𝑖=1 |𝑦𝑖 − 𝑋𝑖𝛽|. This eases the impact of outliers in the response data providing 

a better fit for the majority of observations. 

 

LITERATURE/THEORETICAL UNDERPINNING 

Nwakuya and Nwabueze (2022) applied Poisson regression and negative binomial regression 

on count data from road accident fatality during COVID-19 hit era in Nigeria. The negative 

binomial regression was seen to perform better due to the presence of overdispersion, rendering 

Poisson regression inadequate. The comparison was based on mean–variance relationship, 

goodness of fit test, AIC and BIC. Lee and Neocleous (2010), in their research “Bayesian 

Quantile Regression for Count Data with Application to Environmental Epidemiology,” 

presented a Bayesian quantile regression model for count data and applied it in the field of 

environmental epidemiology. Their methods were applied to a new study of the relationship 

between long-term exposure to air pollution and respiratory hospital admissions in Scotland. 

They observed a decreasing relationship between pollution and the τth quantile of the response 

distribution, with a relative risk ranging between 1.023 and 1.070. Fuzi et al. (2010), in their 

paper “Bayesian Quantile Regression Model for Claim Count Data,” applied Bayesian quantile 

regression model for the Malaysian motor insurance claim count data to study the effects of 

change in the estimates of regression parameters (or the rating factors) on the magnitude of the 

response variable (or the claim count). They also compared the results of quantile regression 

models from the Bayesian and frequentist approaches and the results of mean regression 

models from the Poisson and negative binomial.  

Comparison from Poisson and Bayesian quantile regression models shows that the effects of 

vehicle year decrease as the quantile increases, suggesting that the rating factor has lower risk 
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for higher claim counts. On the other hand, the effects of vehicle type increase as the quantile 

increases, indicating that the rating factor has a higher risk for higher claim counts. Lv and Xu 

(2017), in their study “A Panel Data Quantile Regression Analysis of the Impact of Corruption 

on Tourism,”  adopted the quantile regression model to provide a broad description of the 

relationship between tourism demand and corruption across the demand distribution.  Their 

empirical results indicate that the nonlinear relationship between corruption and tourism 

demand is only significant at the 50th and 75th quantiles. They also found a significant positive 

relationship between income and tourism demand across various quantiles, and the strength of 

the relationship is larger at lower demand levels. Grund  et al. (2018), in their paper “Multiple 

Imputation of Missing Data for Multilevel Models: Simulations and Recommendations” based 

on theoretical arguments and computer simulations, provided guidance using Multiple 

Imputation (MI) in the context of several classes of multilevel models, including models with 

random intercepts, random slopes, cross-level interactions (CLIs), and missing data in 

categorical and group-level variables. 

 

METHODOLOGY 

This study adopted the method of estimating the quantile regression and negative binomial 

regression parameters. To do this, the study considered negative binomial estimates, quantile 

regression estimates, root mean square, and mean square error. Data used for this study was 

sourced from National Bureau of Statistics from Federal Road Safety Commission for 2021, 

on road accidents in the 36 states of the Nigeria plus FCT. The response is the number of people 

due to road accidents and the predictor variables are: number of cases, number of those 

involved in an accident and the number of people that got injured. The analysis began with a 

set of complete data; then, 30% of the values were made missing assuming that missingness is 

completely at random (MCAR). The missing values were later imputed using a multiple 

imputation method in the process and an outlier was injected. Analysis was conducted using 

the quantile regression and negative binomial regression technique on both the complete data 

and the data that has an outlier. Four methods of model comparison criteria, namely Root Mean 

Square Error (RMSE), Mean Square Error (MSE), Akaike Information Criteria (AIC) and 

Bayesian Information Criteria (BIC), were applied to compare the quantile regression and 

negative binomial regression. The preceding sections describe the various methods and then 

results and conclusion follow. 

The Negative Binomial Regression Model 

The introduction of negative binomial was due to overdispersion which violates the assumption 

of Poisson regression. In negative binomial regression, the mean of y is determined by the 

exposure time t and a set of k regressor variables (the x’s). The expression relating these 

quantities is 

𝜇𝑖 =𝑒𝑥𝑝 𝑒𝑥𝑝 (𝐼𝑛(𝑡𝑖) + 𝛽1𝑥1𝑖 +  𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖                                                  (5) 

  

Often, X1 ≡ 1, in which case 𝛽1is called the intercept. The regression coefficients  𝛽1, 𝛽2, …,  

𝛽𝑘 are unknown parameters that are estimated from a set of data. Their estimates are 

symbolized as  𝑏1, 𝑏2, …, 𝑏𝑘. 
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Using this notation, the fundamental negative binomial regression model for an observation i 

is written as: 

Pr ( Y = yi׀µi, α) = 
𝛤(𝑦𝑖+𝛼−1)

𝛤𝛼−1𝛤(𝑦𝑖+1)
(

1

1+𝛼𝜇𝑖
)𝛼−1

(
𝛼𝜇𝑖

1+𝛼𝜇𝑖
)𝑦𝑖      (6) 

where 

𝜇𝑖 = 𝑡𝑖 

α = 
1

𝑣
 

Comparison Criteria 

Akaike’s Information Criteria (AIC) 

One of the most commonly used information criteria is the Akaike’s Information Criteria 

(AIC). The idea of AIC (Akaike, 1973) is to select the model that minimizes the negative 

likelihood penalized by the number of parameters as specified in the equation: 

AIC = − 2 log (L) + 2p          (7) 

where L refers to the likelihood under the fitted model and p is the number of parameters in the 

model. Specifically, AIC is aimed at finding the best approximating model to the unknown true 

data generating process and its applications. 

Mean Squared Error (MSE) 

The MSE measures the average of the square deviation between the fitted values with the actual 

data observation. The mean-squared error is determined by the residual sum of squares 

resulting from comparing the predictions �̂� with the observed outcomes y: 

𝑀𝑆𝐸 =  
1

𝑛
∑𝑁

𝑖=1 (𝑦𝑖 − 𝑦�̂�)
2        (8) 

Bayesian Information Criteria (BIC)  

Another widely used information criterion is the BIC. BIC is derived within a Bayesian 

framework as an estimate of the Bayes factor for two competing models: Kass and Rafftery 

(1995). BIC is presented thus:  

BIC = − 2 log ( L ) + p lo g ( n )  where n>p    (9) 
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RESULTS/FINDINGS 

Table 1: Deviance result  

Overdispersion  DF 

Null deviance 3495.11   36 

Residual deviance 509.46   33 

 

The results show the presence of overdispersion. 

 

Quantile Estimates on a Specified Quantile for the Count Data Model with and without 

Multiple Imputation of Missing Data 

Table 2: Quantile estimates on a specified quantile for the count data model with complete 

data 

                    25% 50% 75% 95% 

𝜷𝟎 3.7892e+00***   3.9707e+00*** 4.28600128*** 4.6733e+00***   

𝜷𝟏 -1.2461e-03*** -1.7657e-03*** -0.00222374***   -1.9677e-03***   

𝜷𝟐 2.7372e-04*** 3.1949e-04*** 0.00051783***   3.6893e-04***   

𝜷𝟑 6.6060e-04*** 7.2476e-04***   0.00043977***   4.9369e-04***   

*** p-value significant at 0.05 showing all the values are significant. 

The results show a significant effect of all variables at all quantiles.   

 

Table 3: Quantile estimates on a specified quantile for the count data model with 30% missing 

data imputed using multiple imputations 

                    25% 50% 75% 95% 

𝜷𝟎 3.8970e+00***   4.2714e+00***   4.4050e+00***   4.6500e+00***   

𝜷𝟏 -1.3081e-03***   -1.6506e-03***   -2.0447e-03***   -3.0335e-03***   

𝜷𝟐 2.8615e-04***   3.1593e-04***   5.6021e-04***   7.4902e-04***   

𝜷𝟑 6.1071e-04***   5.3809e-04***   2.5991e-04***   8.1016e-05***   

*** p-value significant at 0.05 showing all the values are significant. 

The results show a significant effect of all variables at all quantiles.   
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Negative Binomial Estimates for the Count Data Model with Complete Data and 30% 

Missing Data with Multiple Imputation 

Table 4: Negative binomial estimates for the count data model with complete data 

ESTIMATE 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 

 4.0553655***   -0.0016260***   0.0003775***   0.0005396***   

 *** p-value significant at 0.05 showing all the values are significant. 

The results show a significant effect of all variables. It can be noted that the results are similar 

to results of the 50th quantile.  

 

Table 5: Negative binomial estimates for the count data model with 30% missing data with 

multiple imputation 

ESTIMATE 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 

 4.2286220***    -0.0018254***     0.0004527***     0.0003711***   

*** p-value significant at 0.05 showing all the values are significant. 

 

The results show a significant effect of all variables. It can also be noted that the results are 

similar to results of the 50th quantile; hence, we can say that the median regression is similar to 

the mean regression.   

Fitting the Quantile Regression Model with 30% Multiple Imputations of Missing Data 

25th Percentile of �̂� = 3.8970 - 0.0013081 𝛽1+ 0.00028615𝛽2 + 0.0006107 𝛽3 

50th Percentile of �̂�  = 4.2714 - 0.0016506 𝛽1 + 0.000031593𝛽2+ 0.00053809 𝛽3 

75th Percentile of �̂� = 4.4050 - 0.0020447 𝛽1 + 0.00056012 𝛽2+ 0.00025991 𝛽3 

95th Percentile of �̂�  = 4.4050 - 0.0020447𝛽1 + .00056012 𝛽2+ 0.00025991 𝛽3 

Fitting the Negative Binomial Regression Model with 30% Multiple Imputations of 

Missing Data 

�̂�  = Exp (4.2286220 - 0.0018254 𝛽1 + 0.0004527 𝛽2+ 0.0003711 𝛽3 ) 

Comparison of the AIC’s, BIC, MSE and RMSE of Both Models 
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Table 6: Quantile estimates on a specified quantile for the count data model with complete 

data 

QUANTILE REGRESSION MODEL NEGATIVE BINOMIAL MODEL 

                    25% 50% 75% 95%  

AIC 324.6557 352.391 398.1594 373.4109                             390.65 

BIC 5224.061 11038.84 37995.7 19471.6                           31003.35 

MSE 5209.617 11024.4 37981.26 19457.15                           31001.79 

RMSE 72.17768 104.9971 194.8878 139.4889                           176.071 

 

The result in Table 6 shows clearly that the quantile regression presented lower values for AIC, 

BIC, MSE and RMSE, hence a better model. 

 

Table 7: Quantile estimates on a specified quantile for the count data model with imputed 

values and an outlier 

QUANTILE REGRESSION MODEL NEGATIVE BINOMIAL MODEL 

                    25% 50% 75% 95%  

AIC 329.2749 321.2383 398.3156 411.659                             1943 

BIC 5916.79 4764.442 38156.4 54718.95                           5.17 x 1022 

MSE 5902.346 4749.998 38141.96 54704.51                           5.17 x 1022 

RMSE 76.8267 68.92 195.300 233.990                           2262 x 108 

 

The result in Table 6 shows clearly that the quantile regression presented lower values for AIC, 

BIC, MSE and RMSE, hence a better model. 

 

DISCUSSION 

The ratio of the deviance to the DF is 15.438, hence over dispersion warranting the use of 

negative binomial regression. Table 2 showed the quantile regression estimates of count data 

with complete data. The quantile parameter estimates obtained for each independent variable 

is given as -1.2461e-03 𝛽1, 2.7372e-04𝛽2 and 6.6060e-04𝛽3 at the 25th Quantile, -1.7657e-03 

𝛽13.1949e-04 𝛽2 and 7.2476e-04 𝛽3 at the 50th Quantile, -0.00222374 𝛽1, 0.00051783 𝛽2 and 

0.00043977 𝛽3 at the 75th Quantile and -1.9677e-03 𝛽1, 3.6893e-04 𝛽2 and 4.9369e-04 𝛽3 at 

the 95th quantile. Table 3 shows the quantile regression estimates of count data with 30% 

multiple imputations of missing data. The parameter estimates obtained for each independent 

variable is given as -1.3081e-03𝛽1,  2.8615e-04𝛽2 and 6.1071e-04𝛽3 at the 25th quantile, -

1.7657e-03𝛽1, 3.1949e-04𝛽2 and 7.2476e-04𝛽3 at the 50th quantile, -0.00222374𝛽1, 

0.00051783𝛽2 and 0.00043977𝛽3 at the 75th quantile, and -1.9677e-03𝛽1, 3.6893e-04𝛽2 and  

4.9369e-04𝛽3 at the 95th quantile. Table 4 shows the negative binomial estimates for the count 

data model with complete data. The estimates for each independent variable is given as -

0.0016260  𝛽1, 0.0003775  𝛽2 and 0.0005396𝛽3. Table 5 shows the negative binomial estimates 

for the count data model with multiple imputation and an outlier. The estimates for each 

independent variable are given as -0.0018254𝛽1, 0.0004527𝛽2 and 0.0003711𝛽3. Table 6 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 6, Issue 1, 2023 (pp. 1-11) 

10 Article DOI: 10.52589/AJMSS-CLQ73EUZ 

  DOI URL: https://doi.org/10.52589/AJMSS-CLQ73EUZ 

www.abjournals.org 

revealed the comparison between the two models; from the results, we can see that AIC, BIC, 

RMSE, and MSE of quantile regression were smaller than those of negative binomial values 

and were lower than those of the negative binomial regression at all quantile levels except for 

the 75th quantile where the negative binomial presented a better result. Table 7 revealed the 

comparison between the two models.  The quantile regression presented better results with both 

complete data and multiple imputed data than the negative binomial regression in terms of AIC, 

BIC, RMSE, and MSE. 

 

IMPLICATION TO RESEARCH AND PRACTICE 

This work has brought to light the robustness of quantile regression over the negative binomial 

regression. Even in the presence of outliers, the quantile regression still proved to be a better 

method. The implication of this research is that, researchers working with count data in the 

presence of overdispersion and outlier should consider employing the quantile regression as an 

alternative, especially if their interest is in having a picture of the whole distribution and not 

just the mean effect.   

 

CONCLUSION 

The work started by checking for overdispersion, which was found to be present, as shown in 

Table 1. The data was analyzed using both quantile regression and negative binomial. Then 

30% values were made missing in the data, assuming missing at random. The incomplete data 

was completed using multiple imputation method while injecting an outlier. Both data were 

analysed and from the results, the quantile regression in general presented better results based 

on the model comparison criteria used for both sets of data. In line with the findings, we can 

conclude that Quantile Regression is robust and a better alternative to the negative binomial 

regression when the researcher is interested in the effect of the independent variable on 

different points of the distribution of the response variable and when there is overdispersion 

and presence of an outlier. 

Future Research 

This research is limited to count data with overdispersion and an outlier. It can be extended to 

a situation where there is more than one outlier. Also, quantile regression can be compared to 

Poisson regression in situations of no overdispersion. 
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