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ABSTRACT: Machine Learning techniques such as Regression 

have been developed to investigate associations between risk 

factor and disease in multivariable analysis. However, 

multicollinearity amongst explanatory variables becomes a 

problem which makes interpretation more difficult and degrade 

the predictability of the model. This study compared Bridge and 

Elastic Net regressions in handling multicollinearity in 

multivariable analysis. Wisconsin Diagnostic Breast Cancer data 

was used for comparison for model fit and in handling 

multicollinearity between the regression techniques. Comparison 

were made using MSE, RMSE, 𝑅2, VIF, AIC and BIC for 

efficiency. Scatter plots was employed to show fitted regression 

models. The results from the study show that, the Bridge 

regression performed better in solving the problem of 

multicollinearity with VIF value of 1.182296 when 𝛾 = 2 

compared to Elastic Net regression with a VIF value of 1.204298 

respectively. In comparison for best model fit, Bridge regression 

with 𝛾 = 0.5 performed better with MSE of 11.58667, AIC value 

of 258.9855 and BIC of 277.2217 respectively. Consequently, we 

can conclude that both the Bridge and Elastic Net Regressions can 

be used in handling multicollinearity problems that exist in 

multivariable regression analysis. Information on machine 

learning such as this, can help those in the medical fields to 

improve diagnosis, narrow clinical trials and biopsy to proffer 

effective treatment. 
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INTRODUCTION 

A multivariable analysis is the most popular approach when investigating associations between 

risk factors and disease. In the case that a patient is diagnosed with cancer, the malignant mass 

must be excised. After this or a different post-operative procedure, a prediction of the expected 

course of the disease must be determined. Towards these considerations, machine leaning 

techniques have been developed targeted to provide the same levels of accuracy and prediction, 

without the negative aspects of surgical biopsy. One of such supervised machine learning 

techniques is the Regression. [1] 

Hence, in multivariable analysis, regression modeling is a commonly used statistical method which 

allows medical researchers to examine the effects variables have on each other when multiple 

predictive variables are considered to estimate the association with study measurements. However, 

the efficiency of multivariable analysis highly depends on correlation structure among predictive 

variables since inference for multivariable analysis assumes that all predictive variables are 

uncorrelated. Thus, when the covariates in the model are not independent from one another, that 

is, one or more explanatory variable is determined by other variable then multicollinearity 

problems arise in the analysis, which leads to biased coefficient estimation and a loss of power. 

Numerous studies in epidemiology, genomics, medicine, marketing and management, and basic 

sciences have reported the effects and diagnosis of multicollinearity amongst their study variables. 

[2, 3]. 

Multicollinearity also inflates the estimates of standard errors of regression coefficients causing 

wider confidence intervals and increasing the chance to reject the significant test statistic. This 

leads to imprecise estimates of regression coefficients and false, nonsignificant p-values, and 

degrading the predictability of the model. [4]. Multicollinearity amongst explanatory variables can 

cause values of least squares estimators to be unstable, subject to change with slight variation in 

the data which makes interpretation more difficult since there is a lot of common variation in the 

variables. [5].  

Though, it is not possible to eliminate multicollinearity completely but the effect of collinearity on 

study variables can be investigated by adopting regularized regression techniques such as bridge 

regression, elastic net regression, etc. [6]. Therefore, this study will explore Bridge regression and 

Elastic Net regression which performs best as a method for handling multicollinearity problem in 

multivariable regression analysis. 

Consequently, the behavior of the time series variables used in regression analysis, such as 

nonstationary and nonlinear, and multicollinearity problem may affect the prediction accuracy in 

model selection. [7]. Thus, better fitted models can help increase the accuracy of predictions and 

improve performance of estimates of regression coefficients. Hence, it was found necessary to 

predict Tumor Texture of Cancerous cells from known determining factors in comparison with 

bridge and elastic net regression models. 
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LITERATURE  

Recent studies have focused on using the Elastic Net as well as the Bridge method combined with 

other established statistical regression or forecasting methods to model the relationship between 

independent and dependent variables. The choice of regression algorithm to be used should be 

selected based on the purpose of the analysis [8], the type of data being considered, the distribution 

of the data and the parameters under considerations. [1] This method has been successfully applied 

in several scientific fields such as Medicine, Epidemiology, Genomics, and Machine learning [1 - 

3] 

However, multicollinearity is a serious problem that should be resolved before starting the process 

of data modeling. Hence, all regression analysis assumption should be met as they contribute to 

accurate conclusions and helps to make inferences on the population. [9] The use of the correlation 

coefficients and the variance inflation factor, and the eigenvalue of the covariate matrix helps one 

to determine the presence of multicollinearity. [10] 

Reference [11] carried out a study on effects of multicollinearity in the multivariable analysis. 

They stated that a multivariable analysis is the most popular approach when investigating 

associations between risk factors and disease. Regardless of the type of dependent outcomes or 

data measured in a model for each subject, multivariable analysis considers more than two risk 

factors in the analysis model as covariates.  

Reference [7], stated that Elastic net regression is a hybrid statistical technique used for 

regularizing and selecting necessary predictor variables that have a strong effect on the response 

variable and deal with multicollinearity problem when it exists between the predictor variables. 

Elastic Net can remove or select the predictor variables that have a high correlation in the final 

model and enhance the prediction accuracy. 

Reference [12] carried out a research work on Bridge regression. Their study shows that bridge 

regression adaptively selects the penalty order from data and produces flexible solutions in various 

settings. The numerical study shows that the proposed bridge estimators are a robust choice in 

various circumstances compared to other penalized regression methods such as the ridge, lasso, 

and elastic net and it shows superior performances in comparisons with other existing methods.  

 

METHODOLOGY 

This study compared the Bridge Regression model and Elastic Net Regression model in order to 

determine the best fit regression technique to produce the better performance in handling 

multicollinearity. The regression analysis was based on prediction on Tumor Texture from its 

determining factors.  

For the purpose of this study, the mean values from the Wisconsin Diagnostic Breast Cancer data, 

was used for comparison and data analysis. Data on Tumor Texture, Lump Area, Cell 

Compactness, Cell Concavity, Fractal Dimension of Lump and Radius Length. 
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The data used for the study where tested for the presence of Multicollinearity using VIF 

respectively, before proceeding to apply Bridge regression and Elastic Net regression techniques 

to solve the problem of multicollinearity. 

R software was used to perform data analysis on Bridge and Elastic Net Regressions. Comparison 

for best model fit between the Bridge and Elastic Net regression models was made using MSE, 

RMSE, 𝑅2, AIC and BIC from the regression analysis. Scatter plots were employed to show fitted 

regression models on Actual values against Predicted values. The ‘glmnet’ and ‘rbridge’ R 

packages were employed for the study analysis. 

Bridge Regression 

Bridge regression estimator generalizes both ridge regression and LASSO regression estimators, 

because it minimizes the SSE with a  penalty. Thus, the bridge regression method provides a way 

of combining parameter estimation and variable selection in a single minimization problem.  

For the multiple regression model,  

v = 0+ 1𝑤1+ 2𝑤2 + 3𝑤3 + 3𝑤4  + 5𝑤5 +       (1) 

Bridge regression minimizes 

2 + (1
𝛾 + 2

𝛾 + 3
𝛾 + 4

𝛾 +  5
𝛾)   > 0, 𝛾 > 0   (2) 

Bridge regression model can be stated as adding a regularization term to the multiple regression 

model 

v = 0+ 1𝑤1+ 2𝑤2 + 3𝑤3 + 4𝑤4 + 5𝑤5 +  + (1
𝛾 + 2

𝛾 + 3
𝛾 + 4

𝛾 + 5
𝛾)  

    > 0,  0 < 𝛾 ≤ 2, ∑ |𝑗|
𝛾𝑟

𝑗=1  ≤ q   (3)      

where ∑|1 + 2 + 3 + 4 + 5|𝛾 is the regularization term. This regularization term adds a 

penalty to the multiple regression model which minimizes the SSE. Thus SSE is expressed as, 

2 =  (𝑣 −  �̂�)2 + (1
𝛾 + 2

𝛾 + 3
𝛾 + 4

𝛾 +  5
𝛾)   > 0, 0 < 𝛾 ≤ 2 (4) 

Where 𝑤1, 𝑤2, 𝑤3, 𝑤4  and 𝑤5 are independent variables representing Lump Area, Cell 

Compactness, Cell Concavity, Fractal Dimension of Lump and Radius Length used to predict the 

response variable v represented by Tumor Texture. q is a positive parameter representing the tuning 

constant that controls the amount of shrinkage. 𝛾 is the shrinkage parameter. 

The Bridge estimator correctly identifies zero coefficients with higher probability than the LASSO 

and Ridge estimators. It performs well in terms of predictive mean square errors. Bridge regression 

is known to possess many desirable statistical properties such as oracle, sparsity, and unbiasedness. 

[13]  
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Elastic Net Regression 

Elastic Net regression is a combination of two best techniques of shrinkage regression methods, 

namely, Ridge regression (𝑙2 penalty) for dealing with high-multicollinearity problems and the 

LASSO regression (𝑙1 penalty) for feature selection of regression coefficients. [14] 

The Ridge and Least Absolute Shrinkage Selection Operator (LASSO) are special cases of the 

Elastic Net regression. 

For the multiple regression model,  

v = 0+ 1𝑤1+ 2𝑤2 + 3𝑤3 + 3𝑤4  + 5𝑤5 +       (5) 

Elastic Net regression minimizes 

2 + 1(|1| + |2| + |3| + |4| + |5|) + 2(1
2 + 2

2 + 3
2 +  4

2 + 5
2)   

   1, 2 > 0       (6) 

Elastic Net regression model can be stated as adding a regularization term to the multiple 

regression model 

v = 0+ 1𝑤1+ 2𝑤2 + 3𝑤3 + 4𝑤4 + 5𝑤5 + 2 + 1 ∑(|1| + |2| + |3| + |4| + |5|) + 

2 ∑(1
2 + 2

2 + 3
2 + 4

2 + 5
2)  

1, 2 > 0, ∑ |𝑘|𝑚
𝑘=1  ≤ q     ∑ 𝑖

2𝑛
𝑖=1  ≤ p      (7)       

Where 1 ∑(|1| + |2| + |3| + |4| + |5|) + 2 ∑(1
2 + 2

2 + 3
2 +  4

2 + 5
2) is the 

regularization term. This regularization term adds penalty terms to the multiple regression model 

which minimizes the SSE. Thus SSE is expressed as, 

2 =  (𝑣 −  �̂�)2 + 1 ∑(|1| + |2| + |3| + |4| + |5|) + 2 ∑(1
2 + 2

2 + 3
2 + 4

2 + 5
2) 

        1, 2 > 0   (8) 

Where q controls the amount of shrinkage for the 𝑙1 penalty and p controls the amount of shrinkage 

for the 𝑙2 penalty. 𝑙2 penalty is used to stabilize the 𝑙1 penalty regularization, while the 𝑙1 penalty 

is used to generate a sparse model. 1 and 2 are tuning parameters which control the strength of 

the regularization and selection of the predictor variable.  

In finance, elastic net regression have been used to define portfolios of stocks or to predict the 

credit ratings of corporations. 
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RESULTS AND DISCUSSION 

Multiple Regression Analysis Results 

From the multiple regression analysis results below for tumor texture, we see that ‘lump area, cell 

compactness and radius length’ have high VIF values of 76.98, 14.15 and 93.20 respectively, 

indicating the presence of high multicollinearity among these independent variables. Thus, the 

strong correlation between those independent variables means that they can be predicted by other 

independent variables in the data set.  

Regression Equation for Tumor Texture 

Tumor 

Texture 

= 21.4 - 0.00396 Lump Area + 18.3 Cell Compactness 

+ 5.3 Cell Concavity 

- 139 Fractal Dimension of Lump + 0.48 Radius Length 

 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 21.4 13.0 1.65 0.102   

Lump Area -

0.00396 

0.00967 -0.41 0.683 76.98 

Cell Compactness 18.3 21.7 0.84 0.402 14.15 

Cell Concavity 5.3 11.7 0.46 0.650 6.85 

Fractal Dimension of 

Lump 

-139 118 -1.18 0.242 7.42 

Radius Length 0.48 1.02 0.47 0.637 93.20 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

3.51082 17.18% 12.78% 7.05% 

    

From the multiple analysis results above, it is known that there is presence of multicollinearity 

among the explanatory variables. Therefore, we then proceed to use the Bridge and Elastic Net 

regression analysis techniques to solve the problem of multicollinearity among the data set. 

Data Analysis and Results for Tumor Texture 

From figure 1, we can see that the MSE drops suddenly (regularization taken place) as lambda 

values decreases from 6 to 4. Also, during the regularization, the Bridge regression shrinks out 

three model parameters leaving two model parameters at that stage of regularization. The best 

value for MSE is chosen from either the vertical fitted lines. The numbers, on top of the plot 

indicates the number of parameters still relevant in the model at each stage of lambda. 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 6, Issue 1, 2023 (pp. 103-115) 

109 Article DOI: 10.52589/AJMSS-LBJO9UCU 

  DOI URL: https://doi.org/10.52589/AJMSS-LBJO9UCU 

www.abjournals.org 

From figure 2, we see similar drop (regularization taken place) in MSE between lambda values of 

8 to 4 for the Bridge regression when 𝛾 = 2, indicating more accurate results in our model 

prediction and fitting. Moreover, all the parameters were still relevant in the model. 

From figure 3, regularization takes place as lambda values tends to zero. At the initial stage of 

regularization, only one parameter was relevant in the model. But as MSE values continue to drop 

toward zero, the number of relevant parameters increases. 

 

 

Figure 1: MSE plot for Bridge regression when 𝛾 = 1. 
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Figure 2: MSE plot for Bridge regression when 𝛾 = 2 

 

Figure 3: MSE plot for Elastic Net regression. 
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The Table 1 below shows the comparative analysis results of Bridge regression and Elastic Net 

regression for Tumor Texture, in testing for the best model fit and in handling the problem of 

multicollinearity. 

Table 1: Comparative Results for Tumor Texture, Lump Area, Cell Compactness, Cell 

Concavity, Fractal Dimension of Lump and Radius Length. 

 

          

 

 

Analysis 

Criterion 

                               

                                               Regression Techniques 

 

             

    

      Elastic Net 

              

                                                  Bridge 

      

       𝛾 = 0.5 

      

        𝛾 = 1 

   

         𝛾 = 1.5 

    

        𝛾 = 2 

Best             

value 

 

      0.04272611 

 

    0.5 

 

         0.5 

 

    30.67629 

 

  45.81866 

             

    MSE 

 

    11.6168 

 

  11.58667 

 

   11.58796 

 

    11.80341 

 

  11.83299 

           

  RMSE 

 

   3.408343 

 

  3.403919 

 

    3.40411 

 

    3.435609 

 

  3.439911 

 

𝑹𝟐 

 

   0.1696409 

 

 0.1717949 

 

 0.1717021 

 

   0.1563022 

 

  

  0.154188 

 

𝑹𝟐
𝒂𝒅𝒋 

 

   0.1254728 

 

 0.1277414 

 

 0.1276437 

 

 

   0.1114246 

 

  0.109198 

             

    AIC 

 

       259.2452 

 

  258.9855 

 

   258.9967 

 

  260.8389 

 

    261.0891 

             

    BIC 

 

       277.4814 

 

  277.2217 

 

   277.2329 

 

      279.075 

 

  279.3253 

             

     VIF 

 

       1.204298 

 

  1.20743 

 

 1.207295 

 

    1.185259 

 

  1.182296 

 

 

Scatter Plot for Fitted Regression models on Tumor Texture 

Figure 4 indicates a positive, nonlinear relationship between the actual values and the predicted 

values. The data points are scattered about the best fit line, indicating much variation and no 

correlation between the actual values and the predicted values. This data points scattered far from 

the best fit line are outliers. A similar representation is also seen from Figure 5.  

Figure 6 indicates a positive nonlinear relationship, with no correlation between the actual values 

and the predicted values. Some of the data points scattered far about the line of best fit are outliers. 

The scatter plot for Elastic Net is somewhat similar to the Bridge when 𝛾 = 2. 
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Figure 4: Bridge regression plot for Actual values against Predicted values when 𝛾 = 1 

 

 

Figure 5: Bridge regression plot for Actual values against Predicted values when 𝛾 = 2 
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Figure 6: Elastic Net regression plot for Actual values against Predicted values 

 

  

DISCUSSION 

Based on our numerical results, from Table 1, when comparing the best regression technique to 

solve the problem of  multicollinearity between Bridge and Elastic Net regressions, we see that 

Bridge regression performed better with VIF of 1.182296 when 𝛾 = 2 respectively. Bridge 

regression with 𝛾 = 2 produced better results than when 𝛾 = 0.5, 1.0, and 1.5. The Elastic Net 

regression also handled the problem of multicollinearity with VIF of 1.204298 respectively. 

Also in our comparison for best model fit, the Bridge regression when 𝛾 = 0.5 performed better 

with MSE of 11.58667, AIC of 258.9855 and BIC of 277.2217 respectively. The finding is similar 

to [15] that the Bridge regression perform well in estimation accuracy and model selection when 

there are some linear restrictions present in the study. Elastic Net regression produced a MSE of 

11.6168, AIC of 259.2452 and BIC of 277.4814 respectively. From the 𝑅2 for Bridge regression 

when 𝛾 = 2, we have about 15% of our variation explained in the model. Thus producing more 

accurate results for predicting Tumor Texture using Lump Area, Cell Compactness, Cell 

Concavity, Fractal Dimension of Lump and Radius Length. 
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However, from the data set that was analyzed, the numerical results show that Bridge regression 

produces flexible solutions to multicollinearity in the various settings. Thus showing superior 

performance to Elastic Net regression which was a similar conclusion from the study done by [12]. 

 

CONCLUSION 

From the study, we can conclude that both the Bridge and Elastic Net Regressions can be used in 

handling multicollinearity problems that exist in multivariable regression analysis. The Bridge 

regression with the 𝑙1 norm is more preferred to be used in handling collinearity problems in 

multivariable regression, and can be used as a better technique for model fitting in order to produce 

better predictions.  

Nevertheless, information on machine learning such as this, can help those in the medical fields to 

improve diagnosis, narrow clinical trials and biopsy to proffer effective treatment. The 

understanding of Bridge regression and the Elastic Net regression techniques will aid researchers 

to improve performance of estimates of regression coefficients and predict accurately possible 

response behaviors. 
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