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ABSTRACT:  In this study, we approximated linear 

programming by geometric programming; the developed method 

converts linear programming to geometric programming. We 

applied the developed method to Neighbourhood planning, a vital 

aspect of urban planning, and obtained the optimal cost of 

Neighbourhood designs. The method demonstrated that geometric 

programming is a robust non-linear optimization model that can 

be extended to approximate linear optimization problems. This 

method has obvious advantages in the sense that it allows every 

decision variable to contribute to the optimal objective function. 

This is not the case with the known regular Simplex method and 

the Interior Point Algorithm of solution to linear programming 

which assign zeros to some variables when the matrix of the non-

basic variables is rectangular or when some of the non-basic 

variables did not enter the basis. The developed method was used 

to find the global optimal solution, optimal primal and dual 

decision variables. The solution was better compared to the linear 

programming method via Simplex method or Interior Point 

Algorithm because it achieved the global optimal solution. We 

observed that in addition to achieving the global optimal solution, 

we obtained the optimal dual decision variables which was absent 

in the other methods and all the primal decision variables have 

value against the other methods that assigned some of the 

variables with zeroes. 

KEYWORDS: Linear Programming, Geometric Programming, 

Urban Planning, Optimal Objective Function, Optimal Dual 

Decision Variables, Optimal Primal Decision Variables. 
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INTRODUCTION 

Geometric programming is a non-linear optimization technique that is robust, very flexible and 

can be used to approximate linear optimization problems. Geometric programming has a 

complex look and because of the presence degrees of difficulties, Kochenberger et al. (1973) 

approximated a greater than zero degrees of difficulty geometric programming problem with 

separable programming. The result served a very important purpose of finding a solution to 

such complex problems as at that time. Recent developments in geometric programming, 

according to Amuji et al. (2020a), provide solutions to greater than zero degrees of difficulty, 

and as such, geometric programming problems can be solved directly. In some cases, where 

the original optimization problem is a terminal one or in extreme complex cases, geometric 

programming can be used to approximate such a problem.  

Geometric programming has found a way into linear programming approximation with 

efficient and global optimal solution. The solution shows that it is robust and can be applied in 

some cases where linear programming cannot be applied. In linear programming, we seek to 

attain both feasibility and optimality condition to attain optimal solution. For maximization 

problem in linear programming, the solution is said to be optimal if the coefficients of the non-

basic variables in the z-row (equation) are at least zeros and non-negative for feasibility to be 

attained. Again, for minimization problem, the condition of feasibility is the same but the 

coefficients of non-basic variables at the z-row (equation) are at most zeros. If a problem is 

feasible but non-optimal, we recover optimality by the Simplex method, but if, on the contrary, 

a problem is optimal and infeasible, we recover the feasibility by the dual simplex method. In 

the case where the problem is both infeasible and non-optimal, we recover the feasibility first. 

Also, in a case where the optimal solution is infeasible, we say that the problem has no feasible 

solution or we regard the problem as improperly formulated. Hence, for optimality and 

feasibility condition to be attained, which is the necessary and sufficient condition for 

optimality, the solution must be feasible. In the same vein, the necessary and sufficient 

condition for optimality are the orthogonality and normality conditions in geometric 

programming. In addition, the optimal dual decision variables must be strictly positive.  

The number of constraint equations corresponds to the number of slack or surplus variables to 

be augmented in the linear programming. These slack or surplus variables form the basic 

starting solution to the linear programming problems. If the number of constraint equations are 

exactly the same as the number of slack variables or surplus variables, the resulting matrix 

inverse at the optimal and final tableau will be a square, and in this case, the non-basic variables 

will all enter the basis thereby making each of the variables contribute to the optimal solution. 

But in the case where the resulting matrix is rectangular, one or more of the non-basic variables 

that did not enter the basis will assume zero. That means that they did not contribute to the 

optimal objective function. We have discovered that the reason for the zero contribution was 

because of the resulting matrix of the problem, but if we can find a better solution to the 

resulting rectangular matrix without allowing any of the value to assume zero, then all the 

decision variables (non-basic variables) will contribute to the optimal objective function. This 

is a limitation with linear programming via Simplex method or Interior point algorithm. At this 

point, geometric programming will be extended and used to solve such a problem and it gives 

each of the non-basic variables (decision variables) a sense of belonging in contributing to the 

optimality of the problem.  
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In this paper, we approximate linear programming by geometric programming with special 

interest in urban planning. The method produces a global and better optimal solution compared 

to linear programming via Simplex method. The method has an added advantage of not only 

producing the dual decision variables but also giving every primal decision variable equal 

opportunity to contribute to the optimal objective function.   

 

LITERATURE REVIEW 

Avriel and Williams (1970) and Ecker (1980) observed that posynomials are concave 

functions; however, the conversion of geometric programming to a convex program is based 

on logarithmic transformation of both objective and constraint functions. But instead of the 

original decision variables, xi, replace it with iy

iii exxy == log , and instead of minimizing 

f0(x), minimize logf0(x). Then the inequality fi(x) ≤ 1 with logfi(x)   ≤ 0, and gi(x) = 1 with log 

gi(x) = 0 (see Boyd et al., 2007). Duffin (1970) and Ben-Tal and Ben-Israel (1976) transformed 

primal geometric programming function to linear programming. The author made a 

Logarithmic transformation and it became a linear function which was solved using linear 

programming code. They stated and proved the optimality theorem of the transformed problem 

in terms of linear programs. Ecker and Zorack (1976) observed that if posynomials consist of 

a single term, then the log- linear transformation of it was equivalent to a linear program in the 

Log of the variables. Their work was mainly on posy-binomial program. We discovered that 

no work, to our best knowledge, has been done on approximating linear programming by 

geometric programming; rather, the reverse was the case from the literature. In this paper, we 

have approximated linear programming by geometric programming. This method has some 

advantages: It makes geometric programming wider in scope and applications. It does not give 

room for zero contribution of the decision variables to the optimal objective function due to 

the resulting matrix in the final tableau. A rectangular matrix or non-basic variable that did not 

enter the solution does not contribute to the optimal solution of the program. Our method, 

approximating linear programming by geometric programming, has taken care of such 

problem. In addition, our method achieves a global optimal solution. 
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METHODOLOGY  

Development of the Approximating Model  

The standard form of linear programming (LP) problem with m constraint and n variables are 

given as 
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where Cj are the cost coefficients, Xj are the decision variables, aij are the available resources, 

bj are the constraints due to limited resources.  

From Equation (1), we have 
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Taking the exponential of both sides of Equation (5), we have  
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Equation (6) is the same as the unconstrained geometric programming problem, where {aij} is 

the exponent matrix obtained from the powers of the primal decision variables, xi and Z = f(x). 

From Equation (2), the constraint equation, we have 
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Equation (8) is in the standard form and a reversed form of constraint equation (see Abrahams 

& Bunting, 1974); our interest is not on the constant (-1/bi); hence, it is ignored. We write 

Equation (8) as (9);  

1a  . . .)(min n2211 +++= nxxaxaxg                                                         (9) 

Taking ln of both sides, we have 
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where ai
+ is the same as the cost coefficients (Cj). 

Similarly, taking the exponential of both sides, we have 
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Since Equation (12) has a reversed constraint, we have 
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Equation (13) is a standard form of geometric programming constraint equation. Hence, the 

approximated geometric programming (Gp) problem from Equations (6) and (13) becomes 
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Subject to  BAy =                                                                                      (16) 

Equations (14) and (15) are standard constrained geometric programming model subject to the 

orthogonality and normality condition of Equation (16). 
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DATA PRESENTATION/APPLICATION OF THE METHOD 

Table 1: Cost of Neighbourhood Design for Three Layouts (Million Naira) 

Layout Street 

planning 

Street 

Maintenance 

Structure 

mapping 

1 3 -1 2 

2 -2 4 0 

3 -4 3 0 

Source: Survey Research (2023) 

 

Table 2: Resources Available for Each of the Three Layouts  

Neighbourhood design Layout 1 Layout 2 Layout 3 

Available Resources (million naira) 7 12 10 

Source: Survey Research (2023) 

 

Table 3: Cost of Planning for Each of the Three Layouts 

Neighbourhood design Layout 1 Layout 2 Layout 3 

Cost of Planning (million naira) 1 -3 -2 

Source: Survey Research (2023) 

 

Formulating the Neighbourhood planning problem presented in Tables 1-3, let x1 = cost of 

street planning, x2 = cost of maintenance and x3 = cost of mapping/structure location. Our 

objective is to the cost of neighbourhood planning. Putting the problem in a linear programming 

form and applying our developed approximation method, we have  

321 2x3xx(z) Minimize −−=  

103x4x-             

124x2x-             
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21

21

321

+

+

+−  

Applying the procedure from Equation (1) to (16), we have: 

321 2x3xx(z) Minimize −−=                                                                     (17) 

   

72xx3x: subjecto 321 +−                                                                        (18a) 
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124x2x-          21 +                                                                                 (18b) 

103x4x-             21 +

                                                                            (18c) 

Now, 

Taking the ln of both sides of Equation (17), we have 
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Taking exponential of both sides, we have 
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From Equation (18b), we have 
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From Equation (18c), we have 
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Putting Equations (19) to (22) together, we have a standard constrained geometric 

programming problem as follows 
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We split Equation (23) to obtain equation (24), see Amuji et al. (2020b) 
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Equation (24) is the objective function of a geometric program in standard form constrained by 

three constraint equations (25a–25c) in standard geometric programming form. 

 

Solving the above geometric programming problem, we have 
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The degree of difficulty of the problem is:  K = N – (m + 1) 

In this problem, n = 3; No = 2, N1 = 1, N2 = 1, N3 = 1, N = 5, m = 3. Hence, K = 5 – 4 = 1, so 

the problem has one degree of difficulty. Since the problem has no unique solution, we 

maximize the dual objective function subject to linear constraint (see Boyd et al., 2007). This 

gives rise to the dual geometric program given as  
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Subject to the normality and orthogonality conditions of Equation (16) 

BAy =  

 Forming the orthogonality and normality condition for the dual decision variables, we have 

y1 + 0y2 + y3 - y4 - y5 = 0  

-y1 + 0y2 - y3 + y4 + y5 = 0 

0y1 - y2 + y3 + 0y4 + 0y5 = 0 
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Solving for yi using MATLAB, we have 

A = [1, 0, 1, -1, -1; -1, 0, -1, 1, 1; 0, -1, 1, 0, 0; 1, 1, 0, 0, 0]; 

B = [0; 0; 0; 1]; 

y* = Pinv(A)*B 

 

y* = 

0

5000.0

5000.0

3333.0

3333.0

6667.0























  

The above values of y* are the optimal weights of the dual decision variables and they satisfy 

the orthogonality and normality conditions of Equation (16) 
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Then the optimal objective function is: 
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The above is the optimal (minimum) cost of carrying out the neighbourhood (urban) planning 

for the three layouts and this represents the optimal objective function.  

Solving for the optimal primal decision variables from the relationship, 

= ija

ij xCxfy )(**  , (see Rao, 2009) 

we have: 
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The first two rows of the above (by intuition) satisfied the optimal objective function; hence, 

we restrict ourselves to the two rows.  
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Taking the ln of both sides of the two rows, we have: 

 

321 ln0lnln9633.3 xxx +−=−  

321 lnln0ln09633.3 xxx −+=−  

 

Let lnxi = wi , see Amuji et al. (2021). 
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A = [1, -1, 0; 0, 0, -1]; 

B = [-3.9633; -3.9633]; 

w* = Pinv(A)*B 

 

0

6307.52

2543.7

1378.0
* 

















=x

 

 

The above values of x* in millions are the optimal weights of the primal decision variables 

which satisfied the optimal objective function. 
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SUMMARY AND CONCLUSION 

Summary 

In this study, we developed a method that converted linear programming to geometric 

programming. From our method, we demonstrated that geometric programming is a robust 

non-linear optimization model that can be extended to approximate linear optimization 

problem. This method has obvious advantages in the sense that it allows every decision variable 

to contribute to the optimal objective function. The method was applied to a vital aspect of 

urban planning called neighbourhood planning and optimal cost obtained. Therefore, the 

method was used to find the global optimal solution, optimal dual and primal decision 

variables. The solution was better compared to the linear programming method because it has 

the global minimal (optimal) solution. The optimal solutions from both methods are: Linear 

programming via Simplex method (z = 19m; (x1 = 0, x2 = 3, x3 = 5) millions) after three 

iterations; Interior point algorithm method (z = -19m; (x1 = 0, x2 = 3, x3 = 5) millions) after 

seven iterations; and Geometric programming method (f(x) = 113800; (y1 = 0.6667, y2 = 

0.3333, y3 = 0.3333, y4 = 0.5000, y5 = 0.5000), (x1 = 0.1378, x2 = 7.2543, x3 = 52.6307) 

millions). We observed that in addition to achieving the global optimal solution, we obtained 

the optimal dual decision variables which were absent in the other methods. The global optimal 

(minimal) solution is in agreement with Kochenberger et al. (1973).   

Conclusion 

We have approximated linear programming problem by geometric programming and obtained 

a better solution. The geometric programming approximation method has advantages of finding 

the optimal dual decision variables, optimal primal decision variables and global optimal 

solution. The method also finds some hidden values of some variables which linear 

programming assigned zero to because it could not find such values. No matter the nature of 

matrix that results from the final and optimal tableau of the linear programming (rectangular 

or square), the developed geometric programming method can comfortably solve it and obtain 

an appropriate solution to it. Hence, we have extended geometric programming to approximate 

linear programming problem. 
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