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ABSTRACT: Distributions with the variable support 𝑥 ∈
𝑅 that exhibit strict symmetricity are versed in literature; 

and serve as model-fit for various forms of bell shaped 

outcomes; where normal and logistic distributions are 

renowned examples. This strictness, however, limits the 

application of these probability models to a particular 

kind of data; hence, its minimal utility. In this paper, 

therefore, a new generalization for the logistic 

distribution termed the Jones generalized logistic 

distribution is proposed. This new distribution is 

conditionally symmetric; which entails that the 

distribution attains symmetricity, only at equal parameter 

combinations. By implication, the proposed distribution 

serves the dual purpose of modeling both symmetric and 

asymmetric outcomes. Some properties of the proposed 

model have been derived. Finally, JGLD were fit to two 

different lifetime data as a demonstration to its relevance.  

KEYWORDS: Logistic Distribution, Symmetricity, 

Generalization, Entropy, Lifetime Data.  
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INTRODUCTION 

It is usually of interest to keep track of preceding events before a significant or landmark 

occurrence. This is referred to as lifetime data; where lifetime distribution is the model used 

in fitting for these outcomes. Another terminology for describing this phenomenon is “time to 

event data”. Many classical distributions have been developed in both symmetric and 

asymmetric categories, for this modeling purpose; the likes of Gumbel, Normal, Arcsine, 

Hyperbolic Secant, Gamma, Exponential, Rayleigh, Logistic and several other distributions. 

The evolution of distribution extensions stem from the well-known fact that some of the 

classical distributions are not flexible enough to model some complex or wild data.  

This limitation necessitates the development of generalized distributions (or generators); 

which is adds extra parameter(s) and consequently improve the flexibility of a baseline 

distribution for wild data accomodation. Some of the popular generators are Logistic-G due 

to Torabi and Montazeri (2014), Gamma-G due to Zografos and Balakrishnan (2009), Sin-G 

due to Souza et al. (2019), Kumaraswamy Transmuted-G due to Afifya et al. (2016), 

Logistic-X due to Tahir et al. (2016), Transformed-Transformer(T-X) family of distributions 

due to Alzaartreh and Famoye (2013) and Topp Leone-G due to Tahir et al. (2018), Normal-

G due to Ekum et al. (2022), Marshal-Olkin TX due to Klakattawi et al. (2022), A new 

generalized-X family of distribution due to Roozegar et al. (2022), to mention a few.  

 

Gupta and Balakrishnan (1992), and Johnson et al. (1995) captured in their compilations the 

logistic distribution, popularly known as the growth model; which is a symmetric distribution 

and defined as  

                                              𝑓1(𝑥) =  
𝑒−(𝑥−𝜇)/𝛽

𝛽[1+𝑒−(𝑥−𝜇)/𝛽]2  ;  −∞ < 𝑥 < ∞, 𝜇 𝜖 𝑅,   𝛽 > 0          (1) 

However, equation (1) can be represented in standard form at 𝜇 = 0  𝑎𝑛𝑑 𝛽 = 1 to obtain:    

                                              𝑓2(𝑥) =
𝑒−𝑥

(1+𝑒−𝑥)2                                                                        (2) 

and their corresponding cumulative distribution functions are given as:  

                                              𝐹1(𝑥) =
1

1+𝑒−(𝑥−𝜇)/𝛽                                                                   (3) 

                                              𝐹2(𝑥) =
1

1+𝑒−𝑥
                                                                           (4) 

This classical distribution is widely applied in many areas of life, which made it a significant 

remark in the field of statistics. Logistic distribution was used to analyze economic and 

demographic data, and bio-assay data due to Verhust (1845) and Berkson (1953) respectively 

as captured in Balakrishnan (1991). In an attempt to improve on its flexibility, Balakrishnan 

et al. (1988) and Gupta and Kundu (2010) developed Type 1 generalized logistic distribution 

and generalized logistic distributions respectively. More so, Makubate et al. (2021) proposed 

Marshal-Olkin half logistic-G distribution, which served as a flexible fit for modeling in 

several fields such as survival analysis and hydrology and engineering. 
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By investigations, most of the distributions with the variable support 𝑥 ∈ 𝑅 is observed to 

exhibit either strict or conditional symmetricity; strict symmetry in the sense that at all 

parameter values or combinations (for distributions with 𝑘 > 1 parameters), the distribution 

remains symmetric. For example, Normal distribution, Logistic distribution, Arcsine 

hyperbolic secant distribution etc. However, a distribution is judged conditionally symmetric 

if symmetry occurs only at a given value of parameters. The first case could be viewed in a 

way to be more flexible a distribution than the latter; because, in the derivation of 

mathematical or statistical properties for example, it yields definite and direct results. 

However, for the conditionally symmetric distributions, numerical evaluations are usually 

made to obtain some results for its various properties.  

This limitation notwithstanding, conditionally symmetric distributions assume different 

shapes at different parameter values. This implies that it can serve the dual purpose of data 

modeling, both for the symmetric and asymmetric order; hence, having a different flexibility 

edge over the strict type. Consequently, the paper is aimed at proposing a generalized 

distribution arising from the distributions of order statistics according to Jones (2004). This 

compound development is intended to improve on the logistic distribution for various rising 

needs other than symmetric data modeling. Other sections involve the construction of the 

proposed model, its properties and then the application to various data. 

CONSTRUCTION OF JONES-G LOGISTIC DISTRIBUTION (JGLD) 

Jones developed a generalized model from distributions of order statistics, and the probability 

density function is given as: 

                         𝑓(𝑥, 𝑎, 𝑏) =  
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
𝑔(𝑥)[𝐺(𝑥)]𝑎−1[1 − 𝐺(𝑥)]𝑏−1,   𝑎 > 0, 𝑏 > 0              (5) 

where 𝐺(𝑥) is a symmetric distribution, and 𝑓(𝑥, 𝑎, 𝑏) assumes conditional symmetricity at 

parameter values 𝑎 = 𝑏. By inserting equation (2) into (5) we obtain JGLD as follows: 

                                 𝑓(𝑥, 𝑎, 𝑏) =  
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
  

𝑒−𝑥

(1+𝑒−𝑥)2 [
1

1+𝑒−𝑥]
𝑎−1

[1 −
1

1+𝑒−𝑥]
𝑏−1

                     (6) 

And the cumulative distribution function is derived thus 

                                 𝐹(𝑥, 𝑎, 𝑏) =  ∫ 𝑓(𝑡, 𝑎, 𝑏)𝑑𝑡
𝑥

−∞
                                                                       

                                 𝐹(𝑥, 𝑎, 𝑏) =
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
 (ⅇ𝑥)𝑎  (

1

1+𝑒𝑥
)

𝑏
(1 + ⅇ𝑥)𝑏 ℵ                                (8)  

                                                 =
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
  (ⅇ𝑥)𝑎 ℵ 

 where      ℵ = Hypergeometric2F1[𝑎, 𝑎 + 𝑏, 1 + 𝑎, −ⅇ𝑥]                                                          
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PROPERTIES OF JONES-G LOGISTIC DISTRIBUTION 

Infinite Series Representation (ISR)  

The following forms of functions can be represented thus, as infinite series: 

                                                          ⅇ𝑠 =  ∑
𝑠𝑖

𝑖!

∞
𝑖=0                                                                 (10)     

                                               (𝑎 + 𝑠)𝑛 =  ∑ (𝑛
𝑗
) 𝑎𝑛−𝑗𝑠𝑗∞

𝑗=0                                                 (11) 

                                →          (𝑎 + 𝑠)−𝑛 =  ∑ (−𝑛
𝑗

) 𝑎−𝑛−𝑗𝑠𝑗∞
𝑗=0                                             (12) 

                                             (1 − 𝑠𝑐)𝑛 = ∑ (𝑛
𝑙
)(−1)𝑙𝑠𝑐𝑙∞

𝑙=0                                                  (13) 

            Hypergeometric2F1[𝑖, 𝑗, 𝑘, 𝑧] = ∑
𝑖𝑝 𝑗𝑝

𝑘𝑝

∞
𝑝=0  

𝑧𝑝

𝑝!
                                                       (14) 

              HypergeometricPFQ[𝑢, 𝑣, 𝑧] = ∑
𝑢𝑝 

𝑣𝑝

∞
𝑝=0

𝑧𝑝

𝑝!
                                            (15) 

where equations (10-15) suffice to express the PDF and CDF components as  

                                                       ⅇ−𝑥 =  ∑
(−𝑥)𝑖

𝑖!

∞
𝑖=0                                            

                                                   (ⅇ𝑥)𝑎 = ∑
(𝑎𝑥)𝑖

𝑖!

∞
𝑖=0              

                    
1

(1+𝑒−𝑥)2 = (1 + ⅇ−𝑥)−2    =   ∑ (−2
𝑗

)∞
𝑗=0 ∑

(−𝑥 𝑗)𝑗

𝑗!

∞
𝑗=0                                                

               [
1

1+𝑒−𝑥
]

𝑎−1

=  (1 + ⅇ−𝑥)1−𝑎 =   ∑ (1−𝑎
𝑘

) ∑
(−𝑥)𝑘

𝑘!

∞
𝑘=0

∞
𝑘=0                                                

        [1 −
1

1+𝑒−𝑥]
𝑏−1

=  ∑ ∑ (𝑏−1
𝑙

)(−𝑙
𝑚

)(−1)𝑙 ∑
(−𝑥 𝑚)𝑞

𝑞!
∞
𝑞=0

∞
𝑚=0

∞
𝑙=0                                                

Hence, by implication of ISR, the PDF and CDF of JGLD following equations (6) and (8) are 

respectively given as:      

                 𝑓(𝑥, 𝑎, 𝑏) =  
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
 ∑

(−𝑥)𝑖

𝑖!

∞
𝑖=0   ∑ (−2

𝑗
)∞

𝑗=0 ∑
(−𝑥 𝑗)𝑗

𝑗!

∞
𝑗=0  ∑ (1−𝑎

𝑘
) ∑

(−𝑥)𝑘

𝑘!

∞
𝑘=0

∞
𝑘=0   

                                                                           ∑ ∑ (𝑏−1
𝑙

)(−𝑙
𝑚

)(−1)𝑙 ∑
(−𝑥 𝑚)𝑞

𝑞!
∞
𝑞=0

∞
𝑚=0

∞
𝑙=0      

       =  
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
 ∑  (−2

𝑗
) (1−𝑎

𝑘
) (𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙  

(−𝑥)𝑖

𝑖!
 
(−𝑥 𝑗)𝑗

𝑗!
 
(−𝑥)𝑘

𝑘!
  

(−𝑥 𝑚)𝑞

𝑞!
 ∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0   (16)     
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and           𝐹(𝑥, 𝑎, 𝑏) =
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
 ∑

(𝑎𝑥)𝑖

𝑖!

∞
𝑖=0  ∑

𝑎𝑝 (𝑎+𝑏)𝑝

(1+𝑎)𝑝

∞
𝑝=0  

(−𝑒𝑥)𝑝

𝑝!
   

                                  =
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
 ∑

(𝑎𝑥)𝑖

𝑖!
 
𝑎𝑝 (𝑎+𝑏)𝑝

(1+𝑎)𝑝

∞
𝑖=𝑝=0

(−𝑒𝑥)𝑝

𝑝!
                                             (17) 

JGLD PDF Properness 

To test the validity of a distribution, it suffices to state that  ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= 1.                                                                                           

 ∴       ∫ 𝑓(𝑥, 𝑎, 𝑏)𝑑𝑥 = ∫ (
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
  

𝑒−𝑥

(1+𝑒−𝑥)2 [
1

1+𝑒−𝑥]
𝑎−1

[1 −
1

1+𝑒−𝑥]
𝑏−1

) 𝑑𝑥
∞

−∞
 

∞

−∞
               (18)     

                  =
Gamma[𝑎+𝑏](

Hypergeometric2F1[𝑎,𝑎+𝑏,1+𝑎,−1]

𝑎
+

Hypergeometric2F1[𝑏,𝑎+𝑏,1+𝑏,−1]

𝑏
)

Gamma[𝑎]Gamma[𝑏]
                (19) 

Conventionally, the outcome of the integral in equation (18) should be one. In this case 

however, it does not appear directly due to the hyper-geometric and gamma functions that 

must be parametrically evaluated. Nonetheless, the results obtained equal one consistently, 

computing equation (19) with any evaluable gamma or hyper geometric parameters. This is to 

say that the choice of the parameters is subject to the domain of both gamma and hyper 

geometric functions, constrained within the distribution’s parameter supports. 

JGLD Shape Parametric Behavior  

 

 

Figure 1: JGLD PDF Plots at 𝒂 =  𝒃, 𝒂 <  𝒃 𝒂𝒏𝒅 𝒂 >  𝒃 

 

As observed in Figure 1, the distribution is symmetric at all parameter values 𝑎 = 𝑏; and 

then, it is asymmetric at different unequal values of a and b (i.e. 𝑎 > 𝑏 or 𝑎 < 𝑏). This entails 

that JGLD can model data from both symmetric and asymmetric order (left and right 

skewed). 
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Figure 2: The plot of the CDF 

 

This convergence at 1.0 as seen in Figure 2 validates the properness of the distribution at 

different combinations of the parameter for  𝑎, 𝑏 > 0; regardless of the inexplicit nature of the 

PDF. More so, the derivation of a probability table for the PDF of JGLD across the variables 

and different parameter values will consolidate this validation insight. 

Moments And Moment Generating Function for JGLD 

The moment and moment generating function of JGLD are derived given that 𝑓(𝑥) is the 

function in equation (6), thus:     

                                               𝜇𝑟 = 𝐸(𝑋)𝑟 = ∫ 𝑥𝑟𝑓(𝑥, 𝑎, 𝑏)𝑑𝑥
∞

−∞
                                               

= ∫ 𝑥𝑟 (
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 (−𝑥)𝑖

𝑖!

(−𝑥 𝑗)𝑗

𝑗!
 
(−𝑥)𝑘

𝑘!

(−𝑥 𝑚)𝑞

𝑞!
 ∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0 )
∞

−0
𝑑𝑥  

=  ∫ 𝑥𝑟 (
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
 ∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 ⅇ−𝑥−𝑥−𝑥𝑗−𝑥𝑚 ∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0 )
∞

−0
𝑑𝑥  

=
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙  ∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0 ∫ 𝑥𝑟ⅇ−2𝑥−𝑥𝑗−𝑥𝑚∞

−0
𝑑𝑥   

=
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 (2 + 𝑗 + 𝑚)−(1+𝑟)Г(1 + 𝑟)∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0 ,                

(20) 

                                                                                                         𝑟 > −1, 𝑗 + 𝑚 > −2   

 

Evaluating equation (20) at 𝑟 = 1,2,3 & 4, we obtain the raw moments about the origin:                      

     𝜇1
, =

Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 (2 + 𝑗 + 𝑚)−2∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0 =  𝜇                    

     𝜇2
, =

2 Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 (2 + 𝑗 + 𝑚)−3∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0                             
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    𝜇3
, =

6 Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 (2 + 𝑗 + 𝑚)−4∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0                             

    𝜇4
, =

24 Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 (2 + 𝑗 + 𝑚)−5∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0                           

The central moment about the mean of the JGLD is: 

                    𝜇𝑛 = 𝐸[ (𝑋 − 𝐸[𝑋])𝑛 ] =  ∑ (𝑛
𝑗
)𝑛

𝑗=0  (−1)𝑛−𝑗 𝜇𝑗
, 𝜇𝑛−𝑗                            (21) 

So that         𝜇2 =   𝜇2
, − 𝜇2 =  𝜎2                     (22)            

                    𝜇3 =   𝜇3
, − 3𝜇2

, 𝜇 + 2𝜇3                                                                            (23)                                                                      

                    𝜇4 =   𝜇4
, −  4𝜇3

, 𝜇  + 6𝜇2
, 𝜇2 − 3𝜇4                                                            (24)                                                                         

More so, the coefficient of variation CV =  
𝜎

𝜇1
, , the coefficient of skewness 𝐶𝑆 =  

𝜇3

𝜇2
3/2, the 

coefficient of kurtosis CK  =  
𝜇4

𝜇2
2 , and the variance-to-mean-ratio 𝑉𝑀𝑅 =  

𝜎2   

𝜇1
′  can further be 

derived following equations (21-24). 

The moment generating function of JGLD Distribution is derived as:                       

              𝑀𝑥(t)  =  𝐸( ⅇ𝑡𝑥)  =  ∫ ⅇ𝑡𝑥 𝑓(𝑥)
∞

−∞
 𝑑𝑥                                                              (25) 

𝑀𝑥(t)  =  ∫ ⅇ𝑡𝑥  (
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
  

𝑒−𝑥

(1+𝑒−𝑥)2 [
1

1+𝑒−𝑥]
𝑎−1

[1 −
1

1+𝑒−𝑥]
𝑏−1

)
∞

0
 𝑑𝑥                               (26) 

     =

 ∫ ⅇ𝑡𝑥 (
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 (−𝑥)𝑖

𝑖!

(−𝑥 𝑗)𝑗

𝑗!
 
(−𝑥)𝑘

𝑘!

(−𝑥 𝑚)𝑞

𝑞!
 ∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0 )
∞

0
𝑑𝑥        

     =
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
 ∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 ∫ ⅇ𝑡𝑥 ⅇ−2𝑥−𝑥𝑗−𝑥𝑚∞

−0
𝑑𝑥   ∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0   

     =
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
 ∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 ∫  ⅇ−2𝑥−𝑥𝑗−𝑥𝑚+𝑡𝑥∞

−0
𝑑𝑥   ∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0   

     =
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
 ∑ (−2

𝑗
) (1−𝑎

𝑘
)(𝑏−1

𝑙
)(−𝑙

𝑚
)(−1)𝑙 1

2+𝑗+𝑚−𝑡
   ∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0                                        

                                                                                           𝑗 + 𝑚 − 𝑡 > −2 

  



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 6, Issue 4, 2023 (pp. 44-62) 

51 Article DOI: 10.52589/AJMSS-KAVMIK6P 

  DOI URL: https://doi.org/10.52589/AJMSS-KAVMIK6P 

www.abjournals.org 

Quantile simulating function 

The mathematical expression for quantile forecast model is derived thus:  

                                    𝐹(𝑥) =  𝜃   →      𝑥 = 𝐹−1(𝜃); 0 ≤ 𝜃 ≤ 1.                                             

Now, the JGLD quantile function is follows from the equating the CDF as obtained in 

equation (8) by 𝜃. 

                                      
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
  (ⅇ𝑥)𝑎 ℵ =  𝜃  

                              
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
  (ⅇ𝑥)𝑎 ℵ −  𝜃 = 0                                                                           

Hazard and Other Related Functions of JGLD 

The hazard function of the distribution from JGLD family is derived from the survival 

function given as: 

 

                                      𝑠(𝑥, 𝑎, 𝑏) = 1 − 𝐹(𝑥, 𝑎, 𝑏)                                                                   

                                      𝑠(𝑥, 𝑎, 𝑏) = 1 − (
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
  (ⅇ𝑥)𝑎 ℵ)  

                                                      = 1 − (
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
  ∑

(𝑎𝑥)𝑖

𝑖!

∞
𝑖=0  ∑

𝑎𝑝 (𝑎+𝑏)𝑝

(1+𝑎)𝑝

∞
𝑝=0  

(−𝑒𝑥)𝑝

𝑝!
) 

                                                      = 1 − (
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
  ∑ ∑

(𝑎𝑥)𝑖

𝑖!
 
𝑎𝑝 (𝑎+𝑏)𝑝

(1+𝑎)𝑝

∞
𝑝=0  

(−𝑒𝑥)𝑝

𝑝!

∞
𝑖=0  )            

where the hazard function is                      

                                      ℎ(𝑥, 𝑎, 𝑏) =
𝑓(𝑥,𝑎,𝑏)

𝑠(𝑥,𝑎,𝑏)
                                                

                                                      =

Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
  

ⅇ−𝑥

(1+ⅇ−𝑥)2[
1

1+ⅇ−𝑥]
𝑎−1

[1−
1

1+ⅇ−𝑥]
𝑏−1

1−(
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
  (𝑒𝑥)𝑎 ℵ)

                       

 

                                                      =
𝑎 Г(𝑎+𝑏) [

1

1+ⅇ−𝑥]
𝑎

 [
1

1+ⅇ𝑥]
𝑏

𝑎 Г(𝑎)Г(𝑏)− (𝑒𝑥)𝑎 Г(𝑎+𝑏)ℵ
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JGLD Entropy Study  

The measure of randomness of a system, say, a random variable X, is termed entropy, Renyi 

(1961). The Renyi entropy of X with density function  𝑝(𝑥), following JGLD is defined by, 

                                            𝑁𝑒 =
1

1−𝑐
 𝑙𝑜𝑔{∫ 𝑝𝑐(𝑥)𝑑𝑥

∞

−∞
}, 𝑐 > 0, 𝑐 ≠ 1                                  

                        𝑁𝑒 =
1

1−𝑐
 𝑙𝑜𝑔 {∫ [

Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
  

𝑒−𝑥

(1+𝑒−𝑥)2
[

1

1+𝑒−𝑥
]

𝑎−1

[1 −
1

1+𝑒−𝑥
]

𝑏−1

]
𝑐

𝑑𝑥
∞

−∞
} 

                             =
1

1−𝑐
Log {[

Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
]

𝑐

(Г(𝑎𝑐)ℵ𝑅𝑎𝑐 + Г(𝑏𝑐)ℵ𝑅𝑏𝑐)} , 𝑏𝑐 > 0, 𝑎𝑐 > 0          

where  ℵ𝑅𝑎𝑐 = Hypergeometric2F1Regularized[𝑎𝑐, (𝑎 + 𝑏)𝑐, 1 + 𝑎𝑐, −1] 

            ℵ𝑅𝑏𝑐 = Hypergeometric2F1Regularized[𝑏𝑐, (𝑎 + 𝑏)𝑐, 1 + 𝑏𝑐, −1] 

Furthermore, Tsalli (1988), defined entropy for a given random variable X as: 

              𝑇𝑠𝑒 =
1

𝑠−1
 {1 − ∫ 𝑓𝑠(𝑥)𝑑𝑥

∞

−∞
}, 𝑠 ∈ 𝑅, 𝑠 ≠ 1                                                             

To obtain the Tsalli’s entropy for a random variable which follows JGLD, we have thus: 

              𝑇𝑠𝑒 =
1

𝑠−1
 {1 − ∫ [

Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
  

𝑒−𝑥

(1+𝑒−𝑥)2 [
1

1+𝑒−𝑥]
𝑎−1

[1 −
1

1+𝑒−𝑥]
𝑏−1

]
𝑠

𝑑𝑥
∞

−∞
}                

                     =
1

𝑠−1
{1 − ([

Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
]

𝑠

[Г(𝑎𝑠)ℵ𝑅𝑎𝑠] + Г(𝑏𝑠)ℵ𝑅𝑏𝑠])} ,   𝑏𝑠 > 0,   𝑎𝑠 > 0           

where  ℵ𝑅𝑎𝑠 = Hypergeometric2F1Regularized[𝑎𝑠, (𝑎 + 𝑏)𝑠, 1 + 𝑎𝑠, −1] 

            ℵ𝑅𝑏𝑠 = Hypergeometric2F1Regularized[𝑏𝑠, (𝑎 + 𝑏)𝑠, 1 + 𝑏𝑠, −1] 

Table 1: Empirical Analysis on Renyi Entropy  

C 𝑎 =  1,
𝑏 = 3.5 

𝑎 =  1.8,
𝑏 = 4 

𝑎 = 3,
𝑏 = 3.8 

𝑎 = 3.9,
𝑏 = 5.6 

0.5 3.1890 2.3056 1.7428 1.3674 

0.7 3.3105 2.8831 2.3550 2.5238 

0.75 3.6320 3.3593 2.7856 3.3130 

0.8 4.1987 4.1460 3.4780 4.6375 

0.87 5.9066 6.4438 5.4551 8.6782 

0.9 7.4444 8.4981 7.2016 12.4264 

1***? ∞ ∞ ∞ ∞ 

1.35 -2.3973 -5.8368 -4.0392 -32.196 

2 -5.0198 -32.466 -11.935 -1478.82 

2.75 -73.848 -1466.2 -258.38 -1091274 

3 -228.46 -6733.2 -930.39 -13716122 

3.6 -4896.257 -387436.2 -29563.2 -10061882097 
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Table 2: Empirical Analysis on Tsalli Entropy  

S 𝑎 =  1,
𝑏 = 3.5 

𝑎 =  1.8,
𝑏 = 4 

𝑎 = 3,
𝑏 = 3.8 

𝑎 = 3.9,
𝑏 = 5.6 

0.5 -3.3303 -3.4628 -4.3628 -8.7643 

0.7 -3.4623 -6.3126 -11.099 -42.015 

0.75 -3.8486 -8.2517 -15.432 -69.169 

0.8 -4.5516 -11.482 -22.617 -120.89 

0.87 -6.7466 -21.214 -44.235 -306.79 

0.9 -8.7676 -30.147 -64.091 -499.66 

1***? −∞ −∞ −∞ −∞ 

1.35 6.7390 57.077 130.43 8454.1 

2 38.182 1022.16 2119.5 5678233 

2.75 1245.05 168524.9 320253.4 92542980715 

3 4981.50 1191238 2203492 3.26e+12 

3.6 197779.1 192988461 331196826 2.84e+16 

 

From Tables 1 and 2, it is a clear observation that entropy can assume either a positive and or 

a negative value. More so, for any two preceding or consecutive values of the 

parameters  𝑐𝑖 𝑎𝑛𝑑  𝑠𝑖, say (𝑐1 𝑎𝑛𝑑 𝑐2) or (𝑠1 𝑎𝑛𝑑 𝑠2), the JGLD Renyi (𝑁𝑒) and Tsalli 𝑇𝑠𝑒 

entropy, conditionally satisfies the entropy behavioral proposition as given by Golshani and 

Pasha (2010):  

∀  𝐶 < 1:        𝑐1  <  𝑐2     →     𝑁𝑒1  ≤  𝑁𝑒2 

∀  𝐶 > 1:         𝑐1  <  𝑐2     →     𝑁𝑒1  ≥  𝑁𝑒2 

  ∀  𝑆 < 1:         𝑠1  <  𝑠2     →     𝑇𝑠𝑒1  ≥  𝑇𝑠𝑒2 

  ∀  𝑆 > 1:          𝑠1  <  𝑠2    →     𝑇𝑠𝑒1  ≤  𝑇𝑠𝑒2 

Parameter Estimation of the JGL Distribution 

Let 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 be random samples given a PDF 𝑓(𝑥); then the log-likelihood function 

for the random variable is given as: 

                  𝑙𝑛𝐿𝑓(𝑥, 𝜔) = ∑ 𝑙𝑛𝑓(𝑥𝑖, 𝜔)𝑛
𝑖=0 ;                                                                                 

where,           𝐿𝑓(𝑥, 𝜔) =  ∏ 𝑓(𝑥𝑖 , 𝜔)𝑛
𝑖=0  

If 𝑋~ 𝐽𝐺𝐿𝐷(𝑥, 𝜔),    𝜔 = 𝑎, 𝑏, then 

                   𝐿𝑓(𝑥, 𝑎, 𝑏) =  [
Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
]

𝑛

  
𝑒− ∑ 𝑥𝑖

𝑛
𝑖=1

∑ (1+𝑒−𝑥𝑖)2𝑛
𝑖=1

∑ [
1

1+𝑒−𝑥
]

𝑎−1
𝑛
𝑖=1 ∑ [1 −

1

1+𝑒−𝑥
]

𝑏−1
𝑛
𝑖=1   
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Taking the natural logarithm of both sides,                                                                                    

           𝑙𝑛L𝑓(𝑥, 𝑎, 𝑏) = 𝑛𝑙𝑛[Г(𝑎 + 𝑏)] − 𝑛𝑙𝑛[Г(𝑎)Г(𝑏)] − ∑ 𝑥𝑖
𝑛
𝑖=1 − 2𝑙𝑛 ∑ (1 + ⅇ−𝑥𝑖)𝑛

𝑖=1  

                                                              +(𝑎 − 1)𝑙𝑛 ∑ [
1

1+𝑒−𝑥
]𝑛

𝑖=1 + (𝑏 − 1)𝑙𝑛 ∑ 1 − [
1

1+𝑒−𝑥
]𝑛

𝑖=1  

Maximizing at  
𝜕 𝑙𝑛L𝑓(𝑥,𝑎,𝑏)

 𝜕𝑎  
=

𝜕 𝑙𝑛L𝑓(𝑥,𝑎,𝑏)

 𝜕𝑏  
= 0                      

                          
𝜕 𝑙𝑛L𝑓(𝑥,𝑎,𝑏)

 𝜕𝑎  
= 𝑛𝜓[𝑎 ∗] + 𝑙𝑛 ∑ [

1

1+𝑒−𝑥
]𝑛

𝑖=1     

                                     →         𝑛𝜓[𝑎 ∗] + 𝑙𝑛 ∑ [
1

1+𝑒−𝑥
]𝑛

𝑖=1 = 0                              (27) 

                          
𝜕 𝑙𝑛L𝑓(𝑥,𝑎,𝑏)

 𝜕𝑏 
= 𝑛𝜓[∗ 𝑏] +  𝑙𝑛 ∑ [1 − [

1

1+𝑒−𝑥]]𝑛
𝑖=1   

                                    →          𝑛𝜓[∗ 𝑏] +  𝑙𝑛 ∑ [1 − [
1

1+𝑒−𝑥]]𝑛
𝑖=1 = 0                    (28) 

 Where 

 𝜓[𝑎 ∗] = (𝜓[0, 𝑎 + 𝑏] − 𝜓[0, 𝑎]), and 𝜓[∗ 𝑏] = (𝜓[0, 𝑎 + 𝑏] − 𝜓[0, 𝑏]).  

𝜓[∗∗], implies poly-gamma function given by the simplification of the outcome of the 

derivative  
𝜕 𝑙𝑛[

Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
]

 𝜕∗  
. To obtain the estimates of the parameters, equations (27) and (28) can 

be solved numerically, since they are implicitly structured.  

C-Moments of G-Class distribution 

The skewness and kurtosis as introduced by Kenney and Keeping (1962), and Moor (1986) 

respectively are obtained by appropriately making substitutions in: 

                                  
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
  (ⅇ𝑥)𝑎 ℵ = 𝜃                                                           (29) 

which represents the inverse cumulative distributions 𝑄(𝜃, 𝑎, 𝑏). Now, at  𝑎 = 𝑏 = 2, 

equation (29) becomes: 

                                                    
3𝑒2𝑥

(1+𝑒𝑥)4
= 𝜃                                                                               

By implication the skewness and kurtosis are derived thus: 

                                                         𝑋𝑠𝑘 =  
𝑄[

9

12
,𝑎,𝑏]+𝑄[

5

20
,𝑎,𝑏]−2𝑄[

9

18
,𝑎,𝑏]

𝑄[
15

20
]−𝑄[

6

24
]

                                                        

                                                          𝑋𝑘 =  
𝑄[

14

16
,𝑎,𝑏]−𝑄[

15

24
,𝑎,𝑏  ]−𝑄[

12

32
,𝑎,𝑏]+𝑄[

3

24
 ,𝑎,𝑏]

𝑄[
3

4
,𝑎,𝑏]−𝑄[

5

40
,𝑎,𝑏]
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Order Statistics 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size n from JGLD Distribution. Let 𝑋1 <  𝑋2 <
, … , < 𝑋𝑛 denote the corresponding order statistics. The pdf and the cdf of the kth order 

statistics say 𝑌 = 𝑋𝑘  is given by:  

                                                    𝑓𝑌(y) =  
n!

( 𝑘−1)!( 𝑛−𝑘)!
 𝑓(𝑦) 𝐹𝑘−1(𝑦) {1 − 𝐹(𝑦)}𝑛−𝑘                                

But  

                    {1 − 𝐹(𝑦)}𝑛−𝑘 =  ∑ (𝑛−𝑘
𝑙

)(−1)𝑙[𝐹(𝑦)]𝑙∞
𝑙=0                                                              

   ∴                                             𝑓𝑌(y) =  
n!

( 𝑘−1)!( 𝑛−𝑘)!
 { 

Г(𝑎+𝑏)

Г(𝑎)Г(𝑏)
 ∑  ∞

𝑖=𝑗=𝑘=𝑙=𝑚=𝑞=0    

   

(−2
𝑗

) (1−𝑎
𝑘

) (𝑏−1
𝑙

)(−𝑙
𝑚

)(−1)𝑙  
(−𝑥)𝑖

𝑖!
 
(−𝑥 𝑗)𝑗

𝑗!
 
(−𝑥)𝑘

𝑘!
  

(−𝑥 𝑚)𝑞

𝑞!
 [

Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
 ∑

(𝑎𝑥)𝑖

𝑖!
 
𝑎𝑝 (𝑎+𝑏)𝑝

(1+𝑎)𝑝

∞
𝑖=𝑝=0

(−𝑒𝑥)𝑝

𝑝!
]

𝑘−1

                                              

                                    ∑ (𝑛−𝑘
𝑙

)(−1)𝑙 [
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
 ∑

(𝑎𝑥)𝑖

𝑖!
 
𝑎𝑝 (𝑎+𝑏)𝑝

(1+𝑎)𝑝

∞
𝑖=𝑝=0

(−𝑒𝑥)𝑝

𝑝!
]

𝑙
∞
𝑙=0            (30) 

And          

 𝐹𝑌(y) =  ∑ (𝑛
𝑗
) 𝐹𝑗𝑛

𝑗=𝑘 (𝑦) {1 − 𝐹(𝑦)}𝑛−𝑗                                                                                   

            =  ∑ (𝑛
𝑗
)𝑛

𝑗=𝑘 [
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
 ∑

(𝑎𝑥)𝑖

𝑖!
 
𝑎𝑝 (𝑎+𝑏)𝑝

(1+𝑎)𝑝

∞
𝑖=𝑝=0

(−𝑒𝑥)𝑝

𝑝!
]

𝑗

 ∑ (𝑛−𝑘
𝑙

)(−1)𝑙∞
𝑙=0  

                                                                                [
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
 ∑

(𝑎𝑥)𝑖

𝑖!
 
𝑎𝑝 (𝑎+𝑏)𝑝

(1+𝑎)𝑝

∞
𝑖=𝑝=0

(−𝑒𝑥)𝑝

𝑝!
]

𝑙

  

             =  [
Г(𝑎+𝑏)

𝑎 Г(𝑎)Г(𝑏)
]

𝑗+𝑙
∑ (𝑛

𝑗
) ∑ (𝑛−𝑘

𝑙
)(−1)𝑙∞

𝑙=0
𝑛
𝑗=𝑘 [ ∑

(𝑎𝑥)𝑖

𝑖!
 
𝑎𝑝 (𝑎+𝑏)𝑝

(1+𝑎)𝑝

∞
𝑖=𝑝=0

(−𝑒𝑥)𝑝

𝑝!
]

𝑗+𝑙

              

 

  



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 6, Issue 4, 2023 (pp. 44-62) 

56 Article DOI: 10.52589/AJMSS-KAVMIK6P 

  DOI URL: https://doi.org/10.52589/AJMSS-KAVMIK6P 

www.abjournals.org 

JGLD Probability Numerical Simulation 

In distribution development, it is usually important to investigate the conformity of a 

proposed distribution to the probability axiom 0 ≤ 𝑝(𝑥) ≤ 1. This is a numerical approach to 

validating the different derivational claims about the properness and or symmetricity of a 

distribution, with respect to different parameter support or domain. 

Table 3: Variable and Parameter Numerical Evaluation of JGLD for 𝒂 ≠ 𝒃 

  𝒑(−𝒙, 𝒂, 𝒃)      𝒑(𝒙, 𝒂, 𝒃)  

-X 𝒂 = 𝟎. 𝟏 

𝒃 = 𝟏. 𝟓 

𝒂 = 𝟎. 𝟓 

𝒃 = 𝟐. 𝟕 

𝒂 = 𝟏. 𝟐𝟓 

𝒃 = 𝟑. 𝟐𝟓 

𝒂 = 𝟐. 𝟑 

𝒃 = 𝟓. 𝟑 

X 𝒂 = 𝟎. 𝟏 

𝒃 = 𝟏. 𝟓 

𝒂 = 𝟎. 𝟓 

𝒃 = 𝟐. 𝟕 

𝒂 = 𝟏. 𝟐𝟓 

𝒃 = 𝟑. 𝟐𝟓 

𝒂 = 𝟐. 𝟑 

𝒃 = 𝟓. 𝟑 

-1 0.05809 1.97e-01 3.52e-01 4.74e-01 1 1.43e-02 2.18e-02 4.77e-02 2.36e-02 

-2 0.07082 2.17e-01 2.33e-01 1.96e-01 2 4.31e-03 2.66e-03 4.27e-03 4.86e-04 

-3 0.07264 1.69e-01 9.51e-02 3.57e-02 3 1.09e-03 2.30e-04 2.36e-04 4.40e-06 

-4 0.06900 1.13e-01 3.12e-02 4.51e-03 4 2.55e-04 1.70e-05 1.05e-05 2.77e-08 

-5 0.06359 7.11e-02 9.43e-03 4.92e-04 5 5.79e-05 1.18e06 4.28e-07 1.51e-10 

 

Table 4: Variable and Parameter Numerical Evaluation of JGLD for 𝒂 = 𝒃 

  𝒑(−𝒙, 𝒂, 𝒃)      𝒑(𝒙, 𝒂, 𝒃)  

-X 𝒂 = 𝟎. 𝟏 

𝒃 = 𝟎. 𝟏 

𝒂 = 𝟏. 𝟓 

𝒃 = 𝟏. 𝟓 

𝒂 = 𝟑. 𝟐𝟓 

𝒃 = 𝟑. 𝟐𝟓 

𝒂 = 𝟓. 𝟑 

𝒃 = 𝟓. 𝟑 

X 𝒂 = 𝟎. 𝟏 

𝒃 = 𝟎. 𝟏 

𝒂 = 𝟏. 𝟓 

𝒃 = 𝟏. 𝟓 

𝒂 = 𝟑. 𝟐𝟓 

𝒃 = 𝟑. 𝟐𝟓 

𝒂 = 𝟓. 𝟑 

𝒃 = 𝟓. 𝟑 

-1 0.04311 2.22e-01 2.24e-01 1.78e-01 1 0.04311 2.22e-01 2.24e-01 1.78e-01 

- 2 0.04049 8.66e-02 2.92e-02 6.38e-03 2 0.04049 8.66e-02 2.92e-02 6.38e-03 

-3 0.03721 2.45e-02 1.88e-03 7.32e-05 3 0.03721 2.45e-02 1.88e-03 7.32e-05 

-4 0.03387 5.98e-03 8.89e-05 5.04e-07 4 0.03387 5.98e-03 8.89e-05 5.04e-07 

-5 0.03072 1.38e-03 3.72e-06 2.84e-09 5 0.03072 1.38e-03 3.72e-06 2.84e-09 

 

By careful examination, the probability values in Tables 3 and 4 agree with the axiom 0 ≤
𝑝(𝑥, 𝑎, 𝑏) ≤ 1 at both different and equal parameter values ∀ 𝑥 ∈ 𝑅. More so, at different 

parameter combinations ∀ 𝑎 ≠ 𝑏, 𝑝(−𝑥, 𝑎, 𝑏)  ≠  𝑝(𝑥, 𝑎, 𝑏) and at equal parameter 

combinations ∀ 𝑎 = 𝑏, 𝑝(−𝑥, 𝑎, 𝑏) =  𝑝(𝑥, 𝑎, 𝑏).  This gives more insight on the 

conditionality of the distribution’s symmetricity. 
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DATA APPLICATION 

In this section, presentations are made for two sets of lifetime data to objectively give essence to the 

proposed distribution. One of them is an extract from the application of generalized logistic 

distribution; which represents the strength measured in GPA, for single carbon fibers and impregnated 

1000 carbon fiber tows. See Gupta and Kundu (2010) for more details. More so, the second data was 

primarily collected from the maintenance department of First Independent Power Limited 
Company, Afam, River State, Nigeria. The lifetime data relates to 80 days Oil/winding 

temperature measurement (in Celsius). This calibration indicates system (or transformer) 

normalcy; and the system is observed to shut down once the temperature reads above 65℃; 

by implication it means that the power process has gone wrong.  

Table 5: Carbon fiber strength measured in GPA (Data1) 

1.901, 2.132, 2.203, 2.228, 2.257, 2.35, 2.361, 2.396, 2.397, 2.445,2.454, 2.474, 2.518, 2.522, 

2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.74, 2.856, 2.917, 

2.928, 2.937, 2.937, 2.977, 2.996, 3.03, 3.125, 3.139, 3.145, 3.22, 3.223, 3.235, 3.243,3.264, 

3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 

3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225,4.395,1.52,1.8,1.5,1.01 
 

 

Figure 3: Histogram Chart for Data1 

Table 6: Oil/winding temperature measurement (Data2) 

60.5, 40.3, 53.2, 72, 54.6, 59.6, 55.4, 49.3, 43.2, 43.2, 40.9,  53.1, 56.6, 42.6, 57.2, 55.7, 54.1, 

55.4, 54.8, 40.9, 68.6, 52.7, 55.7, 70.3, 71.9, 45.2, 72.3, 55.7, 52.3, 42.6, 54.3, 67.7, 60.2, 

56.1, 54.4, 65.4, 53.5, 54.5, 57.9, 52.8, 53.8, 57.3, 71.5, 58.3, 54.8, 49.6, 50.2, 57.6, 66.1, 

63.8, 64.1, 63.7, 68.1, 45.7, 67.6, 63.0, 62.1, 54.9, 54.0, 66.7, 53.9, 48.3, 56.9, 49.7, 63.8, 

64.1, 63.8, 60.0, 45.3, 67.0, 63.2, 64.2, 46.2, 48.3, 46.3, 48.3, 57.9, 59.6, 53.9, 56.3, 64.5 
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Figure 4: Histogram Chart for Data2 

 

Table 7: Probability Model Comparative Case-Study  

Distribution PDF-Model 

 Asymmetric Type  

EGGuD 𝑐𝑑

𝑏
ⅇ−𝑒

−
𝑥−𝑎

𝑏 ⅇ−
𝑥−𝑎

𝑏  [1 − ⅇ−𝑒
−

(𝑥−𝑎)
𝑏 ]

𝑐−1

[1 − (1 − ⅇ−𝑒
−

(𝑥−𝑎)
𝑏 )

𝑐

]

𝑑−1

 

 

EFD 
𝑎𝑏𝑏𝑐 𝑥−𝑏−1 ⅇ−(

𝑎
𝑥

)
𝑏

[1 − ⅇ−(
𝑎
𝑥

)
𝑏

]

𝑐−1

  

 

EGFD 

𝑎𝑏𝑐𝑑𝑏 𝑥−𝑏−1ⅇ−(
𝑎
𝑥

)
𝑏

[1 − ⅇ−(
𝑎
𝑥

)
𝑏

]

𝑐−1

[1 − (1 − ⅇ−(
𝑎
𝑥

)
𝑏

)

𝑐

]

𝑑−1

 

 

 Symmetric Type  

  

GLD Type1 𝑎 ⅇ−𝑥

(1 + ⅇ−𝑥)𝑎+1
 

 

GLD Type2 𝑎 ⅇ−𝑎𝑥

(1 + ⅇ−𝑥)𝑎+1
 

 

Logistics ⅇ−(
𝑥−𝑎

𝑏
)

𝑏 (1 + ⅇ−(
𝑥−𝑎

𝑏
))

2 
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GGLD 
𝑎𝑏𝑐

 ⅇ−𝑏𝑥

(1 + ⅇ−𝑏𝑥)𝑎+1
 [1 −

 1

(1 + ⅇ−𝑏𝑥)𝑎
]

𝑐−1

 

 

The compared distributions are categorized under asymmetric order; which are Exponentiated 

Generalized Gumbel Distribution (EGGuD), Exponentiated Frechet Distribution (EFD), 

Exponentiated Generalized Frechet Distribution (EGFD); whereas, Generalized Logistic 

Distribution (GLD) and Gamma Generalized Logistic Distribution (GGLD) are for the 

symmetric order.  

Table 8:  Application of JGLD distribution to Data1 

 Model Parameter − 𝐥𝐨𝐠(𝑳) AIC BIC Rank 

  

JGLD 

𝑎 = 37.566 

𝑏 = 2.4535 

 

-74.41 

 

154.83 

 

161.97 

 

1 

 

 

 

 

 

EGGuD 

𝑎 = 0.9684 

𝑏 = 0.0965 

𝑐 = 0.0885 

𝑑 = 3.0437 

 

-86.651 

 

181.30 

 

190.06 

 

 

4 

Data 1 

 

 

EFD 

𝑎 = 126.86 

𝑏 = 0.5632 

𝑐 = 3040.4 

 

-76.058 

 

156.12 

 

160.49 

 

 

2 

  

EGFD 

𝑎 = 5.6249 

𝑏 = 1.9025 

𝑐 = 10.441 

𝑑 = 0.4635 

 

-74.307 

 

156.61 

 

165.37 

 

 

3 

 

Table 9:  Application of JGLD distribution to Data2 

 Model Parameter  − 𝐥𝐨𝐠(𝑳) AIC BIC Rank 

 JGLD 𝑎 = 37.566 

𝑏 = 2.4535 

-70.5737 145.147 149.52 1 

 GLDType1 𝑎 = 17555 -3792.48 7586.96 7589.35 6  

Data2 GLDType2 𝑎 = 0.0176 -407.908 817.816 820.21 4 

 Logistic 𝑎 = 56.549 

𝑏 = 4.7412 

-286.695 577.391 582.18 3 

 Normal 𝑎 = 8.1633 

𝑏 = 56.586 

-284.984 573.969 578.75 2 

 GGLD 𝑎 = 0.2647 

𝑏 = 0.4594 

𝑐 = 0.0384 

 

--411.499 

 

828.999 

 

836.18 

5 
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Figure (5): Density fit for the Data Set 1 

 

 

Figure (6): Density fit for the Data Set 2 

The − log(𝐿), AIC and BIC inferential results from Tables 8 and 9, show that JGLD is a 

better fit for data 1 and 2. Of course, the distributions with the highest values in − log(𝐿) 

imply to be the best fit; likewise the distributions with the smallest values in AIC and BIC. 

However, the density fit plot for dataset 1 and 2 as seen in Figures 5 and 6 support the 

findings in Tables 8 and 9 respectively.  
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CONCLUSION 

The study engaged the development of symmetric-asymmetric model, combining logistic 

distribution and Jones G family of distributions. The density and distribution functions have 

been developed, and in their series representations as well; where the density function 

indirectly showed to be a proper probability distribution function. Other derived properties 

are the moments and the related measures; the moment generating function and other similar 

generating functions; survival, hazard, reverse hazard and cumulative hazard functions; the 

measures of central tendency, variance, skewness and kurtosis; Renyi and Tsalli entropy; 

maximum likelihood estimators, quantile simulating function and the probability numerical 

simulation; and order statistics. JGLD was fitted to oil/winding temperature data and carbon 

fiber data which were primarily and secondarily obtained respectively. The different 

inferential criteria showed that the JGLD outperformed both of the asymmetric and 

symmetric distributions compared. By implication, the research recommends JGLD as a dual 

purpose model for fitting skewed-symmetric (asymmetric) data and symmetric outcomes.  
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