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ABSTRACT: In this paper, two semi-analytical techniques 

were implemented to solve a two-dimensional unsteady MHD 

fluid flow and heat transfer through a stretching/shrinking 

permeable sheet with ohmic heating and viscous dissipation. 

The governing flow equations in PDE form were reduced to 

ordinary differential equations using appropriate similarity 

transformation. We obtained approximate expressions for the 

velocity and temperature profiles. Comparative results 

obtained employing Adomian decomposition method and 

differential transformation method were benchmarked against 

a numerical solution using Keller box scheme. Our findings 

revealed that the approximate analytical solution obtained 

using DTM is more dependable with fast convergence, highly 

accurate with minimal calculations and computationally 

convenient. However, the requirement of Adomian 

polynomials to tackle the nonlinear terms in ADM makes its 

execution sometimes cumbersome and difficult.  

Keywords: Unsteady MHD, Stretching/Shrinking, Permeable 

Sheet, Ohmic Heating, Stagnation point flow. 
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INTRODUCTION 

Magnetohydrodynamics (MHD) refers to the branch of physics that studies magnetic properties 

and behavior of conducting fluid such as plasma which produces electricity when subjected to 

a magnetic field. The underlying principle behind this phenomenon is that current is induced 

in a moving conducting fluid by a magnetic field which results in the polarization of the fluid 

and a change in the behavior of the magnetic field. This concept of magnetohydrodynamic 

flows has stimulated considerable research interest because it finds useful applications in 

several fields of endeavor. For instance, MHD is significant in the fields of solar physics, 

meteorology, astrophysical and geophysical problems, plasma in fusion reactors, fluid 

dynamics, electromagnetic casting, liquid-metal coiling, and earth’s core [1-2]. Many 

researchers worked on MHD and its applications in different discipline fields of study. Anwar 

[3] examined magnetohydrodynamics free convection flow through a vertical porous plate.  

Sahoo et al. [4] investigated MHD unsteady free convection flow through an infinite vertical 

plate in the presence of constant suction and heat sink. The study reported dual solutions thus 

exist for the suction case only. Unsteady MHD flow coupled with heat transfer past a porous 

plate in a rotating system was explored by Jana et al. [5]. Investigation was carried out to 

unravel the influence of Soret, Hall and Joules heating on magnetohydrodynamics rotating 

mixed convective flow through an infinite vertical porous plate by Swarnalathamma et al. [6]. 

Chamkha et al. [7] considered the heat and mass transfer on unsteady magnetohydrodynamic 

oscillatory flow of second-grade fluid via a porous medium between two vertical plates in the 

presence of fluctuating heat source/sink and chemical reaction. Veera and Reddy [8] analyzed 

unsteady MHD reactive flow of second grade fluid through porous medium in a rotating 

parallel plate channel. Moniem and Hassanin [9] looked at the analytical solution of MHD flow 

past a vertical porous plate through a porous medium in the presence of oscillatory suction. 

Venkatalakshmi et al. [10] studied unsteady MHD free convective fluid flow through a vertical 

porous plate with Ohmic heating under the influence of suction or injection. On the other hand, 

the heat transfer and flows which impinge on solid surfaces technically, called stagnation point 

flows, over a stretching or shrinking sheet have equally been extensively studied because of 

their important applications in aircraft and submarines. Khuzaimah et al. [11] conducted a 

stability analysis of an unsteady MHD flow and heat transfer over a shrinking sheet with Ohmic 

heating.  

The study showed that a dual solution exists for the shrinking sheet and both magnetic field 

and unsteadiness parameters significantly impacted the flow, accelerating the skin friction and 

rate of heat transfer in the system. Trail-blazing studies on stretching sheets were first carried 

out by Crane [12]. Ever since Crane’s pioneering studies, many authors have researched on 

studies involving stretching sheets. Hatami et al. [13] did a comprehensive analysis of the flow 

and heat transfer of a nanofluid over an unsteady stretching flat plate. An investigative solution 

for a two-dimensional stagnation point flow was obtained by Hiemenz [14]. An unsteady 

stagnation point flow of a nanofluid through a stretching sheet with slip effects was 

implemented by Malvandi and Hedayati [15]. Similarly, combined effects of thermal radiation 

and slip on MHD stagnation point flow of nanofluid over a stretching sheet has been examined 

by Nadeem et al. [16]. Ishak et al. [17] studied the effect of unsteadiness on mixed convection 

boundary layer stagnation point flow over a vertical flat surface embedded in a porous medium. 

Many other studies on stagnation point flows on different bodies have been comprehensively 

investigated [17-27]. 
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Motivated by the above extensive literature, we consider a comparative study using two semi-

analytical techniques to look at unsteady MHD flow and heat transfer over a 

stretching/shrinking permeable sheet under the influence of Ohmic heating and viscous 

dissipation. The specific objective of this study is to compare the analytical approximate 

solutions obtained using Adomian decomposition method and differential transformation 

method. Armenian-American mathematician George Adomian pioneered the Adomian 

decomposition method (ADM). This method since its conception has been applied to several 

problems in the field of sciences, engineering, and social sciences. It involves writing a given 

equation in operator form. Similarly, the concept of differential transformation method (DTM) 

was proposed by Zhou while working on his doctoral thesis. This novel technique is based on 

Taylor’s series expansion in which the given equation under consideration is reduced to a 

recurrence relation where the iterative approximate solution is obtained through series in 

polynomial. For exhaustive application of these approximation methods to diverse problems, 

see [28-48]. The study is organized as follows: In the next section, a survey of related literature 

on unsteady MHD flows and heat transfer past a stretching and shrinking permeable sheet is 

presented. Section 2 gives the governing flow equations and their reduction through similarity 

transformation. The solution of the problem using ADM, DTM and their operational laws is 

contained in Sections (3-4). Section 5 presents the comparison between the approximate 

analytical solutions using the solution techniques and the accompanying errors relative to the 

numerical scheme. The conclusion of the study highlighting the major findings is given in 

Section 6.  

 

MATHEMATICAL FORMULATION 

Figure 1 depicts the flow and heat transfer of a permeable stretching/shrinking sheet over an 

unsteady two-dimensional stagnation point flow of a viscous and electrically conducting fluid, 

where x and y are the cartesian coordinates measured along the sheet's surface and normal to 

it, respectively. When a sheet is stretching or shrinking, its velocity is given by 𝑢𝑤 =
𝜆𝑢𝑤(𝑥, 𝑡), where 𝑢𝑒(𝑥, 𝑡) represents the flow's speed away from the sheet's surface and is a 

constant corresponding to either stretching or shrinking. The temperature of the sheet is taken 

to be 𝑇𝑤(𝑥, 𝑡), while the temperature of the surrounding fluid is taken to be 𝑇∞. Additionally, 

it is believed that a transverse magnetic field is present in the flow. The governing unsteady 

boundary layer equations for continuity, momentum, and energy following Khuzaimah et al. 

[11] are given as: 
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Figure 1: Physical configuration of the model problem 

 

Governing Equations 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                   (1) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
−

𝜕𝑢𝑒

𝜕𝑡
− 𝑢𝑒

𝜕𝑢𝑒

𝜕𝑥
− 𝜈

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵0

2

𝜌
(𝑢𝑒 − 𝑢) = 0                   (2) 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +
𝜐

𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2

+
𝜎𝐵0

2

𝜌𝐶𝜌
(𝑢𝑒 − 𝑢)2                          (3) 

subject to the initial and boundary conditions given by  

𝑡 < 0: 𝑢 = 𝑣 = 0, 𝑇 = 𝑇∞ for any 𝑥, 𝑦 

𝑡 ≥ 0: 𝑢 = 𝜆𝑢𝑤(𝑥, 𝑡), 𝑣 = 𝑉0, 𝑇 = 𝑇𝑤(𝑥, 𝑡) at 𝑦 = 0                           (4) 

𝑢 ⟶ 𝑢𝑒(𝑥, 𝑡), 𝑇 ⟶ 𝑇∞ as 𝑦 ⟶ ∞ 

where (𝑢, 𝑣) represents the velocity in the 𝑥, 𝑦 axes, 𝜐 denotes the kinematic viscosity of the 

fluid, 𝜎 represents electrical conductivity, 𝜌 represents the density of the fluid, 𝑇 denotes 

temperature of the fluid, 𝛼 represents the thermal diffusivity of fluid, 𝐶𝑝 is the specific heat 

capacity of the fluid at constant pressure and 𝑉0 is the mass flux of the fluid at the surface. 

For the model equations and their associated initial and boundary conditions to admit 

similarity, we express the terms, 𝑢𝑤(𝑥, 𝑡), 𝑢𝑒(𝑥, 𝑡), 𝑇𝑤(𝑥, 𝑡) and 𝐵0
2(𝑡) in the form. 

𝑢𝑤(𝑥, 𝑡) =
𝑎𝑥

1−𝛽𝑡
, 𝑢𝑒(𝑥, 𝑡) =

𝑎𝑥

1−𝛽𝑡
, 𝐵0

2(𝑡) =
𝐵0

2

1−𝛽𝑡
, 𝑇𝑤(𝑥, 𝑡) = 𝑇∞ +

𝑏𝑥2

(1−𝛽𝑡)2               (5) 

where 𝑎, 𝑏 > 0 are constants, 𝛽 is the volume expansivity of the fluid, 𝐵0 is constant applied 

magnetic field.  
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To simplify and solve the set of equations in Eqs. (1-3) subject to (4), it is necessary to non-

dimensionalize the physical parameters and equations. We introduce the following similarity 

transformations given as 

𝜓(𝑥, 𝑦, 𝑡) = √
𝑎𝜐

1−𝛽𝑡
𝑥𝑓(𝜂), 𝜂 = √

𝑎

𝜐(1−𝛽𝑡)
𝑦, 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 , 𝑢 =

𝜕𝜓

𝜕𝑦
 , 𝑣 = −

𝜕𝜓

𝜕𝑥
             (6)                                                                                    

where 𝜂 is the dimensionless similarity variable, 𝜃 is the dimensionless temperature and 

𝜓(𝑥, 𝑦) is the stream function of the fluid. 

Plugging Eq. (6) into Eqs. (1-4) leads to the nonlinear system of ordinary differential equation. 

𝑓′′′(𝜂) + 𝑓(𝜂)𝑓′′(𝜂) + 1 − 𝑓′2(𝜂) − 𝐴 (𝑓′(𝜂) − 1 +
𝜂

2
𝑓′′(𝜂)) + 𝑀(1 − 𝑓′(𝜂)) = 0            

(8) 

1

𝑃𝑟
𝜃′′(𝜂) + 𝑓(𝜂)𝜃′(𝜂) − 2𝑓′(𝜂)𝜃(𝜂) − 𝐴 (2𝜃(𝜂) +

1

2
𝜂𝜃′(𝜂)) + 𝐸𝑐 [𝑀(1 − 𝑓′(𝜂))

2
+

𝑓′′(𝜂)] = 0   (9) 

subject to the appropriate boundary conditions given as  

𝑓(0) = 𝑆, 𝑓′(0) = 𝜆, 𝜃(0) = 1 

𝑓′(𝜂) ⟶ 1, 𝜃(𝜂) ⟶ 0 as 𝜂 ⟶ ∞                                                        (10) 

where the prime represent differentiation with respect to 𝜂, 𝑆 > 0 is the suction parameter 

whereas 𝑆 < 0 is the injection parameter, 𝑀 is the constant magnetic parameter, 𝐸𝑐 is the 

Eckert number and 𝑃𝑟 denotes Prandtl number. 

The non-dimensional variables are defined as 

𝐴 =
𝛽

𝑎
 , 𝑀 =

𝜎𝐵0
2

𝑎𝜌
, 𝐸𝑐 =

𝑢𝑤
2

𝐶𝑝(𝑇𝑤−𝑇∞)
 , 𝑃𝑟 =

𝜐

𝛼
                                           (11) 

 

ANALYTICAL SOLUTION USING DTM 

Let 𝑢(𝑡) be a given analytic function in the given domain D and let 𝑥 = 𝑥𝑜 be an initial point 

of the function. 

Then the 𝑘th derivative of 𝑢(𝑡) about point 𝑡 = 𝑡0 is defined as follows: 

𝑈(𝑘) =
1

𝑘!
[

𝑑𝑘𝑢(𝑡)

𝑑𝑡𝑘 ]
𝑡=𝑡0

                    (12) 

where u(t) is the original function and 𝑈(𝑘) is the transformed function. 

The inverse transforms of 𝑈(𝑘) in Eq. (1) is given as 

𝑢(𝑡) = ∑ (𝑡 − 𝑡0)𝑘𝑈(𝑘)∞
𝑘=0                   (13) 
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Combining Eqs. (12) and (13), the original function, 𝑢(𝑡) can be rewritten as a finite series of 

the form: 

𝑢(𝑡) = ∑
(𝑡−𝑡0)𝑘

𝑘!
[

𝑑𝑘𝑢(𝑡)

𝑑𝑡𝑘
]

𝑡=𝑡0

∞
𝑘=0                                            (14)               

Fundamental Theorems of the Differential Transformation Method (DTM) 

Theorem 1. If 𝑦(𝑡) = 𝛼𝑓(𝑡) ± 𝛽𝑔(𝑡), then 𝑌(𝑘) = 𝛼𝐹(𝑘) ± 𝛽𝐺(𝑘)  

Theorem 2. If 𝑦(𝑡) = 𝛼𝑓(𝑡), then 𝑌(𝑘) = 𝛼𝐹(𝑘) 

Theorem 3. If 𝑦(𝑡) =
𝑑𝑓(𝑡)

𝑑𝑡
 , then 𝑌(𝑘) = (𝑘 + 1)𝐹(𝑘 + 1) 

Theorem 4. If 𝑦(𝑡) =
𝑑2𝑓(𝑡)

𝑑𝑡2  , then 𝑌(𝑘) = (𝑘 + 1)(𝑘 + 2)𝐹(𝑘 + 2) 

Theorem 5. If 𝑦(𝑡) =
𝑑𝑟𝑓(𝑡)

𝑑𝑡𝑟  , then 𝑌(𝑘) =
(𝑘+𝑟)!𝐹(𝑘+𝑟)

𝑘!
 

Theorem 6. If 𝑦(𝑡) = 𝑓(𝑡)𝑔(𝑡), then 𝑌(𝑘) = ∑ 𝐹(𝑘)𝐺(𝑘 − 𝑟)𝑘
𝑟=0  

Theorem 7. If 𝑦(𝑡) = 𝑡𝑟 , then 𝑌(𝑘) = 𝛿(𝑘 − 𝑟) = {
1, 𝑖𝑓 𝑘 = 𝑟
0, 𝑖𝑓 𝑘 ≠ 𝑟

 

Theorem 8. If 𝑦(𝑡) = 𝑓3(𝑡), then 𝑌(𝑘) = ∑ ∑ 𝐹(𝑘)𝐹(𝑘1 − 𝑟)𝐹(𝑘 − 𝑟)𝑘1
𝑟=0

𝑘
𝑘1

 

Theorem 9. If 𝑦(𝑡) = 𝑓′(𝑡)𝑔′(𝑡), then 𝑌(𝑘) = ∑ (𝑘 + 1)(𝑘 − 𝑟 + 1)𝐹(𝑟 + 1)𝐺(𝑘 − 𝑟 +𝑘
𝑟=0

1) 

Theorem 10. If 𝑦(𝑡) = 𝑒𝜆𝑡 , then 𝑌(𝑘) =
𝜆𝑘

𝑘!
 

Theorem 11. If 𝑦(𝑡) = 𝑓(𝑡)𝑔′(𝑡), then 𝑌(𝑘) = ∑ 𝐹(𝑘)(𝑘 − 𝑟 + 1)𝐺(𝑘 − 𝑟 + 1)𝑘
𝑟=0  

Theorem 12. If 𝑦(𝑡) = (1 + 𝑡)𝑚, then 𝑌(𝑘) =
𝑚(𝑚−1)(𝑚−2)….(𝑚−𝑘+1)

𝑘!
 

Theorem 13. If 𝑦(𝑡) = sin(𝑛𝑡 + 𝛼), then 𝑌(𝑘) =
𝑛𝑘

𝑘!
sin (

𝑛𝑘

2
+ 𝛼) 

Theorem 14. If 𝑦(𝑡) = sin(𝑛𝑡 + 𝛼), then 𝑌(𝑘) =
𝑛𝑘

𝑘!
sin (

𝑛𝑘

2
+ 𝛼) 

Rearranging Eqs. (8) and (9) in an equivalent expression, we have: 

𝑓′′′(𝜂) = 𝑓′2 + 𝐴 (𝑓′ − 1 +
1

2
𝜂𝑓′′) − 𝑓𝑓′′ − 𝑀(1 − 𝑓′) − 1                            (15) 

𝜃′′(𝜂) = 𝑃𝑟 [2𝑓′𝜃 + 𝐴 (2𝜃 +
1

2
𝜂𝜃′) − 𝑓𝜃′ − 𝐸𝑐[𝑀(1 − 𝑓′)2 + 𝑓′′2]]                (16) 
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Applying DTM to both sides of Eqs. (15) and (16), we obtain the form: 

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝐹(𝑘 + 3) = ∑(𝑘 + 1)(𝑘 − 𝑟 + 1)𝐹(𝑘 + 1)𝐹(𝑘 − 𝑟 + 1)

𝑘

𝑟=0

− 

∑ 𝐹(𝑟)(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)𝐹(𝑘 − 𝑟 + 2)𝑘
𝑟=0 − 𝑀(𝛿(𝑘) − (𝑘 + 1)𝐹(𝑘 + 1)) − 𝛿(𝑘) −

    

𝐴 {(𝑘 + 1)𝐹(𝑘 + 1) − 𝛿(𝑘) +
1

2
𝜂(𝑘 + 1)(𝑘 + 2)𝐹(𝑘 + 2)}                       (17) 

(𝑘 + 1)(𝑘 + 2)𝛩(𝑘 + 2)

= 𝑃𝑟 [2 ∑ 𝛩(𝑘)(𝑘 − 𝑟 + 1)𝐹(𝑘 − 𝑟 + 1)

𝑘

𝑟=0

+ 𝐴 (2𝛩(𝑘) +
1

2
𝜂(𝑘 + 1)𝛩(𝑘 + 1)) + 

∑ 𝐹(𝑟)(𝑘 − 𝑟 + 1)𝛩(𝑘 − 𝑟 + 1)𝑘
𝑟=0 − 𝐸𝑐 [𝑀(1 − (𝑘 + 1)𝐹(𝑘 + 1))

2
] + ∑ (𝑘 − 𝑟 +𝑘

𝑟=0

1)(𝑘 − 𝑟 + 2)𝐹(𝑘 − 𝑟 + 2)(𝑘 + 1)(𝑘 + 2)𝐹(𝑘 + 2)      

  (18) 

where 𝐹(𝑘) and 𝛩(𝑘) are the differential transforms of 𝑓(𝜂) and 𝜃(𝜂). The systems in Eqs. 

(17) and (18) are subject to the following boundary conditions: 

𝐹(0) = 𝑆, 𝐹(1) = 𝜆, 𝐹(2) = 𝛿1, 𝛩(0) = 1, 𝛩(1) = 𝛿2 

𝐹′(∞) ⟶ 1, 𝛩(∞) ⟶ 0                                                          (19) 

Rearranging Eqs. (17) and (18), we have the iterative schemes as follows: 

𝐹(𝑘 + 3) =
1

(𝑘+1)(𝑘+2)(𝑘+3)
[∑ (𝑘 + 1)(𝑘 − 𝑟 + 1)𝐹(𝑘 + 1)𝐹(𝑘 − 𝑟 + 1)𝑘

𝑟=0 −

∑ 𝐹(𝑟)(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)𝐹(𝑘 − 𝑟 + 2)𝑘
𝑟=0 − 𝑀(𝛿(𝑘) − (𝑘 + 1)𝐹(𝑘 + 1)) − 𝛿(𝑘) −

𝐴 {(𝑘 + 1)𝐹(𝑘 + 1) − 𝛿(𝑘) +
1

2
𝜂(𝑘 + 1)(𝑘 + 2)𝐹(𝑘 + 2)}]    

   (20) 

𝛩(𝑘 + 2) =
𝑃𝑟

(𝑘 + 1)(𝑘 + 2)
 [2 ∑ 𝛩(𝑘)(𝑘 − 𝑟 + 1)𝐹(𝑘 − 𝑟 + 1)

𝑘

𝑟=0

+ 𝐴 (2𝛩(𝑘) +
1

2
𝜂(𝑘 + 1)𝛩(𝑘 + 1)) 

+ ∑ 𝐹(𝑟)(𝑘 − 𝑟 + 1)𝛩(𝑘 − 𝑟 + 1)𝑘
𝑟=0 − 𝐸𝑐 [𝑀(1 − (𝑘 + 1)𝐹(𝑘 + 1))

2
] + ∑ (𝑘 − 𝑟 +𝑘

𝑟=0

1) (𝑘 − 𝑟 + 2)𝐹(𝑘 − 𝑟 + 2)(𝑘 + 1)(𝑘 + 2)𝐹(𝑘 + 2)      

        (21)  



African Journal of Mathematics and Statistics Studies  

ISSN: 2689-5323 

Volume 6, Issue 3, 2023 (pp. 70-85) 

77 Article DOI: 10.52589/AJMSS-NUACWT1M 

  DOI URL: https://doi.org/10.52589/AJMSS-NUACWT1M 

www.abjournals.org 

Putting the values of 𝑘 = 0, 1, 2.. into Eq. (20) and (21), we have the following iterative 

algorithm: 

𝐹(𝜂) = ∑ 𝐹(𝑘)𝜂𝑘𝑘
𝑟=0  and 𝛩(𝜂) = ∑ 𝛩(𝑘)𝜂𝑘𝑘

𝑟=0                                      (22) 

where the inverse differential transform of the solution is given by the expression 

𝑓(𝜂) = 𝐹(0) + 𝐹(1)𝜂 + 𝐹(2)𝜂2 + 𝐹(3)𝜂3 + ⋯ 

𝜃(𝜂) = 𝛩(0) + 𝛩(1)𝜂 + 𝛩(2)𝜂2 + 𝛩(3)𝜂3 + ⋯ 

Using Eq. (22), the approximate solution of the flow gradients gives the following expression:  

𝑓(𝜂) = 𝑆 + 𝜆𝜂 + 𝛿1𝜂2 +
1

6
[𝜆2 + (𝐴 + 𝑀)(𝜆 − 1) + (𝐴𝜂 − 2𝑆)𝛿1 − 1]𝜂3 + ⋯          (23) 

𝜃(𝜂) = 1 + 𝛿2𝜂 −
𝑃𝑟

2
[𝐸𝑐𝑀𝜆2 − 2(1 − 𝐸𝑐𝑀)𝜆 − (

𝐴

2
𝜂 − 𝑆) 𝛿2 + 4𝐸𝑐𝛿1

2 − 2𝐴 + 𝐸𝑐𝑀] 𝜂2 +

⋯ (24) 

 

ANALYTICAL SOLUTION USING ADM 

In this section, we give a brief outline of the Adomian decomposition method by considering 

a general nonlinear differential equation of the form.  

𝐿(𝑦(𝑥)) + 𝑅(𝑦(𝑥)) + 𝑁(𝑦(𝑥)) = 𝑔(𝑥)                                       (25) 

𝐿(𝑦(𝑥)) = 𝑔(𝑥) − 𝑅(𝑦(𝑥)) − 𝑁(𝑦(𝑥))                                         (26) 

while 𝑁(𝑦) is a nonlinear term, 𝑔 is the source term and 𝑅 is the remainder of the linear term. 

Suppose the inverse operator, 𝐿−1(. ) = ∫ ∫ (. )𝑑𝑥𝑑𝑥
𝑥

0

𝑥

0
 exists and on application to Eq. (26) 

gives the expression. 

𝐿−1(𝐿𝑦(𝑥)) = 𝐿−1(𝑔(𝑥)) − 𝐿−1(𝑅𝑦(𝑥)) − 𝐿−1(𝑁𝑦(𝑥))                      (27) 

𝑦(𝑥) = 𝜑0(𝑥) + 𝑔(𝑥) − 𝐿−1𝑅(𝑦(𝑥)) − 𝐿−1𝑁(𝑦(𝑥)                          (28) 

where g(𝑥) is the term obtained from integrating of the source term and 𝜑0 is the given 

conditions. Now rewriting the solution and nonlinear terms as decomposition series of the form 

𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)∞
𝑛=0  and 𝑁(𝑦(𝑥)) = ∑ 𝐴𝑛(𝑥)∞

𝑛=0                            (29) 

where the 𝐴𝑛
′𝑠 are the Adomian polynomials obtained using the formula 

𝐴𝑘 =
1

𝑘!

𝜕𝑘

𝜕𝜆𝑘
[𝑁(∑ 𝑦𝑛𝜆𝑛

∞
𝑛=0 )]𝜆=0, 𝑘 = 0,1,2 …                                     (30) 

Putting Eq. (28) into Eq. (27), we obtain the solution in the form a decomposition series. 

∑ 𝑦𝑛(𝑥)∞
𝑛=0 = 𝑦(𝑥) = 𝜑0(𝑥) + 𝑔(𝑥) − 𝐿−1𝑅(∑ 𝑦𝑛(𝑥)∞

𝑛=0 ) − 𝐿−1𝑁(∑ 𝐴𝑛(𝑥)∞
𝑛=0 )       

(31)  
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where 𝑦0(𝑥) = 𝜑0(𝑥) + 𝑔(𝑥) is the zeroth component of 𝑦𝑛+1(𝑥). The subsequent member of 

the series is obtained recursively as 

𝑦𝑘+1 = −𝐿−1𝑅(𝑦𝑘(𝑥)) − 𝐿−1(𝐴𝑘(𝑥)), 𝑘 ≥ 0                         (32) 

The exact solution of the problem is the limit of the recursive relation. 

𝑦(𝑥) = ∑ 𝑦𝑘(𝑥)𝑛
𝑘=0                                                         (33) 

Rewrite Eqs. (8) and (9), we have the following expressions: 

𝐿1𝑓 = 𝑓′2 + 𝐴 (𝑓′ − 1 +
1

2
𝜂𝑓′′) − 𝑓𝑓′′ − 𝑀(1 − 𝑓′) − 1                    (34) 

𝐿2𝜃 = 𝑃𝑟 [2𝑓′𝜃 + 𝐴 (2𝜃 +
1

2
𝜂𝜃′) − 𝑓𝜃′ − 𝐸𝑐{𝑀(1 − 𝑓′)2 + 𝑓′′2}]           (35) 

where the differential operators 𝐿1 and 𝐿2 are defined as  𝐿1 =
𝑑3

𝑑𝜂3  and 𝐿2 =
𝑑2

𝑑𝜂2.  Assuming 

the inverse of these operators, 𝐿1
−1 and 𝐿2

−1 exist and are integrated from 0 to 𝜂 as follows: 

𝐿1
−1(. ) = ∫ ∫ ∫ ∫ (. )𝑑𝜂𝑑𝜂𝑑𝜂

𝜂

0

𝜂

0

𝜂

0

𝜂

0
                                              (36) 

𝐿2
−1(. ) = ∫ ∫ (. )𝑑𝜂𝑑𝜂

𝜂

0

𝜂

0
                                                       (37) 

Applying the inverse differential operators, 𝐿1
−1 and 𝐿2

−1 to both sides of Eqs. (34) and (35), we 

have the equivalent expressions 

𝑓(𝜂) = 𝑓(0) + 𝜂𝑓′(0) +
𝜂2

2
𝑓′′(0) + 𝐿1

−1(𝑁1𝑓)                             (38) 

𝜃(𝜂) = 𝜃(0) + 𝜂𝜃′(0) + 𝐿2
−1(𝑁2𝜃)                                          (39) 

where 𝑁1(𝑢) = 𝑓′2 + 𝐴 (𝑓′ − 1 +
1

2
𝜂𝑓′′) − 𝑓𝑓′′ − 𝑀(1 − 𝑓′) − 1                   

𝑁2(𝑢) = 𝑃𝑟 [2𝑓′𝜃 + 𝐴 (2𝜃 +
1

2
𝜂𝜃′) − 𝑓𝜃′ − 𝐸𝑐{𝑀(1 − 𝑓′)2 + 𝑓′′2}]        

In view of the standard Adomian decomposition procedure, we introduce the following 

expression: 

𝑓(𝜂) = ∑ 𝑓𝑛(𝜂)∞
𝑛=0 = 𝑓0(0) + 𝐿1

−1(𝑁1𝑓)                                      (40) 

𝜃(𝜂) = ∑ 𝜃𝑛(𝜂)∞
𝑛=0 = 𝜃0(0) + 𝐿1

−1(𝑁1𝜃)                                     (41) 

To obtain the components of 𝑓𝑛(𝜂) and 𝜃𝑛(𝜂), the initial values of 𝑓0(𝜂) and 𝜃0(𝜂) are 

determined by invoking the appropriate boundary conditions as follows: 

𝑓(0) = 𝑆, 𝑓′(0) = 𝜆, 𝑓′′(0) = 𝛼1, 𝜃(0) = 1, 𝜃′(0) = 𝛼2 

𝑓′(∞) ⟶ 1, 𝜃(∞) ⟶ 0                                                        (42) 
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Putting the boundary conditions into Eqs. (39) and (40) gives zeroth order components as  

𝑓0(𝜂) = 𝑆 + 𝜆𝜂 +
𝛼1

2
𝜂2 , 𝜃0(𝜂) = 1 + 𝛼2𝜂                                     (43)                                                                                                             

Accordingly, the recursive scheme for the velocity and temperature distributions takes the 

form: 

𝑓𝑛+1(𝜂) = 𝑆 + 𝜆𝜂 +
𝛼1

2
𝜂2 + ∫ ∫ (𝐵𝑛 + 𝐴 (𝑓𝑛

′ − 1 +
1

2
𝜂𝑓𝑛

′′) − 𝐶𝑛 − 𝑀(1 − 𝑓𝑛
′) −

𝜂

0

𝜂

0

1) 𝑑𝜂𝑑𝜂𝑑𝜂 (44) 

𝜃𝑛+1(𝜂) = 1 + 𝛼2𝜂 + ∫ ∫ 𝑃𝑟 [2𝐷𝑛 + 𝐴 (2𝜃𝑛 +
1

2
𝜂𝜃𝑛

′ ) − 𝐸𝑛 − 𝐸𝑐{𝑀(1 − 𝑓𝑛
′)2 +

𝜂

0

𝜂

0

𝐹𝑛}] 𝑑𝜂𝑑𝜂       (45)                                                                                                      

where the nonlinear terms are defined as Adomian polynomials in the following expressions: 

𝐵 = 𝑓′2 ⟹ 𝐵0 = (𝑓0
′)2, 𝐵1 = 2𝑓0

′𝑓1
′,   𝐶 = 𝑓𝑓′′ ⟹ 𝐶0 = 𝑓0𝑓0

′′, 𝐶1 = 𝑓0𝑓1
′′ + 𝑓1𝑓0

′′ 

𝐷 = 𝑓′𝜃 ⟹ 𝐷0 = 𝑓0
′𝜃0,  𝐷1 = 𝑓0

′𝜃1 + 𝑓1
′𝜃0, 𝐸 = 𝑓𝜃′ ⟹ 𝐸0 = 𝑓0𝜃1

′ + 𝑓1𝜃0
′            (46) 

𝐹 = 𝑓′′2 ⟹ 𝐹0 = (𝑓0
′′)2, 𝐹1 = 2𝑓0

′′𝑓1
′′ 

Hence, the values of 𝑓𝑛(𝜂) and 𝜃𝑛(𝜂) for 𝑛 ≥ 2 are determined in the same way. 

By the ADM Procedure, we write the unknown functions as a decomposition series of the form: 

𝑓(𝜂) = ∑ 𝑓𝑛(𝜂)∞
𝑛=0 , 𝜃(𝜂) = ∑ 𝜃𝑛(𝜂)∞

𝑛=0                                        (47) 

Using Eqs. (43) and (44) leads to the three-term approximations for the flow gradients as 

follows: 

𝑓(𝜂) = 𝑓0(𝜂) + 𝑓1(𝜂) + 𝑓2(𝜂) + ⋯ 

𝜃(𝜂) = 𝜃0(𝜂) + 𝜃1(𝜂) + 𝜃2(𝜂) + ⋯                                         (48) 

𝑓(𝜂) = 𝑆 + 𝜂𝜆 +
𝜂2𝛼1

2
+

1

240
𝜂3(40(−1 + 𝜆)(1 + 𝐴 + 𝑀 + 𝜆) − 5(8𝑆 − 3𝐴𝜂 − 2𝜂(𝑀 +

𝜆))𝛼1 + 2𝜂2𝛼1
2) + ⋯                  (49) 

𝜃(𝜂) = 1 + 𝛿2𝜂 + 𝜂2𝑃𝑟 [−𝐸𝑐[𝛼1
2 + 𝑀(1 − 𝜆 − 𝜂𝛼1)2] − (𝑆 + 𝜂𝜆 +

𝜂2𝛼1

2
) 𝛼2 + 2(𝜆 +

𝜂𝛼1)(1 + 𝜂𝛼2) + 𝐴 (
𝜂𝛼2

2
+ 2(1 + 𝜂𝛼2))] + 𝜂𝛼2 + ⋯                                      (50) 

The accuracy of the Adomian decomposition solution increases with increase in the solution 

terms (𝑛). For complete solution of Eqs. (49-50), the constants, 𝛿1 and 𝛿2 should be determined 

using the second boundary condition. 

  



African Journal of Mathematics and Statistics Studies  

ISSN: 2689-5323 

Volume 6, Issue 3, 2023 (pp. 70-85) 

80 Article DOI: 10.52589/AJMSS-NUACWT1M 

  DOI URL: https://doi.org/10.52589/AJMSS-NUACWT1M 

www.abjournals.org 

COMPARISON OF ADOMIAN DECOMPOSITION AND DIFFERENTIAL 

TRANSFORM METHODS 

In this section, we compare the results for the velocity and temperature distributions using the 

Adomian decomposition method and differential transform method as well as their errors. 

Table 1: Comparison of numerical, ADM and DTM solutions for velocity 

  profile when 𝑨 = 𝟎. 𝟏, 𝑴 = 𝟎. 𝟎𝟓, 𝑺 = 𝟐, 𝝀 = 𝟐,  (stretching sheet) 

𝜂 𝑓(𝜂) 

Keller Box DTM ADM Error 

(DTM)  

Error (ADM) 

0.00 2.10000 2.00000 2.00000 0.1000 0.1000 

0.20 11.2690 11.2680 11.2667 0.0010 0.0023 

0.40 66.2000 66.1000 66.0000 0.1000 0.2000 

0.60 213.9200 213.9000 213.8000 0.0200 0.12000 

0.80 495.8704 495.8690 495.8670 0.0014 0.00340 

1.00 947.1100 947.1000 947.0000 0.0100 0.11000 

 

Table 2: Comparison of numerical, ADM and DTM solutions for temperature 

profile when 𝑨 = 𝟎. 𝟏, 𝑴 = 𝟎. 𝟎𝟓, 𝑺 = 𝟐, 𝝀 = 𝟐, (stretching sheet) 

𝜂 𝜃(𝜂) 

Keller Box DTM ADM Error (DTM)  Error 

(ADM) 

0.00 1.2000 1.1000 1.0000 0.10000 0.10000 

0.20 2.6000 2.5400 2.50000 0.06000 0.10000 

0.40 10.3000 10.2000 10.2000 0.10000 0.10000 

0.60 23.0000 22.9000 22.9000 0.10000 0.10000 

0.80 39.4200 39.41000 39.4000 0.01000 0.02000 

1.00 58.6100 58.6000 58.50000 0.01000 0.11000 

 

Table 3: Comparison of numerical, ADM and DTM solutions for velocity 

profile when 𝑨 = 𝟎. 𝟏, 𝑴 = 𝟎. 𝟎𝟓, 𝑺 = −𝟏, 𝝀 = 𝟐,  (shrinking sheet) 

𝜂 𝑓(𝜂) 

Keller Box DTM ADM Error (DTM)  Error 

(ADM) 

0.00 -0.20000 -1.00000 -1.00000 0.85000 0.95000 

0.20 1.16690 0.26680 1.26890 0.90000 0.96200 

0.40 -0.16000 -1.11000 -1.15880 0.95000 0.95120 

0.60 -1.10000 -2.10000 -0.88000 1.000000 1.12000 

0.80 -17.93320 -19.1332 -17.9233 1.200000 1.21000 

1.00 -54.75000 -56.0000 -56.7490 1.250000 1.251000 
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Table 4: Comparison of numerical, ADM and DTM solutions for temperature  

profile when 𝑨 = 𝟎. 𝟏, 𝑴 = 𝟎. 𝟎𝟓, 𝑺 = −𝟏, 𝝀 = 𝟐, (shrinking sheet) 

𝜂 𝜃(𝜂) 

Keller Box DTM ADM Error 

(DTM)  

Error 

(ADM) 

0.00 1.10000 1.10000 1.00000 0.00000 0.100000 

0.20 -2.69000 -3.78000 -2.67800 1.20000 1.21200 

0.40 -13.4500 -14.7000 -13.7000 1.25000 1.260000 

0.60 -31.4190 -32.9700 -31.21900 1.55100 1.681000 

0.80 -58.2500 -59.9000 -58.1100 1.65000 1.690000 

1.00 -94.8900 -96.6100 -94.7080 1.72000 1.792000 

 

CONCLUSION 

In this work, the problem of unsteady MHD flow and heat transfer through a 

stretching/shrinking sheet using two reliable approximate analytical techniques, Adomian 

decomposition method (ADM) and differential transformation method (DTM) were 

investigated. Applying these methods, we obtained approximate analytical solutions for the 

velocity and temperature profiles from the ordinary differential equations. We observed that 

the solutions obtained by these two methods are in the form of infinite power series. The 

velocity and temperature distributions obtained by these methods when compared with 

benchmarked numerical solutions from the Keller box scheme showed excellent agreement. 

The accuracy, effectiveness and convergence of both methods are displayed in Tables (1-4). 

However, the result from DTM is closer to the numerical result with minimal errors as opposed 

to the ADM result. Nevertheless, due to the drawback in dealing with nonlinear terms using 

Adomian polynomials, DTM is a preferable choice because it is flexible, convenient and its 

execution is straightforward without computational encumbrances. 

 

NOMENCLATURE 

𝑢   velocity of fluid in 𝑥 −axis 

𝑣   fluid velocity in 𝑦 −axis 

𝛼   Thermal diffusivity of fluid 

𝛽   Volume expansivity of fluid 

𝐵0   Applied magnetic field. 

𝜓   Stream function 

𝑆   Suction parameter 

𝐸𝑐   Eckert number 

𝑉0   Mass fluid flux at the surface 

𝑐𝑝   Specific heat capacity of the fluid 
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𝜌   Fluid density 

𝜐   Kinematic viscosity of the fluid 

𝜃   Dimensional temperature  

𝑇   Temperature of the fluid 

𝜂   Dimensionless similarity variable 

𝐴   Unsteadiness parameter 

𝑀   constant magnetic field 

𝑃𝑟   Prandtl number. 
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