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ABSTRACT: Conventional anti–malarial drugs (chloroquine, 

Artesunate, Quinine, Amodiaquine etc) are used by most 

malaria-endemic countries as first-line treatment for 

uncomplicated malaria. However, resistance by plasmodium 

parasite against these conventional anti–malarial drugs has 

necessitated the need for herbal medicine as alternative. So in 

this study, we formulate a mathematical model of malaria 

transmission in two interacting population of human (host) and 

mosquito (vector) incorporating anti-malarial herbal therapy as 

first line treatment for uncomplicated malaria infection. The 

region where the model is epidemiological feasible and 

mathematically well–posed is established and the basic 

reproduction number 𝑅0 is derived using next generation matrix 

approach. The numerical experiment carried out to access the 

impact of the control measure on malaria transmission revealed 

a reduction in the number of complicated infectious human 

population. Hence this research work suggests a massive 

campaign on use of anti-malarial herbal therapy as first- line 

treatment for malaria infection cases. 

KEYWORDS: Herbal Therapy, Malaria, Uncomplicated, Anti-

Malarial 
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INTRODUCTION  

Malaria is one of the most complex parasite vector–borne infectious diseases in the world and 

it is caused by the protozoan parasite of the genus Plasmodium which is transmitted to 

humans through bites of infectious female anopheles mosquitoes. (World Health 

Organization (WHO), 2021; Aguilar & Gutierrez, 2020). In rare cases, people may be 

infected via contaminated blood, or a fetus may become infected by its mother during 

pregnancy, during delivery or after delivery. (Oluwafemi & Azuaba, 2022)    This life–

threatening disease is curable and it is usually categorized based on the clinical symptoms as 

asymptomatic, uncomplicated (mild), and complicated (severe) malaria. Asymptomatic 

malaria is defined as a case where an individual harbor the parasite capable of transmitting 

the disease but without exhibiting clinical symptoms as a result of naturally acquired 

immunity which develops slowly with age. Individuals with uncomplicated malaria are 

usually presented with fever and one or more of the following symptoms: chills and sweats, 

headache, vomiting, watery diarrhea and anemia but no clinical or laboratory evidence of 

vital organ dysfunction. In contrast, severe malaria is defined by at least one of the several 

clinical manifestations such as: coma (caused by cerebral malaria), convulsion, malarial 

anemia, hypoglycemia, metabolic acidosis (associated with respiratory distress), high fever 

and/or spontaneous bleeding (WHO, 2020; Bakary, Boureima, & Sado, 2018) 

The World Health Organization (2021) reported that in 2020, an estimated 241 million cases 

of malaria occurred globally, most of the cases were in the WHO Africa region (96%) with 

Nigeria having the highest number of malaria cases globally (27% of the global cases in 

2020), followed by the WHO South–East Asia Region (2%), then the WHO Eastern 

Mediterranean region (1.2%) and others (0.8%). It further estimated that 602,000 deaths from 

malaria occurred worldwide and Nigeria accounted for the highest malaria related deaths 

(23% of the global malaria deaths in 2019). Malaria has the highest burden of disease in 

Nigeria with an estimated 30,000 children dying of malaria each year. It accounts for over 

25% of infant mortality (children under aged one), 30% of childhood mortality (children 

under age five), and 11% of maternal mortality. At least 50% of the population has at least 

one episode of malaria annually, while children aged less than 5 years have 2 to 4 attacks 

annually. Malaria is mostly severe in pregnancy and children less than 5 years of age due to 

their relatively low levels of immunity (Muhammad, Abdulkareem & Chowdhury 2017). No 

doubt, malaria remains a big public health problem in Nigeria; thus the need to have a 

mathematical study of malaria transmission dynamics in Nigeria with a view to providing 

workable preventive and control measures. Mathematical modeling has become an important 

tool in understanding the transmission dynamics of infectious diseases, considering 

appropriate control measure regarding intervention strategies for preventing and controlling 

the disease and planning for the future. Models can estimate the impact of a control measure 

and provide useful guidelines to public health officials and disease control centers for further 

efforts required for disease elimination. It can also predict whether disease will spread 

through the population or die out (Ndamuzi & Gahungu, 2021; Olaniyi & Obabiyi, 2013; 

Isere., Osemwenkhae. & Okuonghae, 2014)  

Mandal, Sinha and Sarkar (2011) reported that Ronald Ross in 1911 introduced the first 

deterministic differential equations model for the control of malaria by dividing the human 

population into susceptible Sh and infected Ih  compartments, with the infected class 

returning to susceptible class again leading to the SIS (Susceptible-Infected-Susceptible) 
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structure. The mosquito population also has only two compartments, Sm and Im denoting the 

susceptible and infected mosquito classes respectively. Mosquitoes do not recover from 

infection due to their short life span and thereby follow the SI (Susceptible-Infected) 

structure. Mandal et al, (2011) further stated that the simple Ross model did not consider this 

latency period of the parasite in mosquitoes and their survival during that period. This 

resulted in the model predicting a rapid progress of the epidemic in human, and a higher 

equilibrium prevalence of infectious mosquitoes. Therefore, Macdonald in 1957 modified the 

Ross’ model by considering the latency period of the parasites in mosquitoes and their 

survival during that period.  Further extension was described by Anderson and May in 1991 

where the latency of infection in humans was introduced by adding the exposed class in 

humans.  

Over the years, several mathematical models of malaria transmission dynamics have been 

developed incorporating different factors to make them more biologically realistic in 

explaining disease prevalence and predictions. For example, a number of epidemiological 

studies considered the inclusion of the recovered class in human which incorporate a time 

dependent immunity developed on recovery from infection. (Bakare & Nwozo, 2015; Otieno, 

Koske & Mutiso, 2016). Other researchers have also incorporated different factors such as 

the impact of Artemisinin-based Combination Therapy (ACT) and other interventions on 

malaria prevalence (Okell, Drakeley, Bousema, Whitty, & Ghani, 2008; Griffin, 

Hollingsworth, Okell, Churcher, & White, 2010), impact of domestic animals or genetically-

modified mosquitoes on the transmission of malaria (Diaz, Ramirez, Olarte, & Clavijo, 

2011), effect of weather and climate change on transmission (Parham & Michael 2010), 

acquisition of immunity to malaria (Filipe, Riley, Darkeley, Sutherland & Ghani, 2007; 

Gurarie, Karl, Zimmerman, King & St. Pierre, 2012). Asymptomatic malaria models have 

also been developed and studied (Mandal, Sinha & Sarkar, 2013; Bakary, Boureima & Sado, 

2018; Anguilar & Gutierrez, 2020). None of these models incorporates the progression of 

mild (uncomplicated) malaria cases to severe (complicated) malaria.  

Studies have shown that complicated malaria is the principal cause of malaria related deaths 

(Laishram et al., 2012). Therefore, there is need to incorporate and study the progression of 

infectious host population from mild to complicated cases in malaria model, while taking into 

consideration the use of  anti-malaria herbal therapy which confer protection against severe 

malaria. This could help better understand the transmission dynamics of malaria and also 

strengthen control strategies in reducing malaria related mortality. The anti-malaria herbal 

therapy has been applauded in medical literature to be very effective in the control of malaria 

in Nigeria. (Adebayo & Krettli, 2010; Oladeji, Oluyori, Bankole & Afolabi, 2020). Studies 

have also shown that some genetic traits (such as heterozygote HbAS , blood group O antigen 

rhesus type) confer protection against complicated malaria.(de Mendonca, Goncalves & 

Barral-Netto, 2012; Hedrick, 2011). So in this work, we propose a mathematical model for 

the control of malaria incorporating the progression of infectious host population from mild 

to severe malaria compartment while taking into consideration the use of anti-malaria herbal 

therapy as first-line treatment for mild malaria infection. 
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BASIC MODEL ASSUMPTIONS 

We formulate our model taking into considerations the following basic assumptions:     

(a) All parameters in the model are non-negative 

(b) The total human population varies with time 

(c) The uncomplicated compartment consists of infectious persons with mild cases and 

asymptomatic carriers.  

MODEL FORMULATION 

The model comprises of two interacting population of human (host) and mosquito (vector) at 

time t denoted by 𝑁ℎ(𝑡) and 𝑁𝑚(𝑡) respectively. The human population is further divided 

into five compartments at any time t; Susceptible 𝑆ℎ(𝑡), Exposed 𝐸ℎ(𝑡), Uncomplicated 

(Mild) 𝑀ℎ(𝑡), Complicated 𝐶ℎ(𝑡) and recovered 𝑅ℎ(𝑡) human compartments. On the other 

hand, the mosquito population is divided into three compartments at any time t; Susceptible 

𝑆𝑚(𝑡), Exposed 𝐸𝑚(𝑡) and Infectious 𝐼𝑚(𝑡) mosquito compartments. Hence we have that: 

𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝑀ℎ(𝑡) + 𝐶ℎ(𝑡) + 𝑅ℎ(𝑡)        

and 

𝑁𝑚(𝑡) = 𝑆𝑚(𝑡) + 𝐸𝑚(𝑡) + 𝐼𝑚(𝑡)    

The compartmental model which shows the mode of transmission of malaria between the two 

interacting populations is shown in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

𝜓𝑅ℎ 

                                          휀 𝑀ℎ  

        Λℎ        𝑆ℎ       𝐾1𝑆ℎ       𝐸ℎ         𝛼ℎ𝐸ℎ  𝑀ℎ         𝜏𝑀ℎ        𝐶ℎ             𝜃 𝐶ℎ        𝑅ℎ 

    

  𝜇ℎ𝑆ℎ             𝜇ℎ𝐸ℎ  𝜇ℎ𝑀ℎ             (𝜇ℎ + 𝛿ℎ)𝐸ℎ  𝜇ℎ𝑅ℎ 

    

                𝛽ℎ      𝛽1𝑚          𝛽2𝑚 

 

𝐼𝑚    𝛼𝑚𝐸𝑚 𝐸𝑚      (𝐾2 + 𝐾3)𝑆𝑚   𝑆𝑚      Λ𝑚 

 

 𝜇𝑚𝐼𝑚   𝜇𝑚𝐸𝑚    𝜇𝑚𝑆𝑚 

𝑭𝒊𝒈𝒖𝒓𝒆 𝟏: Compartmental model which shows the mode of transmission of malaria 
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where  휀 = ∅ + 𝑔,       𝐾1 =
𝑏𝛽ℎ𝐼𝑚

1+𝑒𝐼𝑚
  ,  𝐾2 =

𝑏𝛽1𝑚𝑀ℎ

1+𝑒𝑀ℎ
   and    𝐾3 =

𝑏𝛽2𝑚𝐶ℎ

1+𝑒𝐶ℎ
 

The state variable and parameters used for the transmission model are described in the 

following tables: 

Table 1:  DESCRIPTION OF STATE VARIABLES OF THE MODEL  

𝑆ℎ(t) 

𝐸ℎ(t) 

𝑀ℎ(t) 

 

𝐶ℎ(t) 

 

𝑅ℎ(t) 

𝑆𝑚(t) 

𝐸𝑚(t) 

𝐼𝑚(t) 

Number of humans susceptible to malaria infection at time t 

Number of humans exposed to malaria infection at time t 

Number of infectious humans with uncomplicated/asymptomatic  

malaria infection at time t 

Number infectious humans with complicated cases of malaria  

infection at time t 

Number of recovered humans at time t 

Number of susceptible mosquitoes at time t 

Number of exposed mosquitoes at time t 

Number of infectious mosquitoes at time t 

 

Table 2:  DESCRIPTION OF MODEL PARAMETERS 

Λℎ 

Λ𝑚 

𝜇ℎ 

𝜇𝑚 

𝛿ℎ 

        b 

𝛽ℎ 

 

𝛽1𝑚 

 

𝛽1𝑚 

 

𝛼ℎ 

𝛼𝑚 

𝜓 

        e 

휀 

 

𝜏 
𝜃 

Recruitment rate of susceptible humans  

Recruitment rate of susceptible mosquitoes 

Per capita natural mortality rate of humans 

Per capita natural mortality rate of mosquitoes 

Per capita disease – induced mortality rate of humans  

Per capita biting rate of mosquitoes 

Probability that a bite by an infectious mosquito on a susceptible human  

results in transmission of disease to the susceptible human 

Probability that a bite by a susceptible mosquito results in transmission of  

disease from a mild/ asymptomatic infectious human to the susceptible mosquito 

Probability that a bite by a susceptible mosquito results in transmission of  

disease from a complicated infectious human to the susceptible mosquito 

Per capita latent period in human 

Per capita latent period in mosquito 

Per capita loss of immunity by recovered humans 

Rate constant of human behavior change  

Per capita treatment rate (recovery rate ∅ due natural immunity and treatment  

rate g due to the use of anti-malarial herbal drugs) 

Per capita rate of progression to infectious complicated human compartment 

Per capita progression rate to recovered compartment 

 

From the model compartmental model in figure 1, we obtain an eight – dimensional system 

of ordinary differential equations which describe the progress of the disease as: 
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𝑑𝑆ℎ
𝑑𝑡

= 𝛬ℎ + 𝜓𝑅ℎ − (
𝑏𝛽ℎ𝐼𝑚
1 + 𝑒𝐼𝑚

+ 𝜇ℎ) 𝑆ℎ              

             
𝑑𝐸ℎ
𝑑𝑡

=  (
𝑏𝛽ℎ𝐼𝑚
1 + 𝑒𝐼𝑚

) 𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ                           

          
𝑑𝑀ℎ

𝑑𝑡
=  𝛼ℎ𝐸ℎ − (휀 + 𝜏 + 𝜇ℎ)𝑀ℎ                                

         
𝑑𝐶ℎ
𝑑𝑡

=  𝜏𝑀ℎ − (𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ                                 

      
𝑑𝑅ℎ
𝑑𝑡

= 휀𝑀ℎ + 𝜃𝐶ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ                            

  
𝑑𝑆𝑚
𝑑𝑡

= 𝛬𝑚 −  𝑏 (
𝛽1𝑚𝑀ℎ

1 + 𝑒𝑀ℎ
+
𝛽2𝑚𝐶ℎ
1 + 𝑒𝐶ℎ

) 𝑆𝑚 − 𝜇𝑚𝑆𝑚

 
𝑑𝐸𝑚
𝑑𝑡

= 𝑏 (
𝛽1𝑚𝑀ℎ

1 + 𝑒𝑀ℎ
+
𝛽2𝑚𝐶ℎ
1 + 𝑒𝐶ℎ

) 𝑆𝑚 − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚

        
𝑑𝐼𝑚
𝑑𝑡

=     𝛼𝑚𝐸𝑚 − 𝜇𝑚𝐼𝑚                                                       

     

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

                (1) 

   

with the initial conditions: 

𝑆ℎ(0) = 𝑆0ℎ,  𝐸ℎ(0) = 𝐸0ℎ,  𝑀ℎ(0) = 𝑀0ℎ,   𝐶ℎ(0) = 𝐶0ℎ  

𝑅ℎ(0) = 𝑅0ℎ  𝑆𝑚(0) = 𝑆0𝑚,  𝐸𝑚(0) = 𝐸0𝑚,   𝐼𝑚(0) = 𝐼0𝑚 

It can be seen in figure 1 that the susceptible humans are recruited into susceptible 

compartment by birth/immigration at per capital recruitment rate Λℎ and from recovered class 

following loss of partial immunity at per capital rate 𝜓.  This compartment (population of 

susceptible human) is reduced by natural death at per capita death rate 𝜇ℎ and by progression 

to exposed human class after effective contacts with infectious mosquitoes at infective rate  
𝑏𝛽ℎ𝐼𝑚

1+𝑒𝐼𝑚
,  where 𝑏, 𝛽ℎ and 𝑒 represent the biting rate of mosquitoes, the probability that a bite by 

an infectious mosquito results in transmission of disease to a susceptible human and the rate 

constant of human behavior change. 

The exposed human compartment is reduced by natural death at per capital rate 𝜇ℎ and by 

progression to uncomplicated class at per capital progression rate 𝛼ℎ. The population of 

infectious human with uncomplicated cases is decreased by per capita natural death rate 𝜇ℎ, 

per capita rate 𝜏 of progression to infectious complicated human compartment, recovery rate 

per capital 𝑔 due to anti-malarial herbal drugs and spontaneous recovery rate per capital 𝜙 

due to immunity   

The complicated human compartment is reduced by per capita disease – induced death rate 

𝛿ℎ, per capita natural death rate 𝜇ℎ and per capita recovery rate 𝜃 due to treatment.  

Similarly, mosquitoes are recruited into susceptible mosquito compartment at per capital rate 

Λ𝑚. Susceptible mosquito becomes infected after taking in blood meal from malaria 

infectious humans at infective rate 𝑏(
𝛽1𝑚𝑀ℎ

1+𝑒𝑀ℎ
+
𝛽2𝑚𝐶ℎ

1+𝑒𝐶ℎ
), where 𝛽1𝑚 and 𝛽2𝑚 represent the 
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probability that a bite results in transmission of disease from an uncomplicated infectious 

human to a susceptible mosquito and the probability that a bite results in transmission of 

disease from a complicated infectious human to a susceptible mosquito respectively. 

Mosquito population decline due to natural death at per capita death rate 𝜇𝑚.   

INVARIANT REGION; 

Lemma 1: The model system (1) has solutions which are contained in the feasible region  

𝐷 = 𝐷ℎ × 𝐷𝑚  

Proof: Let 𝐷 = {𝑆ℎ, 𝐸ℎ, 𝑀ℎ, 𝐶ℎ , 𝑅ℎ, 𝑆𝑚, 𝐸𝑚, 𝐼𝑚} ∈ ℝ+
8  be any solution of the system with 

non-negative initial conditions. From the differential equations (1), we have: 

𝑑𝑁ℎ(𝑡)

𝑑𝑡
= Λℎ − 𝜇ℎ𝑁ℎ(𝑡) − 𝛿ℎ𝐼ℎ(𝑡) 

In the absence of the disease (𝛿ℎ = 0) 

𝑑𝑁ℎ(𝑡)

𝑑𝑡
≤ Λℎ − 𝜇ℎ𝑁ℎ(𝑡) 

Therefore;  

𝑑𝑁ℎ(𝑡)

𝑑𝑡
+ 𝜇ℎ𝑁ℎ(𝑡) ≤ Λℎ     (2) 

Solving equation (2) yields; 

𝑁ℎ ≤
Λℎ
𝜇ℎ
+ 𝐶1𝑒

−𝜇𝑡 

Where 𝐶1 is a constant of integration; applying initial conditions at 𝑡 = 0 

𝑁ℎ ≤
Λℎ

𝜇ℎ
+ (𝑁ℎ(0) −

Λℎ

𝜇ℎ
)𝑒−𝜇𝑡    (3) 

Using the theorem of differential inequality, we obtain 

0 ≤ 𝑁ℎ ≤
Λℎ

𝜇ℎ
   as 𝑡 → ∞ 

Thus as 𝑡 → ∞ in equation (3), the human population 𝑁ℎ approaches k =
Λℎ

𝜇ℎ
 . The parameter 

𝑘 =
Λℎ

𝜇ℎ
  is usually called the carrying capacity. 

Hence, all feasible solutions set of the human population of the model (1) enters the region  

𝐷ℎ = {(𝑆ℎ, 𝐸ℎ, 𝑀ℎ, 𝐶ℎ, 𝑅ℎ) ∈ ℝ+
5 ∶  𝑆ℎ > 0, 𝐸ℎ ≥ 0,𝑀ℎ ≥ 0, 𝐶ℎ ≥ 0, 𝑅ℎ ≥ 0, 𝑁ℎ ≤

Λℎ

𝜇ℎ
}  

Similarly, the feasible solution set of the mosquito population enters the region; 

 𝐷𝑚 = {(𝑆𝑚, 𝐸𝑚, 𝐼𝑚) ∈ ℝ+
3 ∶  𝑆𝑚 > 0, 𝐸𝑚 ≥ 0, 𝐼𝑚 ≥ 0,   𝑁𝑚 ≤

Λ𝑚

𝜇𝑚
}  
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Thus, the feasible solution set for the model (1) is given by: 

𝐷 = {
(𝑆ℎ, 𝐸ℎ, 𝑀ℎ, 𝐶ℎ, 𝑅ℎ𝑆𝑚, 𝐸𝑚, 𝐼𝑚) ∈ ℝ+

8 ∶  (𝑆ℎ, 𝑆𝑚) > 0, (𝐸ℎ, 𝑀ℎ , 𝐶ℎ , 𝑅ℎ, 𝐸𝑚, 𝐼𝑚) > 0,

  𝑁ℎ ≤
Λℎ

𝜇ℎ
, 𝑁𝑚 ≤

Λ𝑚

𝜇𝑚
 

}  

Therefore, the region D is positively – invariant and the model (1) is biologically meaningful 

and mathematically well - posed in the domain D. 

POSITIVITY OF SOLUTIONS: 

It is necessary to prove that all solutions of system (1) with positive initial data will remain 

positive for all time 𝑡 > 0. This will be established by the following Lemma: 

Lemma 2: Let the initial data be  

{(𝑆ℎ(0), 𝑆𝑚(0)) > 0, (𝐸ℎ(0),𝑀ℎ(0), 𝐶ℎ(0), 𝑅ℎ(0), 𝐸𝑚(0), 𝐼𝑚) ≥ 0} ∈ 𝐷, then the solution 

set  

{𝑆ℎ, 𝐸ℎ, 𝑀ℎ , 𝐶ℎ , 𝑅ℎ, 𝑆𝑚, 𝐸𝑚, 𝐼𝑚}(𝑡) of the model solution (1) is positive for all 𝑡 > 0. 

Proof: From the first equation of system (1), we have; 

𝑑𝑠ℎ
𝑑𝑡

= Λℎ + 𝜓𝑅ℎ − (𝑘1 + 𝜇)𝑆ℎ 

𝑑𝑠ℎ
𝑑𝑡

≥ −(𝑘1 + 𝜇)𝑆ℎ 

Integrating both sides with respect to t, we have; 

ln 𝑆ℎ ≥ −∫(𝑘1 + 𝜇)𝑑𝑡 + 𝐶2 

This implies that: 

𝑆ℎ(𝑡) ≥ 𝑒
[−∫(𝑘1+𝜇)𝑑𝑡+𝐶2] 

𝑆ℎ(𝑡) ≥ 𝑒−[∫(𝑘1+𝜇)𝑑𝑡] × 𝑒𝐶2 

At 𝑡 = 0  

𝑆ℎ(𝑡) ≥ 𝑆ℎ(0)𝑒
−[∫𝑘1𝑑𝑡+𝜇𝑡] 

 

Since 𝑒𝑥 > 0  ∀ 𝑥 ∈ ℝ;  

𝑆ℎ(𝑡) ≥ 𝑆ℎ(0)𝑒
[−∫𝑘1𝑑𝑡+𝜇𝑡] ≥ 0 

Similarly from second equation of system (1), we have that; 
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𝑑𝐸ℎ
𝑑𝑡

= 𝑘1𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ 

𝑑𝐸ℎ
𝑑𝑡

≥ −(𝛼ℎ + 𝜇ℎ)𝐸ℎ 

∫
1

𝐸ℎ
𝑑𝐸ℎ ≥ ∫−(𝛼ℎ + 𝜇ℎ)𝑑𝑡 

At 𝑡 = 0  

𝐸ℎ(𝑡) ≥ 𝐸ℎ(0)𝑒
−(𝛼ℎ+𝜇ℎ)𝑡 ≥ 0 

  

From the third equation of (1), we also have that; 

𝑑𝑀ℎ

𝑑𝑡
= 𝛼ℎ𝐸ℎ − (휀 + 𝜏 + 𝜇ℎ)𝑀ℎ 

𝑑𝑀ℎ

𝑑𝑡
≥ −(휀 + 𝜏 + 𝜇ℎ) 𝑀ℎ 

Integrating both sides with respect to t at 𝑡 = 0, we obtain; 

𝑀ℎ(𝑡) ≥ 𝑀ℎ(0)𝑒
−( +𝜏+𝜇ℎ))𝑡 ≥ 0 

Following the above procedure, it can be shown that the remaining equations of system (1) 

are also positive for all 𝑡 = 0. 

EXISTENCE OF DISEASE – FREE EQUILIBRIUM POINTS: 

Equilibrium points are steady state solutions of the system equation (1) when the right hand 

side is equal to zero. That is: 

 

         Λℎ + 𝜓𝑅ℎ − (𝑘1 + 𝜇)𝑆ℎ = 0

                 𝑘1𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ = 0

           𝛼ℎ𝐸ℎ − (휀 + 𝜏 + 𝜇ℎ)𝑀ℎ = 0

           𝜏𝑀ℎ − (𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ = 0

        휀𝑀ℎ + 𝜃𝐶ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ = 0

  Λ𝑚 −  𝑏(𝑘2 + 𝑘3)𝑆𝑚 − 𝜇𝑚𝑆𝑚 = 0

(𝑘2 + 𝑘3)𝑆𝑚 − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚 = 0

                               𝛼𝑚𝐸𝑚 − 𝜇𝑚𝐼𝑚 = 0

              

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

         (4) 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 6, Issue 1, 2023 (pp. 1-16) 

 
10 Article DOI: 10.52589/AJMSS-1276JR4U 

  DOI URL: https://doi.org/10.52589/AJMSS-1276JR4U 

www.abjournals.org 

Let 𝐸0 = (𝑆ℎ
∗,   𝐸ℎ

∗ ,   𝑀ℎ
∗ ,   𝐶ℎ

∗,   𝑅ℎ
∗ ,   𝑆𝑚

∗ ,   𝐸𝑚
∗ ,   𝐼𝑚

∗  )  be the disease – free equilibrium point. 

Solving equation (4) when 𝐸ℎ = 𝑀ℎ = 𝐶ℎ = 𝑅ℎ = 𝐸𝑚 = 𝐼𝑚 = 0, we have; 

𝐸0 = (𝑆ℎ
∗ ,   𝐸ℎ

∗ ,   𝑀ℎ
∗ ,   𝐶ℎ

∗,   𝑅ℎ
∗ ,   𝑆𝑚

∗ ,   𝐸𝑚
∗  , 𝐼𝑚

∗  )  = (
Λℎ

𝜇ℎ
,    0,     0,      0, 0,

Λ𝑚

𝜇𝑚
, 0,   0)      

(5) 

which represent the  steady state in which there is no plasmodium parasite in the community. 

BASIC REPRODUCTION NUMBER 𝑹𝟎   

The basic reproduction number denoted by 𝑅0 is an important parameter which is used to 

study the behavior of epidemiological models. Diekman et al (1990) defined the basic 

reproduction number as the expected number of secondary cases produced by a typical 

infective individual. It is an important threshold parameter that determines whether or not an 

infection will spread through a given population (Musa & Goni, 2018). We apply the next 

generation matrix technique to obtain the basic reproduction number 𝑅0  by considering the 

infected compartments of system (6). That is: 

   

 

             𝐸ℎ̇ = 𝑘1𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ

          𝑀ℎ
̇ =  𝛼ℎ𝐸ℎ − (휀 + 𝜏 + 𝜇ℎ)𝑀ℎ

         𝐶ℎ̇ =  𝜏𝑀ℎ − (𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ

 𝐸�̇� = (𝑘2 + 𝑘3)𝑆𝑚 − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚

                            𝐼�̇� =     𝛼𝑚𝐸𝑚 − 𝜇𝑚𝐼𝑚

             

}
 
 
 
 

 
 
 
 

    (6) 

 

Let 𝒙 = { 𝐸ℎ
∗∗,   𝑀ℎ

∗∗,   𝐶ℎ
∗∗,   𝐸𝑚

∗∗,    𝐼𝑚
∗∗}𝑇, therefore the model (6) can be written as;  

�̇� = 𝐹(𝑥) − 𝑉(𝑥), where F and V are defined as:   

𝐹 =

(

 
 
 
 
 
 

𝑏𝛽ℎ𝑆ℎ𝐼𝑚

1+𝑒𝐼𝑚

0

0

𝑏𝛽1𝑚𝑀ℎ𝑆𝑚

1+𝑒𝑀ℎ
+
𝑏𝛽2𝑚𝐶ℎ𝑆𝑚

1+𝑒𝐶ℎ

0 )

 
 
 
 
 
 

    and  𝑉 =

(

 
 
 
 
 
 

(𝛼ℎ + 𝜇ℎ)𝐸ℎ

(휀 + 𝜏 + 𝜇ℎ)𝑀ℎ − 𝛼ℎ𝐸ℎ

(𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ − 𝜏𝑀ℎ

(𝛼𝑚 + 𝜇𝑚)𝐸𝑚

𝜇𝑚𝐼𝑚 −  𝛼𝑚𝐸𝑚 )

 
 
 
 
 
 

  

The Jacobian matrix of F and V at the disease – free equilibrium point, 𝐸0 gives: 
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𝐹 =

(

 
 
 
 
 
 
 
0 0 0 0

𝑏𝛽ℎ𝛬ℎ
𝜇ℎ

0 0 0 0 0

0 0 0 0 0

0
𝑏𝛽1𝑚𝛬𝑚
𝜇𝑚

𝑏𝛽2𝑚𝛬𝑚
𝜇𝑚

0 0

0 0 0 0 0 )

 
 
 
 
 
 
 

 

and  

𝑉 =

(

 
 
 
 
 
 

(𝛼ℎ + 𝜇ℎ) 0 0 0 0

−𝛼ℎ (휀 + 𝜏 + 𝜇ℎ) 0 0 0

0 −𝜏 (𝜃 + 𝜇ℎ + 𝛿ℎ) 0 0

0 0 0 (𝛼𝑚 + 𝜇𝑚) 0

0 0 0 −𝛼𝑚 𝜇𝑚)

 
 
 
 
 
 

 

The inverse of the Jacobian matrix V denoted by 𝑉−1 gives: 

 

(

 
 
 
 
 
 
 
 
 

1

(𝛼ℎ + 𝜇ℎ)
0 0 0 0

𝛼ℎ
(𝛼ℎ + 𝜇ℎ)(휀 + 𝜏 + 𝜇ℎ)

1

(휀 + 𝜏 + 𝜇ℎ)
0 0 0

𝛼ℎ𝜏

(𝛼ℎ + 𝜇ℎ)(휀 + 𝜏 + 𝜇ℎ)(𝜃 + 𝜇ℎ + 𝛿ℎ)

𝜏

(𝛼ℎ + 𝜇ℎ)(휀 + 𝜏 + 𝜇ℎ)

1

(𝜃 + 𝜇ℎ + 𝛿ℎ)
0 0

0 0 0
1

(𝛼𝑚 + 𝜇𝑚)
0

0 0 0
𝛼𝑚

𝜇𝑚(𝛼𝑚 + 𝜇𝑚)

1

𝜇𝑚)

 
 
 
 
 
 
 
 
 

 

 

Therefore, the product of the Jacobian matrix F and the inverse of V denoted by 𝐹𝑉−1 yields; 
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𝐹𝑉−1 =

(

 
 
 
 
 
 

0 0 0 𝑎 𝑏

0 0 0 0 0

0 0 0 0 0

𝑐 𝑑 ℎ 0 0

0 0 0 0 0)

 
 
 
 
 
 

 

 

where:   

𝑎 =
𝑏𝛽ℎΛℎ𝛼𝑚

𝜇ℎ𝜇𝑚(𝛼𝑚+𝜇𝑚)
 ,    𝑏 =

𝑏𝛽ℎΛℎ

𝜇ℎ𝜇𝑚
 ,     𝑐 =

𝑏Λ𝑚𝛼ℎ[𝛽1𝑚(𝜃+𝜇ℎ+𝛿ℎ)+𝛽2𝑚𝜏]

𝜇𝑚(𝛼ℎ+𝜇ℎ)( +𝜏+𝜇ℎ)(𝜃+𝜇ℎ+𝛿ℎ)
 ,  

𝑑 =
𝑏Λ𝑚[𝛽1𝑚(𝜃+𝜇ℎ+𝛿ℎ)+𝛽2𝑚𝜏]

𝜇𝑚( +𝜏+𝜇ℎ)(𝜃+𝜇ℎ+𝛿ℎ)
    and    ℎ =

𝑏Λ𝑚𝛽2𝑚

𝜇𝑚(𝜃+𝜇ℎ+𝛿ℎ)
 

 

So that the spectral radius (dominant eigenvalues) of the matrix 𝐹𝑉−1 is calculated from the 

characteristic equation; |𝐹𝑉−1 − 𝜆𝐼| = 0 where 𝐼 is a 5 × 5 identity matrix: That is: 

|

|

|

−𝜆 0 0 𝑎 𝑏

0 −𝜆 0 0 0

0 0 −𝜆 0 0

𝑐 𝑑 ℎ −𝜆 0

0 0 0 0 −𝜆

|

|

|

= 0                                          (7) 

Solving for 𝜆𝑖 , 𝑖 = 1, 2, 3, 4, 5  in equation (7) and substituting for a, b, c, d, h. we have; 

𝜆𝑖 =

(

 
 
 
 
 
 
 
 
 

0

0

0

− √
𝑏2𝛽ℎ𝛬ℎ𝛬𝑚𝛼ℎ𝛼𝑚[𝛽1𝑚(𝜃 + 𝜇ℎ + 𝛿ℎ) + 𝛽2𝑚𝜏]

𝜇ℎ𝜇𝑚
2 (𝛼ℎ + 𝜇ℎ)(휀 + 𝜏 + 𝜇ℎ)(𝜃 + 𝜇ℎ + 𝛿ℎ)(𝛼𝑚 + 𝜇𝑚)

√
𝑏2𝛽ℎ𝛬ℎ𝛬𝑚𝛼ℎ𝛼𝑚[𝛽1𝑚(𝜃 + 𝜇ℎ + 𝛿ℎ) + 𝛽2𝑚𝜏]

𝜇ℎ𝜇𝑚
2 (𝛼ℎ + 𝜇ℎ)(휀 + 𝜏 + 𝜇ℎ)(𝜃 + 𝜇ℎ + 𝛿ℎ)(𝛼𝑚 + 𝜇𝑚) )

 
 
 
 
 
 
 
 
 

 

But  𝑅0 = 𝜌(𝐹𝑉
−1) , hence; 
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        𝑅0 = √
𝑏2𝛽ℎ𝛬ℎ𝛬𝑚𝛼ℎ𝛼𝑚[𝛽1𝑚(𝜃 + 𝜇ℎ + 𝛿ℎ) + 𝛽2𝑚𝜏]

𝜇ℎ𝜇𝑚
2 (𝛼ℎ + 𝜇ℎ)(휀 + 𝜏 + 𝜇ℎ)(𝜃 + 𝜇ℎ + 𝛿ℎ)(𝛼𝑚 + 𝜇𝑚)

                          (8) 

  

NUMERICAL EXPERIMENT  

In this section, the behavior of system (1) is investigated numerically using some of the 

parameter values compactible with malaria as given in table 3 below. The numerical 

experiment was perfumed using MATLAB software with the following initial conditions: 

𝑆ℎ(0) = 1000, 𝐸ℎ(0) = 20,   𝑀ℎ(0) = 10,   𝐶ℎ(0) = 0,     𝑅ℎ(0) = 0,   𝑆𝑚(0) = 10000,    

𝐸𝑚(0) = 20  and  𝐼𝑚(0) = 30    

Table 3:  MODEL PARAMETER VALUES 

 

 

Sources:  Aguilar & Gutierrez (2020); Bala & Gimba (2019); Otieno,  Koske & Mutiso 

(2016);  

                Olaniyi & Obabiyi (2013). Chitnis,(2005).   

The numerical experiment accessed the impact of the control measure (the use of anti – 

malaria herbal therapy as first – line treatment of mild malaria infection) incorporated in 

system (1) as shown in figure 2 below. It is observed that the number of complicated 

infectious human population decline significantly as a result of the control measure.  

Parameters Values Parameters Values 

𝜙 

 

𝜏 
 

𝜃 

 

Λℎ 

 

Λ𝑚 

 

𝜇ℎ 

 

𝜇𝑚 

 

𝛿ℎ 

                        

0.05 

 

0.4 

 

0.05 

 

0.000215 

 

0.07 

 

0.0000548 

 
1
5⁄  

 

0.001 

 

  b 

 

 𝛽ℎ 

 

𝛽1𝑚 

 

𝛽1𝑚 

 

𝛼ℎ 

 

𝛼𝑚 

 
𝜓 

0.12 

 

0.032 

 

0.048 

 

0.48 

 
1
17⁄  

 

18 

 
1
730⁄  
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Figure 2: The behaviour of complicated  human compartment at different parameter values of 

𝑔 (per capita rate of recovery due to anti – malarial herbal therapy) while other parameters 

remain unchanged  

 

CONCLUSION AND RECOMMENDATIONS 

A mathematical model of malaria transmission was formulated considering the mild 

(uncomplicated) and severe (complicated) malaria infection cases in different compartments. 

The progression of mild cases to severe infection is considered to be treatment failure and the 

absence of some genetic factors in host population. Anti-malarial herbal therapy which serves 

as first – line treatment for uncomplicated malaria infection was incorporated in the model as 

the control measure. The region where the model is epidemiological feasible and 

mathematically well – posed was established and the basic reproduction number 𝑅0 was 

explicitly derived using the next generation matrix approach. Numerical experiment was 

conducted to access the impact of the control measure, result shown in figure 2 revealed that 

the control measure will drastically reduce malaria burden in region where the level of 

compliance is high unlike areas with poor level of compliance.     

 We therefore suggest massive campaign on the use of anti-malarial herbal therapy for first- 

line treatment of mild malaria infection cases, as plasmodium parasites have developed 

resistance to most malaria drugs. 
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