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ABSTRACT: This paper focused on the use of three 

probability distributions to justify the central limit theorem 

(CLT). The aim was to use the moment generating function 

(MGF) to prove (CLT) and also to portray the shape of different 

sample sizes (15, 30 and 100) of distributions of sample means 

on a histogram. The population distributions studied were: 

Normal, Gamma and Exponential distributions. In addition, 

sampling distribution of the mean table was constructed for 

better understanding of CLT. The study used simulation to 

simulate population distribution of Normal, Gamma and 

Exponential. Five hundred (500) distributions of sample means 

were drawn from each of the simulated population distributions 

at three different sample sizes (n): 15, 30 and 100. The shape 

of the simulated population distribution and sampling 

distribution of mean were presented on a histogram. The mean 

and standard deviation of each population distribution together 

with distribution of sample means at different sample sizes were 

also presented on the histogram plotted. The findings showed 

that under normal distribution, the sampling distribution of 

mean produced a shape like normal distribution irrespective of 

the sample size. Conversely, the shape of sampling distribution 

of mean under non-normal distributions gradually converges to 

normal distribution as sample size tends to infinity, while the 

variability of each sampling distribution decreases as the 

sample size increases. Therefore, CLT holds for large sample 

size (n ≥ 30). 

KEYWORDS: Central limit theorem, sampling distribution 

of mean, normal distribution, exponential distribution, Gamma 

distribution, histogram. 
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INTRODUCTION 

In the field of statistics, data type plays an important role in determining the validity of the 

statistical outcome. The data collected can follow different probability distributions such as 

Normal, Uniform, Binomial, Exponential, etc depending on the purpose of the study. However, 

the nature of the population distribution from which data is sourced may not be known by the 

researcher.  In scenarios like this, the Central Limit Theorem (CLT) is applied to solve the 

problem of unknown population distribution in the circle of statistics. CLT was discovered by 

French mathematician Abraham de Moivre, who held that the binomial distribution approaches 

normal distribution as the number of trials increases (Winters & Kinneth, 2022). In other words, 

as the sample size (n) increases, the distribution of binomial converges to normal distribution. 

CLT is one of the most important theorems in statistics; it has many applications such as 

normality assumption in parametric hypothesis testing of mean. It is also suitable in measuring 

One Sample T Test, Two Samples T Test, ANOVA, Linear Regression, Confidence Interval 

Estimates, etc. CLT is also applied to all probability distributions except Cauchy distribution 

because of its infinite variance. Furthermore, it is applied to independent identically distributed 

variables, where the value of one observation does not depend on the value of another 

observation (Sutanapong & Louangrath, 2015). However, CLT depends largely on sampling 

distribution of mean for its proper application. Hence, this paper examines in detail the 

application of three probability distributions to justify central limit theorem (CLT). 

Sampling Distribution of Mean 

In statistics, population is the entire set of items or groups of individuals to be studied. In 

practice, studying all data from a population is impractical. Therefore, random samples are 

studied instead of the entire population. The samples are used to make statistical inferences 

about a population. Random sample is a randomly selected subset of a population. Sampling 

distribution of mean is the distribution of all possible mean values computed from each sample 

of the same size randomly drawn from the same population (Sawada, 2021). The distribution 

of sample mean is constructed using the following steps outlined: (a) Randomly draw all 

possible samples of size n from a finite population of size N (b) Compute the sample mean 

from each sample and (c) Present the distribution of sample means obtained in tabular format. 

The table below presents a constructed distribution of sample means for sample size m and 

number of sample n. 

Table 1:  Illustrate random sample (n) with sample size (m) and their corresponding 

sample means  

 Random 

(1) 

Random 

(2) 

. . Random 

(m) 

Sample 

Mean  

Sample (1) 𝑥11 𝑥12 . . 𝑥1𝑚 𝑥1 

Sample (2) 𝑥21 𝑥22 . . 𝑥2𝑚 𝑥2 

. . . . . .  

. . . . . .  

. . . . . .  

Sample (n) 𝑥𝑛1 𝑥𝑛2 . . 𝑥𝑛𝑚 𝑥𝑛 

Source: Computed by the Researcher 
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When sampling is from a normally distributed population, the distribution of the sample mean 

has the following properties: (a) the distribution of sample mean will be normal (b) the mean 

of sample mean is equal to the population mean from which the samples were drawn (c) the 

variance of sample mean is equal to the population variance divided by sample size. 

Alternatively, when sampling is from a non-normally distributed population, Central Limit 

Theorem (CLT) is applied. 

According to Islam and Mohammed (2018),  the distribution of sample mean will follow 

normal distribution when sampling is from a normally distributed population or from a non-

normally distributed population, provided that the sample is large. It is applied when sampling 

is from a population whose functional form is unknown, provided that sample size is large 

enough (n ≥ 30). 

CENTRAL LIMIT THEOREM (CLT) 

This theorem states that irrespective of population distribution from which samples were 

drawn, the distribution of sample means (𝑥) calculated from each sample will be normally 

distributed with mean (population mean) and variance ( 
 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑛)
 ) provided that 

sample size is large (n ≥ 30) (Shige, 2019). The standardized variate for the sampling 

distribution of mean is given by: 

Z = 
𝑥 −𝑚𝑒𝑎𝑛

 
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

(𝑛)

                                                                                                                                 (1.1) 

where  

𝑥 = sample mean 

𝑚𝑒𝑎𝑛 = population mean 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = population variance 

n = sample size 

Mathematically, this theorem is represented below as: 

𝑧  =  )  ~ N(0,1)                                                                                                       (1.2) 

That is, as 𝑛 → ∞ the distribution of the sample means approaches the Normal distribution 

with mean (0) and variance (1). This theorem provides an avenue to sample non-normally 

distributed populations with a guarantee of getting approximately the same results as would 

have been obtained if the population were normally distributed provided that sample size is 

large. However, for small sample sizes, the shape of the sampling distribution of mean is less 

than the parent population from which samples were drawn (Fatheddin, 2015). On the other 

hand, the shape looks more like a normal distribution as sample size gets larger. As an 

illustration of CLT, let x be a population distribution from Binomial with mean (np) and 

variance (npq), then the CLT states that the distribution of computed  sample means gotten 

from Binomial distribution will be approximately Normal with mean (mean of Binomial 
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distribution) and variance ( 
  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑛)
) provided that sample size is large 

(n ≥ 30). 

Population Distributions Studied 

 This section focuses on three population distributions used to justify CLT. The population 

distributions studied were presented in details below: 

Normal Distribution 

A normal distribution is known by its bell-like shape and it is symmetric about the mean. The 

mean, mode and median values of the normal distribution are equal. The probability density 

function (pdf) of Normal is given below: 

f(x) = 
1

2𝜋𝜎2 𝑒− 
1

2
(

𝑥− 𝜇

𝜎
)2

                                                                                                  (2.1) 

where 

𝑥 is the random variable, 𝜇 is the mean and 𝜎 is the standard deviation. 

Gamma Distribution 

Gamma distribution is defined by the probability density function (pdf) given below: 

f(x) = 
𝜋

𝛤(𝑎)𝜃2 𝑥𝑎−1𝑒−
𝑥

𝜃       if  0 < 𝑥 < ∞                                                                                                 (2.2) 

where a > 0 and 𝜃 > 0, a is the shape parameter and 𝜃 is the scale parameter. The distribution 

is characterized by mean (a 𝜃) and variance (a 𝜃2). 

Exponential Distribution 

Exponential distribution is known by the probability density function (pdf) given below: 

f(x) = 𝜆𝑒−𝜆𝑥       if  0 < 𝑥 < ∞                                                                                                              (2.3) 

where 𝜆 > 0 is the rate parameter. The distribution is characterized by mean (
1

𝜆
)  and variance 

(
1

𝜆2). 

Proof of Central Limit Theorem (CLT) Using Normal Distribution 

This is to prove that Moment Generating Function (MGF) of standardized sample mean (z) 

from normal distribution converges to MGF of standardized normal distribution ( 𝑒
𝑡2

2  ) with 

mean (0) and variance (1) as n goes to infinity (n → ∞ ). 
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That is 𝑚�̂�(𝑡)  = 𝑚𝑧(𝑡)                                                                                                        (2.4) 

                               = 𝑒
𝑡2

2                                                                                                              (2.5) 

where z ~ N (0,1) 

Proof: Let 𝑥1,  𝑥2,  𝑥3, . . . 𝑥𝑛 be independent identically distributed (iid) normal distribution 

with mean (𝜇) and variance (𝜎2). 

Then,  

Mean of sample mean (𝑥) is given by: 

E(𝑥) = E(
𝑥1+ 𝑥2+ 𝑥3+ .  .  .+ 𝑥𝑛

𝑛
)                                                                                                       (2.6) 

        = 
1

𝑛
(𝐸(𝑥1) +  𝐸(𝑥2) +  𝐸(𝑥3) + .  .  . +𝐸( 𝑥𝑛))                                                                  (2.7) 

        = 
1

𝑛
( 𝜇 +  𝜇 +  𝜇 + .  .  . +𝜇                                                                                                 (2.8) 

E(𝑥) = 𝜇                                                                                                                                      (2.9) 

Variance of sample mean (𝑥) is given by: 

var(𝑥) = var(
𝑥1+ 𝑥2+ 𝑥3+ .  .  .+ 𝑥𝑛

𝑛
)                                                                                                (2.10) 

        = 
1

𝑛2
(𝑣𝑎𝑟(𝑥1) +  𝑣𝑎𝑟(𝑥2) +  𝑣𝑎𝑟(𝑥3) + .  .  . +𝑣𝑎𝑟( 𝑥𝑛))                                                (2.11) 

        = 
1

𝑛2 ( 𝜎2 +  𝜎2 +  𝜎2 + .  .  . +𝜎2)                                                                                       (2.12) 

var(𝑥)  = 
𝜎2

𝑛
                                                                                                                                  (2.13) 

The standardized normal variate corresponding to the sample means (z) is defined as: 

 z = 
𝑥− 𝜇

𝜎

√𝑛

                                                                                                                                    (2.14) 

Simplification of z 

z = 

∑𝑛
𝑖=1 𝑥𝑖

𝑛
  − 𝜇

𝜎

√𝑛

                                                                                                                             (2.15) 

  = 
√𝑛(∑𝑛

𝑖=1 (𝑥𝑖−𝑛𝜇)

𝜎𝑛
                                                                                                                       (2.16) 

Note ∑𝑛
𝑖=1 𝜇 = 𝑛𝜇                                                                                                                     (2.17) 

  = 
√𝑛 ∑𝑛

𝑖=1 (𝑥𝑖− 𝜇)

𝜎𝑛
                                                                                                                         (2.18) 
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  = 
(∑𝑛

𝑖=1 (𝑥𝑖−𝜇)

𝜎√𝑛
                                                                                                                             (2.19) 

Let y = 
𝑥𝑖− 𝜇

𝜎√𝑛
                                                                                                                              (2.20) 

The MGF of y is given below: 

 𝑚𝑦(𝑡)  = E( 𝑒𝑦𝑡)                                                                                                                       (2.21) 

             = 
∑𝑛

𝑖=0 𝐸(𝑦𝑖)𝑡𝑖

𝑖!
                                                                                                                  (2.22) 

             = 
∑𝑛

𝑖=0 𝐸(𝑥𝑖− 𝜇)𝑖

𝑖!
(

𝑡

𝜎√𝑛
)𝑖                                                                                                    (2.22) 

             =  
𝐸(𝑥0− 𝜇)0

0!
(

𝑡

𝜎√𝑛
)0 +  

𝐸(𝑥1− 𝜇)1

1!
(

𝑡

𝜎√𝑛
)1 + 

𝐸(𝑥2− 𝜇)2

2!
(

𝑡

𝜎√𝑛
)2 + . . . .                                  (2.23) 

Note that (𝑥 −  𝜇)1 = 0 and E(𝑥 −  𝜇)2 = 𝜎2                                                                               (2.24) 

             = 1 + 0 + 
𝑡2

2𝑛
 + 

∑𝑛
𝑖=0 𝐸(𝑥3− 𝜇)3

3!
(

𝑡

𝜎√𝑛
)3 + . . . .                                                                   (2.25) 

Then the MGF of z variable is given by: 

𝑚𝑧(𝑡)  = 𝑚∑𝑛
𝑖=1 (𝑦𝑖)(𝑡)                                                                                                                (2.26) 

            = (𝑚𝑦(𝑡))𝑛                                                                                                                   (2.27) 

Since 𝑦𝑖 is iid normal distribution 

 𝑚𝑧(𝑡)   = (1 +
𝑡2

2𝑛
+  

∑𝑛
𝑖=3 𝐸(𝑥3− 𝜇)3

3!
(

𝑡

𝜎√𝑛
)

3

+ .  .  . )𝑛                                                                 (2.28) 

The limit as n → ∞ on the both sides 

 𝑚�̂�(𝑡)  = (1 +
𝑡2

2𝑛
+  

∑𝑛
𝑖=3 𝐸(𝑥3− 𝜇)3

3!
(

𝑡

𝜎√𝑛
)3)𝑛                                                                      (2.29)                                                         

                      = 𝑒
𝑡2

2  

Hence, by the Uniqueness Theorem, the MGF of standardized sample mean (z) from normal 

distribution converges to MGF of standard normal distribution ( 𝑒
𝑡2

2  ) with mean (0) and 

variance (1) as n goes to infinity (n → ∞ ). 

Proof of Central Limit Theorem (CLT) Using Gamma Distribution 

This is to prove that MGF of standardized sample mean (z) sample from Gamma distribution 

converges to MGF of standardized normal distribution ( 𝑒
𝑡2

2  ) with mean (0) and variance (1) 

as n goes to infinity (n → ∞ ). 
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Proof: Let 𝑥1,  𝑥2,  𝑥3, . . . 𝑥𝑛 be independent identically distributed (iid) Gamma distribution 

with mean (𝜃𝛽)  and variance (𝜃2𝛽), where (𝜃) and (𝛽) are shape and scale parameters. 

Then,  

Mean of sample mean (𝑥) is given by: 

E(𝑥) = E(
𝑥1+ 𝑥2+ 𝑥3+ .  .  .+ 𝑥𝑛

𝑛
)                                                                                                    (2.30) 

        = 
1

𝑛
(𝐸(𝑥1) +  𝐸(𝑥2) +  𝐸(𝑥3) + .  .  . +𝐸( 𝑥𝑛))                                                                (2.31)  

        = 
1

𝑛
( ((𝜃𝛽) +  (𝜃𝛽) +  (𝜃𝛽) + .  .  . +(𝜃𝛽)                                                                       (2.32)    

E(𝑥) = (𝜃𝛽)                                                                                                                              (2.33) 

Variance of sample mean (𝑥) is given by: 

var(𝑥)  = var(
𝑥1+ 𝑥2+ 𝑥3+ .  .  .+ 𝑥𝑛

𝑛
)                                                                                               (2.34) 

           = 
1

𝑛2
(𝑣𝑎𝑟(𝑥1) +  𝑣𝑎𝑟(𝑥2) +  𝑣𝑎𝑟(𝑥3) + .  .  . +𝑣𝑎𝑟( 𝑥𝑛))                                           (2.35) 

          = 
1

𝑛2 ( (𝜃2𝛽) + (𝜃2𝛽) + (𝜃2𝛽) + .  .  . +(𝜃2𝛽))                                                          (2.36) 

var(𝑥)  = 
(𝜃2𝛽)

𝑛
                                                                                                                           (2.37) 

The standardized normal variate corresponding to the sample means (z) is defined as: 

 z = 
𝑥− 𝜇

𝜎

√𝑛

                                                                                                                                    (2.38) 

Simplification of z 

z  = 

∑𝑛
𝑖=1 𝑥𝑖

𝑛
  − (𝜃𝛽)

𝜃√𝛽
𝑛

√𝑛

                                                                                                                        (2.29) 

  = 
√𝑛(∑𝑛

𝑖=1 (𝑥𝑖−𝑛(𝜃𝛽))

𝑛(
                                                                                                                   (2.40) 

Note ∑𝑛
𝑖=1 𝜇 = 𝑛𝜇                                                                                                                     (2.41) 

  = 
√𝑛 ∑𝑛

𝑖=1 (𝑥𝑖− (𝜃𝛽))

𝑛(𝜃√𝛽)
                                                                                                                     (2.42) 

  = 
(∑𝑛

𝑖=1 (𝑥𝑖−(𝜃𝛽))

√𝑛(𝜃√𝛽)
                                                                                                                        (2.43) 

Let y = 
𝑥𝑖− (𝜃𝛽)

√𝑛(𝜃√𝛽)
                                                                                                                         (2.44) 
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The MGF of y is given below: 

 𝑚𝑦(𝑡)  = E( 𝑒𝑦𝑡)                                                                                                                       (2.45) 

             = 
∑𝑛

𝑖=0 𝐸(𝑦𝑖)𝑡𝑖

𝑖!
                                                                                                                  (2.46) 

             = 
∑𝑛

𝑖=0 𝐸(𝑥𝑖− (𝜃𝛽))
𝑖

𝑖!
(

𝑡

√𝑛(𝜃√𝛽)
)𝑖                                                                                         (2.47) 

             =  
𝐸(𝑥0− (𝜃𝛽))

0

0!
(

𝑡

√𝑛(𝜃√𝛽)
)0 +  

𝐸(𝑥1− (𝜃𝛽))
1

1!
(

𝑡

√𝑛(𝜃√𝛽)
)1 + 

𝐸(𝑥2− (𝜃𝛽))
2

2!
(

𝑡

√𝑛(𝜃√𝛽)
)2 + . . . . 

(2.48) 

Note that (𝑥 −  (𝜃𝛽))1 = 0 and E(𝑥 − (𝜃𝛽))2 = 𝜎2                                                                   (2.49) 

             = 1 + 0 + 
𝑡2

2𝑛
 + 

∑𝑛
𝑖=0 𝐸(𝑥3− (𝜃𝛽))

3

3!
(

𝑡

√𝑛(𝜃√𝛽)
)3 + . . . .                                                       (2.50) 

Then the MGF of z variable is given by:  

𝑚𝑧(𝑡)  = 𝑚∑𝑛
𝑖=1 (𝑦𝑖)(𝑡)                                                                                                               (2.51) 

            = (𝑚𝑦(𝑡))𝑛                                                                                                                   (2.52) 

Since 𝑦𝑖 is iid Gamma distribution 

 𝑚𝑧(𝑡)   = (1 +
𝑡2

2𝑛
+  

∑𝑛
𝑖=3 𝐸(𝑥3− (𝜃𝛽))

3

3!
(

𝑡

√𝑛(𝜃√𝛽)
)

3

+ .  .  . )𝑛                                                      (2.53) 

The limit as n → ∞ on the both sides 

 𝑚�̂�(𝑡)  = (1 +
𝑡2

2𝑛
+  

∑𝑛
𝑖=3 𝐸(𝑥3− (𝜃𝛽))

3

3!
(

𝑡

√𝑛(𝜃√𝛽)
)3)𝑛                                                          (2.54) 

                      = 𝑒
𝑡2

2  

Hence, by the Uniqueness Theorem, the MGF of standardized sample mean (z) from gamma 

distribution converges to MGF of standard normal distribution ( 𝑒
𝑡2

2  ) with mean (0) and 

variance (1) as n goes to infinity (n → ∞ ). 

Proof of Central Limit Theorem (CLT) Using Exponential Distribution 

This is to prove that Moment Generating Function (MGF) of standardized sample mean (z) 

from exponential distribution converges to MGF of standardized normal distribution ( 𝑒
𝑡2

2  ) 

with mean (0) and variance (1) as n goes to infinity (n → ∞ ). 
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That is, 𝑚�̂�(𝑡)  = 𝑚𝑧(𝑡)                                                                                                      (2.55) 

                               = 𝑒
𝑡2

2  

where z ~ N (0,1) 

Proof: Let 𝑥1,  𝑥2,  𝑥3, . . . 𝑥𝑛 be independent identically distributed (iid) exponential 

distribution with mean (
1

𝜆
) and variance (

1

𝜆2
). 

Then,  

Mean of sample mean (𝑥) is given by: 

E(𝑥) = E(
𝑥1+ 𝑥2+ 𝑥3+ .  .  .+ 𝑥𝑛

𝑛
)                                                                                                     (2.51) 

        = 
1

𝑛
(𝐸(𝑥1) +  𝐸(𝑥2) +  𝐸(𝑥3) + .  .  . +𝐸( 𝑥𝑛))                                                               (2.52) 

        = 
1

𝑛
( (

1

𝜆
) + (

1

𝜆
) +  (

1

𝜆
) + .  .  . + (

1

𝜆
))                                                                              (2.53) 

E(𝑥) = (
1

𝜆
)                                                                                                                                  (2.54) 

Variance of sample mean (𝑥) is given by: 

var(𝑥) = var(
𝑥1+ 𝑥2+ 𝑥3+ .  .  .+ 𝑥𝑛

𝑛
)                                                                                                (2.55) 

        = 
1

𝑛2
(𝑣𝑎𝑟(𝑥1) +  𝑣𝑎𝑟(𝑥2) +  𝑣𝑎𝑟(𝑥3) + .  .  . +𝑣𝑎𝑟( 𝑥𝑛))                                              (2.56) 

        = 
1

𝑛2 ( (
1

𝜆2) +  (
1

𝜆2) +  (
1

𝜆2) + .  .  . +(
1

𝜆2))                                                                           (2.57) 

var(𝑥)  = (
1

𝜆2)                                                                                                                             (2.58) 

The standardized normal variate corresponding to the sample means (z) is defined as: 

 z = 
𝑥− (

1

𝜆
)

(
1
𝜆

)

√𝑛

                                                                                                                                  (2.59) 

Simplification of z  

z = 

∑𝑛
𝑖=1 𝑥𝑖

𝑛
  − (

1

𝜆
)

(
1
𝜆

)

√𝑛

                                                                                                                           (2.60) 

  = 
√𝑛(∑𝑛

𝑖=1 (𝑥𝑖−𝑛(
1

𝜆
))

(
1

𝜆
)𝑛

                                                                                                                    (2.61) 
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Note that ∑𝑛
𝑖=1 𝜇 = 𝑛𝜇                                                                                                                     (2.62) 

  = 
√𝑛 ∑𝑛

𝑖=1 (𝑥𝑖− (
1

𝜆
))

(
1

𝜆
)𝑛

                                                                                                                       (2.63) 

  = 
(∑𝑛

𝑖=1 (𝑥𝑖−(
1

𝜆
))

(
1

𝜆
)√𝑛

                                                                                                                           (2.64) 

Let y = 
𝑥𝑖− (

1

𝜆
)

(
1

𝜆
)√𝑛

                                                                                                                            (2.65) 

The MGF of y is given below: 

 𝑚𝑦(𝑡)  = E( 𝑒𝑦𝑡)                                                                                                                       (2.66) 

             = 
∑𝑛

𝑖=0 𝐸(𝑦𝑖)𝑡𝑖

𝑖!
                                                                                                                  (2.67) 

             = 
∑𝑛

𝑖=0 𝐸(𝑥𝑖− (
1

𝜆
))

𝑖

𝑖!
(

𝑡

(
1

𝜆
)√𝑛

)𝑖                                                                                                (2.68) 

             =  
𝐸(𝑥0− (

1

𝜆
))

0

0!
(

𝑡

(
1

𝜆
)√𝑛

)0 +  
𝐸(𝑥1− (

1

𝜆
))

1

1!
(

𝑡

(
1

𝜆
)√𝑛

)1 + 
𝐸(𝑥2− (

1

𝜆
))

2

2!
(

𝑡

(
1

𝜆
)√𝑛

)2 + . . . .                     (2.69) 

Note that (𝑥 −  (
1

𝜆
))1 = 0 and E(𝑥 −  (

1

𝜆
))2 = (

1

𝜆2)                                                                        (2.70) 

             = 1 + 0 + 
𝑡2

2𝑛
 + 

∑𝑛
𝑖=0 𝐸(𝑥3− (

1

𝜆
))

3

3!
(

𝑡

(
1

𝜆
)√𝑛

)3 + . . . .                                                             (2.71) 

Then the MGF of z variable is given by: 

𝑚𝑧(𝑡)  = 𝑚∑𝑛
𝑖=1 (𝑦𝑖)(𝑡)                                                                                                              (2.72) 

            = (𝑚𝑦(𝑡))𝑛 

Since 𝑦𝑖 is iid exponential distribution 

 𝑚𝑧(𝑡)   = (1 +
𝑡2

2𝑛
+  

∑𝑛
𝑖=3 𝐸(𝑥3− (

1

𝜆
))

3

3!
(

𝑡

(
1

𝜆
)√𝑛

)

3

+ .  .  . )𝑛                                                           (2.73) 

The limit as n → ∞ on the both sides 

 𝑚�̂�(𝑡)  = (1 +
𝑡2

2𝑛
+  

∑𝑛
𝑖=3 𝐸(𝑥3− (

1

𝜆
))

3

3!
(

𝑡

(
1

𝜆
)√𝑛

)3)𝑛                                                               (2.74) 

                      = 𝑒
𝑡2

2  
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Hence, by the Uniqueness Theorem, the MGF of standardized sample mean (z) from 

exponential distribution converges to MGF of standard normal distribution ( 𝑒
𝑡2

2  ) with mean 

(0) and variance (1) as n goes to infinity (n → ∞ ). 

 

DATA ANALYSIS   

In this section, R version 3.5.1 was used to simulate 500 distributions of sample means drawn 

from three population distributions: Normal, Gamma and exponential distributions, at three 

different sample sizes: 15, 30 and 100. From the simulated distribution of sample means, the 

histogram, mean and standard deviation were calculated. The histogram was used to represent 

the shape of sampling distribution of means at three different sample sizes. The mean and 

standard deviation were used to measure central tendency and variability for each sampling 

distribution of means. In addition, mean, standard deviation and histogram of population 

distribution was also presented to illustrate the effect of different sample sizes. The images 

below represent the histogram of three distributions under study. 

Histogram of Normal Distribution 

 

 

Figure 1: Histogram of population and sampling distribution of mean from Normal 

distribution 

Source: Computed by the Researcher 
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Figure 1 presents the histogram, mean and standard deviation of both population distribution 

and sampling distribution of means. The vertical red line in the above plot indicates the mean 

and standard deviation of the distribution.  The different shapes of histogram created above 

were obtained from stimulated 500 sample means at different sample sizes: 10, 30 and 100 

drawn from Normal distribution.  

Histogram of Exponential Distribution 

 

Figure 2: Histogram of population and sampling distribution of mean from exponential 

distribution 

Source: Plotted by the Researcher 

Figure 2 shows the histogram, mean and standard deviation of both population distribution and 

sampling distribution of means drawn from Exponential distribution with rate 0.5. The shapes 

of histogram portrayed above were obtained from stimulated 500 sample means of different 

sample sizes: 10, 30 and 100 drawn from Exponential distribution.  
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Histogram of Gamma Distribution 

 

Figure 3: Histogram of population and sampling distribution of mean from Gamma 

distribution 

Source: Plotted by the Researcher 

Figure 3 presents the histogram, mean and standard deviation of both population and sample 

means distribution. These distributions were drawn from Gamma distribution with shape 0.1. 

Furthermore, these shapes represented 500 stimulated sample means drawn from Gamma 

distribution.  

 

RESULT AND DISCUSSION 

From the histogram plotted in Figure 1, both the population distribution and sampling 

distribution of mean drawn from a normal distribution produced a bell-like shape in all the 

sample sizes (15, 30 and 100). The red vertical line in Figure 1 indicates the mean of the Normal 

distribution. This red vertical line also shows that population mean is equal to the mean of 

sample means. Furthermore, the variability of each sampling distribution decreases as the 

sample size increases. Figure 2 displays a positive skewed shape for exponential distribution. 

Its sampling distribution gradually transforms to normal distribution as the sample size 

increases. The plot in Figure 2 above also shows that population mean is equal to the mean of 

sample means. Also, as the sample size increases, the variability of the sampling distribution 

reduces. Figure 3 indicates that Gamma distribution has a positive skewed shape. But the 

sampling distribution of mean drawn from Gamma distribution portrays a normal-like shape 

as the number of sample sizes gradually increases to infinity. The red vertical line in Figure 3 

denoted the mean of both the population and sample mean distributions. The plot shows that 
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the mean of the Gamma distribution is equal to the mean of the sampling distribution. Similarly, 

the variability of each sampling distribution decreases as the sample size increases. 

 

CONCLUSION 

Three parameters were used to justify CLT: shape, mean and variance. From the findings, it 

can be concluded that under normal distribution, the sampling distribution of mean produced a 

shape like normal distribution irrespective of sample size with mean equal to the mean of 

Normal distribution and variance equal to the 
  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑛)
  . Conversely, the 

shape of sampling distribution of mean under non-normal distributions gradually converges to 

Normal distribution with mean equal to the mean of non-normal distribution and variance equal 

to the 
  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑛𝑜𝑛−𝑛𝑜𝑟𝑚𝑎𝑙  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑛)
  as sample size goes to infinity ( n → ∞). More so, 

the variability of each sampling distribution decreases as the sample size increases. 

 

REFERENCES 

Fatheddin, P. (2015). Central Limit Theorem for a Class of SPDEs. Journal of Applied 

Probability, 52(3), 786 -796. 

Islam, k. and Mohammed, R. (2018). Sample Size and Its Role in Central Limit Theorem 

(CLT). International Journal of Physics and Mathematics, vol. 1, pp. 37 – 47.  

Sawada, T. (2021). Conditions of the Central Limit Theorem Are Rarely Satisfied in 

Empirical Psychological Studies. Front. 

Psychol.12:762418.doi:10.3389/fpsyg.2021.762418 

Shige, P. (2019). Law of Large Numbers and Central Limit Theorem Under Nonlinear 

Expectations. Probability Uncertainty and Quantitative Risk, 4:4. doi: 10.1186/s4156-

019-003-2. 

Sutanapong, C. and Louangrath, P. (2015). Central Limit Theorem And Its Applications. Part 

3 of 4 ” Inter.j. Res. Methodol. Soc Sci., Vol., 1, No, 3: pp 30 -41. (Jul – Sep, 2015). 

Winters, J. and Kinneth, S.(2022). Application of the Central Limit Theorem. Selected 

Honors Theses.158. 


