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ABSTRACT: Linear regression has been one of the most 

important statistical data analysis tools. Multiple regression 

is a type of regression where the dependent variable shows a 

linear relationship with two or more independent variables. 

OLS estimate is extremely sensitive to unusual observations 

(outliers), with low breakdown point and low efficiency. This 

paper reviews and compares some of the existing robust 

methods (Least Absolute Deviation, Huber M-Estimator, 

Bisquare M-Estimator, MM Estimator, Least Median 

Square, Least Trimmed Square, S-Estimator); a simulation 

method is used to compare the selected existing methods. It 

was concluded based on the results that for y direction 

outlier, the best estimator in terms of high efficiency and 

breakdown point of at most 0.3 is MM; for x direction 

outlier, the best estimator in term breakdown point of at 

most 0.4 is S; for x, y direction outlier, the best estimator in 

terms of high efficiency and breakdown point of at most 0.2 

is MM. 

KEYWORDS: Linear Regression, Breakdown Point, 

Robust Estimators, Outlier. 
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INTRODUCTION 

Multiple linear regression is a statistical technique that is used to predict the outcome of a 

variable based on the value of two or more variables. Multiple regression is a type of 

regression where the dependent variable shows a linear relationship with two or more 

independent variables. 

Linear regression has been one of the most important statistical data analysis tools. Given the 

independent and identically distributed (iid) observations (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2,3, .   .    . , 𝑛 in order 

to understand how the response 𝑦𝑖 is related to the covariates 𝑥𝑖, we traditionally assume the 

linear regression model        𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜀𝑖 ,                   (1) 

where 𝛽 is an unknown 𝑝 × 1 vector, and the 𝜀𝑖 are i.i.d. and independent of 𝑥𝑖 with 𝐸(𝑥𝑖) =
0. The most commonly used estimate for 𝛽 is the ordinary least square (OLS) estimate which 

minimizes the sum of squared residuals      ∑𝑛
𝑖=1 (𝑦𝑖 − 𝑥𝑖

𝑇𝛽)2      (2) 

However, it is well known that the OLS estimate is extremely sensitive to the unusual 

observations (outliers). Many robust methods have been proposed to achieve high breakdown 

point or high efficiency or both, as the efficiency and breakdown point are two important 

criteria for comparing robust methods (Donoho & Huber, 1983). In this paper, we review and 

compare some of the existing robust methods; a simulation method is used to compare the 

selected existing methods. 

The efficiency is used to measure the relative efficiency of the robust methods compared to 

the OLS estimate when the error distribution is exactly normal and there are no outliers. 

Breakdown point is used to measure the proportion of outliers an estimate can tolerate before 

it goes to infinity.  

In this paper, finite sample breakdown point (Yu et al., 2014) is used and defined as follows: 

Let 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖). Given any sample 𝑧 =  (𝑧𝑖 , . . . , 𝑧𝑛), denote 𝑇(𝑧) the estimate of the 

parameter 𝛽. Let 𝑧′ be the corrupted sample where any m of the original points of z are 

replaced by arbitrary bad data. Then the finite sample breakdown point 𝛿∗is defined as: 

𝛿∗(𝑧, 𝑇) = {
𝑚

𝑛
: ‖𝑇(𝑧′) − 𝑇(𝑧)‖ = ∞ },   (3) 

where ‖ . ‖ is the Euclidean norm. 

M-estimates (Huber, 1981) are solutions of the normal equation with appropriate weight 

functions. They are resistant to unusual y observations but sensitive to high leverage points 

on x; the breakdown point of an M-estimate is 1/𝑛. R-estimates (Jaeckel, 1972) minimize the 

sum of scores of the ranked residuals; they have relatively high efficiency but with 

breakdown points as low as those of OLS estimates. Least Median of Squares (LMS) 

estimates (Siegel, 1982) minimize the median of squared residuals, Least Trimmed Squares 

(LTS) estimates (Rousseeuw, 1983) minimize the trimmed sum of squared residuals, and S-

estimates (Rousseeuw & Yohai, 1984) minimize the variance of the residuals; all have high 

breakdown point but low efficiency. Generalized S-estimates (GS-estimates) (Croux et al., 

1994) maintain high breakdown point as S-estimates and have slightly higher efficiency. 

MM-estimates proposed by Yohai (1987) simultaneously can attain high breakdown point 

and efficiencies. Mallows Generalized M-estimates (Mallows, 1975) and Schweppe 
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Generalized M-estimates (Handschin et al., 1975) downweight the high leverage points on x 

but cannot distinguish “good” and “bad” leverage points, thus resulting in a loss of 

efficiencies.  

In addition, Mallows Generalized M-estimates (Mallows, 1975) and Schweppe Generalized 

M-estimates (Handschin et al., 1975) have low breakdown points when the number of 

explanatory variables is large. Schweppe one-step (S1S) Generalized M-estimates (Coakley 

& Hettmansperger, 1993) overcome the problems of Schweppe Generalized M-estimates, and 

are calculated in one step. They both have high breakdown points and high efficiencies. 

Gervini and Yohai (2002) proposed a new class of high breakdown point and high efficiency 

robust estimate called robust and efficient weighted least squares estimator (REWLSE). Lee 

et al. (2011) and She and Owen (2011) proposed a new class of robust methods based on the 

regularization of case specific parameters for each response. 

 

ROBUST REGRESSION METHODS 

Least Absolute Deviation (LAD) 

Least absolute deviation (LAD, also called median regression) estimates is achieved by 

minimizing the sum of the absolute values of the residuals: 

𝛽̂ = 𝑎𝑟𝑔 ∑𝑛
𝑖=1 |𝑦𝑖 − 𝑥𝑖

𝑇𝛽| .       (4) 

The LAD is also called 𝐿1 estimate due to the 𝐿1 norm used. Although LAD is more resistant 

than OLS to unusual y values, it is sensitive to high leverage outliers, and thus has a 

breakdown point of 𝐵𝑃 =  1/𝑛 →  0 (Rousseeuw & Yohai, 1984). Moreover, LAD 

estimates have a low efficiency of 0.64 when the errors are normally distributed.  

Least Median Squares (LMS) Estimates 

The LMS estimates (Siegel, 1982) are found by minimizing the median of the squared 

residuals: 

𝛽̂ = 𝑎𝑟𝑔𝑀𝑒𝑑|𝑦𝑖 − 𝑥𝑖
𝑇𝛽| .       (5) 

One good property of the LMS estimate is that it possesses a high breakdown point of nearly 

0.5. However, the LMS estimate has at best an efficiency of 0.37 when the assumption of 

normal errors is met (see Rousseeuw & Croux, 1993). Moreover, LMS estimates do not have 

a well-defined influence function because of its convergence rate of 𝑛−
1

3 (Rousseeuw, 1982). 

Despite these limitations, the LMS estimate can be used as the initial estimate for some other 

high breakdown points and high efficiency robust methods. 
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Least Trimmed Squares (LTS) Estimates 

The LTS estimate (Rousseeuw, 1983) is defined as 

𝛽̂ = 𝑎𝑟𝑔 ∑𝑞
𝑖=1 𝑟(𝑖)(𝛽)2 .       (6) 

where 𝑟(𝑖)(𝛽) = 𝑦(𝑖) − 𝑥(𝑖)
𝑇 𝛽, 𝑟(1)(𝛽)2 ≤ .  .   . ≤ 𝑟(𝑞)(𝛽)2are ordered squared residuals, 𝑞 =

 [𝑛 (1 −  𝛼)  +  1], and α is the proportion of trimming. Using 𝑞 = (
𝑛

2
) + 1 ensures that the 

estimator has a breakdown point of BP = 0.5, and the convergence rate of 𝑛−
1

2 (Rousseeuw, 

1983). Although highly resistant to outliers, LTS suffers badly in terms of very low 

efficiency, which is about 0.08, relative to OLS estimates (Stromberg et al., 2000). The 

reason that LTS estimates call our attention is that it is traditionally used as the initial 

estimate for some other high breakdown point and high efficiency robust methods. 

M-Estimates 

By replacing the least squares criterion (2) with a robust criterion, M-estimate (Huber, 1964) 

of 𝛽 is 

𝛽̂ = 𝑎𝑟𝑔 ∑𝑛
𝑖=1 𝜌 (

𝑦𝑖−𝑥𝑖
𝑇𝛽

𝜎̂
)    (7) 

where 𝜌(·) is a robust loss function and 𝜎̂ is an error scale estimate. The derivative of 𝜌, 

denoted by 𝜓(·)  =  𝜌′(·), is called the influence function. In particular, if 𝜌(𝑡) =
1

2
𝑡2, then 

the solution is the OLS estimate. The OLS estimate is very sensitive to outliers. Rousseeuw 

and Yohai (1984) indicated that OLS estimates have a breakdown point  𝐵𝑃 =  1/𝑛, which 

tends to zero when the sample size n is getting large. Therefore, one single unusual 

observation can have a large impact on the OLS estimate. One of the commonly used robust 

loss functions is Huber’s ψ function (Huber, 1981), where 𝜓𝑐(𝑡)  =  𝜌′(𝑡)  =
 𝑚𝑎𝑥{−𝑐, 𝑚𝑖𝑛(𝑐, 𝑡)}. Huber (1981) recommends using c = 1.345 in practice. This choice 

produces a relative efficiency of approximately 95% when the error density is normal. 

Another possibility for 𝜓(·) is Tukey’s bisquare function 𝜓𝑐(𝑡) = 𝑡{1 − (𝑡/𝑐)2}+
2 . The use 

of c = 4.685 produces 95% efficiency. 

S-Estimates 

S-estimates (Rousseeuw & Yohai, 1984) are defined by 

𝛽̂ =𝑎𝑟𝑔 𝑎𝑟𝑔 𝜎̂  (𝑟1(𝛽),.  .  . , 𝑟𝑛(𝛽)),   (8) 

where 𝑟𝑖(𝛽) = 𝑦𝑖 − 𝑥𝑖
𝑇𝛽 and 𝜎̂(𝑟1(𝛽), .  .  . , 𝑟𝑛(𝛽)) is the scale M-estimate which is defined as 

the solution of 

1

𝑛
∑𝑛

𝑖=1 (
𝑟𝑖(𝛽)

𝜎̂
) = 𝛿    (9) 

for any given 𝛽, where 𝛿 is taken to be 𝐸𝜙[𝜌 (𝑟)]. For the biweight scale, S-estimates can 

attain a high breakdown point of BP = 0.5 and has an asymptotic efficiency of 0.29 under the 

assumption of normally distributed errors (Maronna, Martin & Yahai, 2006). 
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MM-Estimates 

First proposed by Yohai (1987), MM-estimates have become increasingly popular and are 

one of the most commonly employed robust regression techniques. The MM-estimates can be 

found by a three-stage procedure. In the first stage, compute an initial consistent estimate 

𝛽̂0with high breakdown point but possibly low normal efficiency. In the second stage, 

compute a robust M-estimate of scale 𝜎 ̂of the residuals based on the initial estimate. In the 

third stage, find an M-estimate 𝛽̂ starting at 𝛽̂0. In practice, LMS or S-estimate with Huber or 

bisquare functions is typically used as the initial estimate 𝛽̂0. Let 𝜌0(𝑟)  =  𝜌1(𝑟/𝑘0 ),
𝜌(𝑟)  =  𝜌1(𝑟/𝑘1 ), and assume that each of the ρ-functions is bounded. The scale estimate 𝜎̂ 

satisfies 

1

𝑛
∑𝑛

𝑖=1 𝜌0 (
𝑟𝑖(𝛽̂)

𝜎̂
) = 0.5    (10) 

If the ρ-function is biweight, then 𝑘0 =  1.56 ensures that the estimator has the asymptotic 

𝐵𝑃 =  0.5. Note that an M-estimate minimizes 

𝐿(𝛽) = ∑𝑛
𝑖=1 𝜌 (

𝑟𝑖(𝛽̂)

𝜎̂
)    (11) 

Let 𝜌 satisfy 𝜌 ≤  𝜌0 . Yohai (1987) showed that if 𝛽 ̂satisfies 𝐿(𝛽) ≤ (𝛽̂0), then 𝛽̂’s BP is 

not less than that of 𝛽̂0. Furthermore, the breakdown point of the MM-estimate depends only 

on 𝑘0 and the asymptotic variance of the MM-estimate depends only on 𝑘1. We can choose 

𝑘1in order to attain the desired normal efficiency without affecting its breakdown point. In 

order to let 𝜌 ≤  𝜌0, we must have 𝑘1  ≥  𝑘0; the larger the 𝑘1 is, the higher efficiency the 

MM-estimate can attain at the normal distribution. 

Maronna, Martin, and Yahai (2006) provide the values of 𝑘1 with the corresponding 

efficiencies of the biweight ρ-function. However, Yohai (1987) indicates that MM-estimates 

with larger values of 𝑘1 are more sensitive to outliers than the estimates corresponding to 

smaller values of  𝑘1. In practice, an MM-estimate with bisquare function and efficiency 

0.85 (𝑘1  =  3.44) starting from a bisquare S-estimate is recommended. 

Simulation Study 

In this part, we compare different robust methods and report the mean squared errors (MSE) 

and relative efficiency of the parameter estimates for each estimation method. We compare 

the OLS estimate with seven other commonly used robust regression estimates: the M 

estimate using Huber’s ψ function (M-H ), the M estimate using Tukey’s bi-square function 

(M-T), the S estimate, the LTS estimate, the LMS estimate, the MM estimate (using bi-square 

weights and 𝑘1 = 4.68), and the LAD.  

The data generation processes that follow were adapted from Yu, Yao and Bai (2014). We 

generated 𝑛 samples from the model       

𝑌 =  𝑋𝛽 +  𝜀                        (12) 

where 𝑋 = [𝑋1, 𝑋2, 𝑋3]  ∼ 𝑁3(0, 𝐼), 𝛽 = [1, 1, 1]. In order to compare the performance of 

different methods, we consider the following three cases for the error density of ε and 

independent variables X: 
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Case I (with y direction outlier): 𝜀 ∼ (1 − 𝜋)𝑁(0, 1)  +  𝜋𝑁(0, 102) - contaminated normal 

mixture with 𝜋 = 0.1, 0.2, 0.3, 0.4, 0.5  proportions of contamination. 

Case II (with x direction outlier): 𝑋 ∼ (1 − 𝜋)𝑁3(0, 𝐼)  +  𝜋𝑁3(0, 102𝐼) - contaminated 

multivariate normal mixture with 𝜋 = 0.1, 0.2, 0.3, 0.4, 0.5  proportions of contamination. 

Case III (with x, y direction outlier):𝑋 ∼ (1 − 𝜋)𝑁3(0, 𝐼)  +  𝜋𝑁3(0, 102𝐼) – contaminated 

multivariate normal mixture and 𝜀 ∼ (1 − 𝜋)𝑁(0, 1)  +  𝜋𝑁(0, 102) with 𝜋 =
0.1, 0.2, 0.3, 0.4, 0.5  proportions of contamination, and in the overall cases, the sample size 

𝑛 = 10, 30, 100, 200 𝑎𝑛𝑑 1000 were used. The replication size was fixed at 1000. 

Criteria for Assessing the Estimators Performance 

Mean Square Error of Parameter 

𝑀𝑆𝐸𝑖 =
∑𝑝

𝑗=1 (𝛽̂−𝛽)
2

𝑝
     (13) 

𝐴𝑀𝑆𝐸 =
∑𝐼

𝑖=1 𝑀𝑆𝐸𝑖

𝐼
     (14) 

Relative Efficiency of Robust Estimators 

𝑅𝐸 =
𝐴𝑀𝑆𝐸𝑂𝐿𝑆

𝐴𝑀𝑆𝐸𝑅𝐸
      (15) 

where 𝐼 is the number of iteration and 𝑝 is the number of parameters in the model. 

Table 1: Average MSE of various methods over all sample sizes for case I at 𝝅 =
𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟓 

𝝅  LS LA H-M B-M MM LMS LTS S 

0  0.032 0.0489 0.034 0.0369 0.0441 0.5468 0.1506 0.0955 

0.1  0.3504 0.0904 0.0982 0.0902 0.0677 1.9829 0.2115 0.1105 

0.2  0.6947 0.1918 0.2403 0.2092 0.1182 7.6956 0.2907 0.1365 

0.3  1.0874 0.4212 0.5151 0.4752 0.4158 11.284 0.5122 0.3925 

0.4  1.4611 0.7532 0.845 0.8359 0.9152 13.392 1.4485 0.9707 

0.5  1.8004 1.1028 1.2276 1.2752 1.4132 17.4091 2.6971 1.7331 

 

Table 2: Average RE of various methods over all sample sizes for case I at 𝝅 =
𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟓 

𝝅  LS LA H-M B-M MM LMS LTS S 

0  100 64.3 94.02 90.91 87.52 11.94 15.71 24.34 

0.1  7.64 46.79 55.63 69.59 72.34 11.14 13.91 22.95 

0.2  3.68 32.88 31.18 51.98 53.27 10.72 12.98 20.94 

0.3  2.28 22.62 15.58 34.04 32.74 10.76 12.63 16.64 

0.4  1.62 14.07 6.77 16.48 14.59 9.48 11.74 12.9 

0.5  1.27 8.41 2.99 5.58 4.73 7.14 9.71 7.82 
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Fig 1: Plot of average MSE against proportion of outlier in the y direction for the 

various methods 

 

 

 

Fig 2: Plot of average RE against proportion of outlier in the y direction for the various 

methods 
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Table 3: Average MSE of various methods over all sample sizes for case II at 𝝅 =
𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟓 

𝝅 C-LS  LS LA H-M B-M MM LMS LTS S 

0 0.0365  0.0365 0.0540 0.0385 0.0404 0.0414 0.1909 0.1559 0.0967 

0.1 0.0365  0.5335 0.5013 0.5125 0.4515 0.0714 0.6750 0.1911 0.1153 

0.2 0.0365  0.6551 0.6913 0.6610 0.6675 0.1176 0.9939 0.2165 0.1446 

0.3 0.0365  0.7118 0.7494 0.7199 0.729 0.4781 0.7520 0.2431 0.1993 

0.4 0.0365  0.7368 0.7665 0.7448 0.7535 0.6983 0.8745 0.3689 0.6320 

0.5 0.0365  0.7498 0.776 0.7552 0.7611 0.7517 1.8074 0.7781 0.8003 

 

 

 

Table 4: Average RE of various methods over all sample sizes for case II at 𝝅 =
𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟓 

𝝅 C-LS  LS LA H-M B-M MM LMS LTS S 

0 100  100 65.49 96.47 94.31 94.02 14.91 16.19 30.63 

0.1 100  8.04 6.65 7.77 7.48 40.6 11.35 14.03 21.49 

0.2 100  5.44 4.50 5.22 4.99 19.7 10.55 13.00 18.55 

0.3 100  4.52 3.92 4.36 4.18 7.41 9.42 11.82 12.85 

0.4 100  4.16 3.76 4.03 3.89 4.61 3.52 6.49 4.44 

0.5 100  4.06 3.73 3.98 3.89 4.02 1.72 3.48 3.57 

 

 

 

Fig 3: Plot of average MSE against proportion of outlier in the x direction for the 

various methods 
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Fig 4: Plot of average RE against proportion of outlier in the x direction for the various 

methods 

 

Table 5: Average MSE of various methods over all sample sizes for case III at 𝝅 =
𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟓.l 

𝝅 C-LS LS LA H-M B-M MM LMS LTS S 

0 0.0365 0.0365 0.0540 0.0385 0.0404 0.0414 0.1909 0.1559 0.0967 

0.1 0.0366 0.6544 0.3897 0.4382 0.2511 0.0692 0.9763 0.197 0.1126 

0.2 0.0370 0.8387 0.6837 0.7027 0.5091 0.1156 0.9915 0.2114 0.1471 

0.3 0.0379 1.0251 0.8726 0.8819 0.7996 0.1974 0.8775 0.2697 0.2039 

0.4 0.0372 1.1071 0.9169 0.9427 0.9087 0.4021 1.2288 0.3191 0.2874 

0.5 0.0352 1.205 0.9334 1.0092 0.9832 0.7527 1.7151 0.3995 0.4420 

 

Table 6: Average RE of various methods over all sample sizes for case III at 𝝅 =
𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟓 

𝝅 C-LS LS LA H-M B-M MM LMS LTS S 

0 100 100 65.49 96.47 94.31 94.02 14.91 16.19 30.63 

0.1 100 5.78 5.89 6.31 14.51 41.87 11.44 14.26 21.94 

0.2 100 3.24 3.37 3.53 4.11 22.43 10.82 13.31 18.69 

0.3 100 2.33 2.65 2.69 2.78 12.38 10.79 12.90 15.48 

0.4 100 2.08 2.5 2.48 2.49 5.79 9.02 11.53 10.39 

0.5 100 1.9 2.52 2.33 2.36 3.34 6.26 9.33 5.03 
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DISCUSSION OF RESULTS AND CONCLUSION 

The results presented cover mean squared errors (MSE) and relative efficiency (RE) of the 

parameter estimates for each estimation method with sample sizes n = 10, 30, 100, 200 and 

1000 respectively. The number of replicates is 1000. For Case I presented in Table 1, H-M , 

B-M  and MM work better than other estimates. Similar results were observed when the 

proportion of outlier is 0.2. Increasing the proportion of outlier in Table 1 reduces the 

efficiency of all the estimators with LS having much larger MSE than other robust estimators; 

H-M, B-M and MM have similar MSE to S. Tables 1 and 2 give the average results of all the 

estimators at various proportions of outlier. The tables serve as a standard check for assessing 

the breakdown point of the estimators. The empirical breakdown point of LS and LA is 0, H-

M, B-M and MM is 0.3 while LTS, LMS and S is 0.5.  The graphical plots in Fig 1 and 2 

confirm the results.  

Moving to Case II (x direction outlier), LS, LA, H-M, B-M and MM estimators could not 

withstand at most 0.1 proportion of outlier. The results presented in Tables 3 and 4 reveal that 

a single leverage outlier will significantly increase the MSE of the estimators. Although LTS, 

LMS and S still withstand up to 0.1 proportions of leverage outlier but their MSE are 

relatively far from the true scenario when there is no outlying point. 

Tables 5 and 6 present the results of Case III (x,y direction outlier); the results are similar to 

Case II with LTS, LMS and S having high breakdown points but extremely low efficiency.  

Based on the results the following conclusions were drawn: 

1. For the y direction outlier, the best estimator in terms of high efficiency and breakdown 

point of at most 0.3 is MM, 

2. For the x direction outlier, the best estimator in terms of high breakdown point of at 

most 0.4 is S, 

3. For the x,y direction outlier, the best estimator in terms of high efficiency and 

breakdown point of at most 0.2 is MM. 
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