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ABSTRACT: During the COVID-19 pandemic that ravaged the 

entire world between 2019 and 2021, the Trace-Test-Isolate-Treat 

Strategy was devised as an emergency way of managing the 

spread of the disease. As the name implies, the Trace-Test-Isolate-

Treat Strategy involves identifying those who had contact with an 

infected person through contact tracing, and subsequent isolation 

and treatment if confirmed to be infected with the disease. This 

paper aims to model the transmission dynamics of COVID-19, 

with the Trace-Test-Isolate-Treat Strategy as a control strategy. 

To do this, we propose a simple nonlinear system of ordinary 

differential equations that models COVID-19 dynamics and 

incorporates the Trace-Test-Isolate-Treat strategy as a way of 

controlling the spread of the disease. The analysis of the model 

shows that the disease-free equilibrium is locally asymptotically 

stable if the reproduction number, 𝑅𝑒𝑓𝑓 is less than one. 

Furthermore, the model is shown to possess a unique and stable 

endemic equilibrium if,  𝑅𝑒𝑓𝑓 > 1. This confirms the global 

asymptotic stability of the disease-free equilibrium and the 

absence of backward bifurcation in the model. Numerical plots 

show the effectiveness of isolation and treatment of infected 

persons in reducing the spread of the disease. 

KEYWORDS: Coronavirus; Trace-Test-Isolate-Treat Strategy; 

disease-free equilibrium; endemic equilibrium; local stability 
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INTRODUCTION 

Coronaviruses are a group of related zoonotic and RNA viruses that cause diseases in mammals 

and birds. In humans, these viruses cause respiratory tract infections which can be mild or lethal 

(Gorbalenya et al., 2020; Brunk, 2020). Mild illness includes some cases of the common cold 

while more lethal varieties can cause Severe Acute Respiratory Syndrome (SARS) discovered 

in 2002, Middle-East Respiratory Syndrome (MERS-CoV) discovered in 2012 and 

Coronavirus Disease 2019 (COVID-19) discovered in 2019 (Abutaleb, 2020; Adebowale et al, 

2021). The novel coronavirus disease (COVID-19) is a new strain of coronavirus that has not 

been previously identified in humans. It was first discovered in December 2019 in Wuhan City, 

Hubei Province China, and later spread all over the world. On January 30, 2020, the World 

Health Organization (WHO) declared the COVID-19 outbreak a global health emergency and 

subsequently declared the disease a global pandemic on March 11, 2020 [Gallegos,2020; 

Ramzy and McNeil, 2020]. The symptoms of the disease include; headache, fever, chills, sore 

throat, loss of taste or smell, muscle pain, cough, shortness of breath and breathing difficulties 

(CDC, 2020). In more severe cases, pneumonia, severe acute respiratory syndrome, Malaise, 

Diarrhea, Sputum production, kidney failure and death are often associated with the 

disease(CDC, 2020).  The disease can be transmitted from person to person through respiratory 

droplets from coughing and sneezing (Wu and McGoogan, 2020). Viruses released in 

respiratory secretions can infect other individuals by direct contact with mucous membranes. 

There is no officially approved drug for treating those who are infected with the disease. 

However, treatments are administered to infected persons based on the symptoms manifested 

by the disease. Fortunately, there have been several WHO-approved vaccines for immunizing 

interested individuals against the disease. These vaccines, together with non-pharmaceutical 

protection measures such as wearing face masks and shields, washing hands with soaps or 

alcohol-based sanitizers in runny water, and maintaining social distancing, among others have 

helped to control the spread of the disease. Mathematical epidemiologists have not relented in 

proposing mathematical and statistical models for understanding the transmission dynamics of 

the disease and incorporating various measures proposed for controlling the spread of the 

disease (Eikenberry et al., 2020; Ferguson et al., 2020; Hellewell et al., 2020; Musa et al., 2020; 

Ngonghala et al., 2020). 

The Trace-Test-Isolate-Treat strategy has been considered an effective way of reducing the 

spread of COVID-19. The implementation of this COVID-19 control strategy involves tracing 

those who have physical contact with a confirmed infected person. Those who are successfully 

traced are kept in a temporary isolation facility or self-isolation for a period equivalent to the 

incubation period of the disease. At the end of the temporary isolation, those who test positive 

for the disease are kept in a main isolation facility where they receive treatment until they 

recover or die due to the disease. In this work, we model the Trace-Test-Isolate-Treat strategy 

into the transmission dynamics of COVID-19 as a control strategy and determine its 

effectiveness in reducing the spread of the disease. 
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Formation of the Model 

The model we propose is a system of nonlinear ordinary differential equations which describes 

the transmission dynamics and control of coronavirus disease (COVID-19). The total human 

population under study is divided into eight (8) compartments/classes namely, the susceptible 

(S), those with protection against the disease (P), those who have contact with an infected 

person, but are not traced (TN), infectious (I), those that have contact with the infectious 

persons, traced and isolated (T), those whose status is confirmed positive, and are isolated (Q), 

and those that have recovered from the disease (R), and the deceased (D). 

With adequate awareness about the disease and its modes of spread being created, we assume 

that a certain proportion, 𝛿 of the susceptible class adopts protection measures against the 

disease. Under the Trace-Test-Isolate-Treat Strategy, when those without protection have 

contact with an infectious person, I, contact tracing is activated to identify them. Let 𝛼𝑐𝐼(𝑡)𝑆(𝑡) 

be the number of persons in the susceptible class that have contact with infectious persons, 

where c is the rate at which contacts are made, and α is the probability of transmission of the 

virus during contact. The proportion, κ who are not traced moves into the compartment, TN. In 

this compartment, the fraction, q1 who is not infected with the virus moves into the protection 

compartment, P, while the fraction, β, who is infected with the virus moves into the infectious 

class, I. A proportion v2 of the infectious class with visible symptoms are quarantined in class 

Q, while the proportions v1 and τ1 who are not quarantined recover naturally or die due to the 

disease, respectively. On the other hand, the proportion (1 − κ) who are traced (T) is kept in an 

isolation facility for 14 days; the incubation period of the disease. At the expiration of the 

incubation period, tests are re-conducted to determine their infection status. At this stage, the 

proportion, q2 whose status is confirmed positive are kept in the main isolation compartment 

Q, where they receive medical attention until they recover from the disease at the rate q3 or die 

due to the disease at the rate, τ2, while the proportion, q0 of T whose status are confirmed 

negative embraces protection from the disease. We assume that those in the infectious 

compartments, I and Q cannot die naturally, but due to complications from the disease 

infection. However, all other compartments except compartment, D benefit from the natural 

death which occurs at the rate, µ1. In the management and control of COVID-19, the 

importance of prompt and proper burial or disposal of the deceased cannot be over-emphasized. 

Hence, we include in compartment, D, the rate, µ2 at which the deceased is buried or disposed 

of.           

Figure 1: Flow Diagram for the Disease Transmission and Control 
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Following the assumptions on the transmission dynamics and control of COVID-19, with the 

disease flow diagram (figure 1), we obtain the system of nonlinear ordinary differential 

equations 

                                                          
𝑑𝑆

𝑑𝑡
= 𝜋 − 𝑐𝛼𝜅𝐼𝑆 − 𝑐𝛼(1 − 𝜅)𝐼𝑆 − (𝛿 + 𝜇1) 𝑆 

𝑑𝑃

𝑑𝑡
= 𝛿𝑆 + 𝑞0𝑇 + 𝑞1𝑇𝑁 − 𝜇1𝑃 

𝑑𝑇𝑁

𝑑𝑡
= 𝑐𝛼𝜅𝑆𝐼 − (𝑞1 + 𝛽 + 𝜇1)𝑇𝑁 

                                                 
𝑑𝑇

𝑑𝑡
= 𝛼𝑐(1 − 𝜅)𝑆𝐼 − (𝑞0 + 𝑞2 + 𝜇1)𝑇                                (1) 

𝑑𝐼

𝑑𝑡
= 𝛽𝑇𝑁 − (𝜏1 + 𝑣1 + 𝑣2 + 𝜇1)𝐼 

                                                             
𝑑𝑄

𝑑𝑡
= 𝑞2𝑇 + 𝑣2𝐼 − (𝜏2 + 𝑞3 + 𝜇1)𝑄 

                                                             
𝑑𝑅

𝑑𝑡
= 𝑣1𝐼 + 𝑞3𝑄 − 𝜇1𝑅  

                                                  
𝑑𝐷

𝑑𝑡
= 𝜏1𝐼 + 𝜏2𝑄 − 𝜇2𝐷     

  

with the initial solutions𝑆(0) = 𝑆0, 𝑃(0) = 𝑃0, 𝑇𝑁(0) = 𝑇𝑁0, 𝐼(0) = 𝐼0, 𝑇(0) = 𝑇0, 𝑄(0) =
 𝑄𝐼0, 𝑅(0) = 𝑅0, 𝐷(0) = 𝐷0. We assume that a unique bounded solution to the model system 

exists in the domain Ω described as 𝛺 = {𝑆, 𝑃, 𝑇𝑁 , 𝐼, 𝑇, 𝑄, 𝑅, 𝐷 ∈ 𝑅+
8 |𝑆 +  𝑃 +  𝑇𝑁 +  𝐼 +  𝑇 +

 𝑄 +  𝑅 + 𝐷 ≤
𝜋

𝜇1
} 

Table 1: Description of Parameters used in this Model 

Paramete

r 

Meaning 

π Recruitment rate of Humans into the susceptible class 

𝛼 Probability of transmission of the virus from infected persons during contact 

c The rate at which contacts are made between infected and uninfected persons 

κ 
The proportion of those who have contact with infected persons who are 

traced 

µ1 Natural death rate of humans 

β Incubation rate of coronavirus 

q0 Proportion of the traced that are not infected 
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q2 Proportion of the traced that are infected 

τ1 The proportion of the infected humans that die due to the infection 

τ2 Proportion of the isolated humans that die due to the infection 

v1 Proportion of infected humans that recover without treatment 

v2 Proportion of infected humans that are isolated 

µ2 Rate of burial of deceased persons 

δ Proportion of susceptible class that protect themselves 

q1 Proportion of those not traced that are not infected 

q3 Proportion of those isolated that recover after treatment 

 

 

MODEL ANALYSIS 

Local Stability Analysis of the Disease-Free Equilibrium 

The disease-free equilibrium, 𝐸0 = (
𝜋

𝛿+𝜇1
,

𝛿𝜋

𝜇1(𝛿+𝜇1)
, 0,0,0,0,0,0) is locally asymptotically 

stable if all the eigenvalues of the Jacobian matrix of (1) are all negative or have negative real 

parts. If at least one eigenvalue has a positive real part, E0 is unstable. 

The Jacobian matrix of (1) is; 

𝐽(𝐸0) = [−(𝛿 +  µ1) 0 0 0 𝑐𝛼𝜅𝑆0 0 0 0 𝛿 − 𝜇1 0 0 0 0 0 0 0 0 − 𝐶1 0 𝑐𝛼𝜅𝑆0 0 0 0 0 0 0 
− 𝐶2 𝑐𝛼(1 − 𝜅)𝑆0 0 0 0 0 0 𝛽 0 − 𝐶3 0 0 0 0 0 0 𝑞2 𝜈2  
− (𝜏2 + 𝑞3) 0 0 0 0 0 0 𝜈1 𝑞3  − 𝜇1 0 0 0 0 0 𝜏1 𝜏2 0 − 𝜇2 ] 

where 𝐶1 = (𝑞1 + 𝛽 + µ1), 𝐶2 = (𝑞0 + 𝑞2 + µ1), 𝐶3 = (𝜏1 + 𝑣1 + 𝑣2 + µ1).  

The eigenvalues of J(E0) are −µ1, −µ1, −µ2, −(𝛿 +  µ1), −(𝜏2 + 𝑞3 + µ1), and the roots of the 

cubic equation; 

 −𝜆3 − [𝐶1  +  𝐶2 +  𝐶3]𝜆2 −  [𝐶1𝐶2 + 𝐶2𝐶3 + 𝐶1𝐶3(1 −  𝑅𝑒𝑓𝑓)]𝜆 − 𝐶1𝐶3(1 −  𝑅𝑒𝑓𝑓) = 0

 (2) 

where 𝑅𝑒𝑓𝑓 =
𝛽𝑐𝛼𝜅𝜋

(𝛿+𝜇1)(𝑞1+𝛽+𝜇1)(𝜏1+𝑣1+𝑣2+𝜇1)
 is called the effective reproduction number of 

COVID-19. It is the average number of persons that can be infected with COVID-19 when an 

index case of the disease is introduced in a disease-free population, in the presence of this 

control strategy. Using Descartes's rule of signs, we see that all the roots of (2) will be negative 

if 𝑅𝑒𝑓𝑓 < 1. Therefore, E0 is locally asymptotically stable if 𝑅𝑒𝑓𝑓 < 1. 
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3.2 Existence of Endemic Equilibrium and its Local Stability 

Let E1 = (S∗,P∗,TN
∗,T∗,I∗,Q∗,R∗) be the endemic equilibrium of the model equation (1), where 

𝑆∗ =
𝜋

(𝛿+𝜇1)+𝑐𝛼𝜅𝐼∗ 
, 𝑃∗ =

𝛿𝑆∗+𝑞0𝑇∗+𝑞1𝑇𝑁
∗

𝜇1
,𝑇𝑁

∗   =
𝑐𝛼𝜅𝑆∗𝐼∗

𝑞1+𝛽+𝜇1
, 𝐼∗ =

𝛽𝑇𝑁
∗

𝜏1+𝑣1+𝑣2
,𝑇∗ =

𝑐𝛼(1−𝜅)𝑆∗𝐼∗

𝑞0+𝑞2+𝜇1
, 𝑄∗ =

𝑞2𝑇∗+𝑣2 𝐼∗

𝜏2+𝑞3+𝜇1
, 𝑅∗ =

𝑣1𝐼∗+𝑞3𝑄∗

𝜇1
, 𝐷∗ =

𝜏1𝐼∗+𝜏2𝑄∗

𝜇2
. That is, E1 is the solution to the system of equations; 

        𝜋 −  𝑐𝛼𝜅𝐼𝑆∗  −  𝑐𝛼(1 −  𝜅)𝐼∗𝑆∗  −  (𝛿 +  µ1)𝑆∗  =  0                                    

(3) 

𝛿𝑆∗ + 𝑞0𝑇∗ + 𝑞1𝑇𝑁
∗ − 𝜇1𝑃∗ = 0                                                  

  (4) 

𝑐𝛼𝜅𝑆∗𝐼∗ − (𝛽 + 𝑞1 + 𝜇1)𝑇𝑁
∗ = 0                                                   (5) 

𝛼𝑐(1 − 𝜅)𝑆∗𝐼∗ − (𝑞0 + 𝑞2 + 𝜇1)𝑇∗ = 0                                        (6) 

𝛽𝑇𝑁
∗ − (𝜏1 + 𝑣1 + 𝑣2 + 𝜇1)𝐼∗ = 0                                                    (7) 

𝑞2𝑇∗ + 𝑣2𝐼∗ − (𝜏2 + 𝑞3 + 𝜇1)𝑄∗ = 0                                                  (8) 

𝑣1𝐼∗ + 𝑞3𝑄∗ − 𝜇1𝑅∗ = 0                                                                           (9) 

𝜏1 𝐼∗ + 𝜏2𝑄∗ − 𝜇2𝐷∗ = 0                                                                                          (10) 

Substituting the endemic equilibrium points into (7) equations gives 

𝛽𝑐𝛼𝜅𝜋𝐼∗

(𝛽 + 𝑞1 + 𝜇1)(𝑐𝛼𝜅𝐼∗ + (𝛿 + 𝜇1))
 − (𝜏1 + 𝑣1 + 𝑣2 + 𝜇1)𝐼∗ = 0 

which simplifies to give 

−𝑐𝛼𝜅(𝛽 + 𝑞1 + 𝜇1)(𝜏1 + 𝑣1 + 𝑣2 + 𝜇1)𝐼∗2 + (𝛿 + 𝜇1)(𝛽 + 𝑞1 + 𝜇1)(𝜏1 + 𝑣1 + 𝑣2 +

𝜇1)[𝑅𝑒𝑓𝑓 − 1]𝐼∗ = 0                                                              (11) 

The trivial solutions, 𝐼∗  =  0, to (11) corresponds to the disease-free equilibrium, which is 

locally asymptotically stable when 𝑅𝑒𝑓𝑓 < 1. The second solution, 𝐼∗  =
𝛿+𝜇1

𝑐𝛼𝜅
(𝑅𝑒𝑓𝑓 − 1) is 

positive if 𝑅𝑒𝑓𝑓 > 1. This shows that a unique endemic equilibrium of the model exists only if 

𝑅𝑒𝑓𝑓 > 1. If we linearize the model system around the endemic equilibrium, 𝐸1, we get the 

Jacobian matrix; 

𝐽(𝐸1) = [−𝐴1 0 0 0 − 𝑐𝛼𝑆∗ 0 0 0 𝛿 − 𝜇1 𝑞1 𝑞0 0 0 0 0 𝑐𝛼𝜅𝐼∗ 0 
− 𝐴2 0 𝑐𝛼𝜅𝑆0 0 0 0 𝑐𝛼(1 − 𝜅)𝐼∗ 0 0 − 𝐴3 𝑐𝛼(1 − 𝜅)𝑆0 0 0 0 0 0 𝛽 0 
− 𝐴4 0 0 0 0 0 0 𝑞2 𝜈2  − (𝜏2 + 𝑞3 + 𝜇1) 0 0 0 0 0 0 𝜈1 𝑞3  
− 𝜇1 0 0 0 0 0 𝜏1 𝜏2 0 − 𝜇2 ] 

where,  

𝐴1 = 𝑐𝛼𝐼∗  + (𝛿 + µ1), 𝐴2 = 𝛽 + 𝑞1  + µ1, 𝐴3 = 𝑞0 + 𝑞2 + µ1, 𝐴4 = 𝜏1 + 𝑣1 + 𝑣2 + µ1.  
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The eigenvalues of J(E1) are −µ1, −µ1, −µ2, −(𝜏2 + 𝑞3 + µ1), −(𝑞0 + 𝑞2 + µ1) and the roots 

of the cubic equation 

 −𝜆3 − 𝜃1𝜆2 − 𝜃2𝜆 − 𝜃3 = 0. (12) 

where 

𝜃1 = ((𝑐𝛼𝐼∗ + (𝛿 + µ1)) + (𝛽 + 𝑞1 + µ1) + (𝜏1 + 𝑣1 + 𝑣2 + µ1)), 

𝜃2 = ((𝑐𝛼𝐼∗ + (𝛿 + µ1))(𝛽 + 𝑞1 + µ1) + (𝑐𝛼𝐼∗ + (𝛿 + µ1))(𝜏1 + 𝑣1 + 𝑣2 + µ1) + (𝛽 + 𝑞1

+ µ1)(𝜏1 + 𝑣1 + 𝑣2 + µ1)), 

𝜃3 = ((𝑐𝛼𝐼∗ + (𝛿 +  µ1))(𝛽 + 𝑞1 + µ1)(𝜏1 + 𝑣1 + 𝑣2 + µ1)) + 𝛽𝑐2𝛼2𝜅𝑆∗𝐼∗. 

All the coefficients of (12) are negative since 𝑆∗ > 0, 𝐼∗ > 0. Therefore, all the eigenvalues of 

𝐽(𝐸1) are negative or have a negative real part. Since E1 does not exist when 𝑅𝑒𝑓𝑓 ≤ 1, we 

conclude that the endemic equilibrium, E1 is locally asymptotically stable if 𝑅𝑒𝑓𝑓 > 1. The 

existence of a unique endemic equilibrium, and its local asymptotic stability when 𝑅𝑒𝑓𝑓 > 1, 

assures that there is no backward bifurcation in the model. Therefore, the disease-free 

equilibrium is globally asymptotically stable when 𝑅𝑒𝑓𝑓 < 1. 

Numerical Solution of the Model 

The numerical solution to the model is presented in this section. With the help of MATLAB 

ode45, the model is solved using the initial solution𝑆0 = 150, 𝑃0 = 100, 𝑇0 = 50, 𝑇𝑁0 =
50, 𝐼0 = 0, 𝑄0 = 30, 𝑅0 = 20, 𝐷0 = 12, and the parameter values as shown in Table 2. The 

numerical solution (figure 2-figure 5) shows the trajectories of the disease in the compartments 

of the population of interest.                                                                                                                 

      Table 2: Parameter Values used in this model 

Parameter Value Parameter Value 

π 500 𝜏1 0.1 

α 0.5 𝜏2 0.001 

c 0.175 𝑣1 0.35 

κ 0.5 𝑣2 0.25 

µ1 0.00003 µ2 0.75 

β   0.25 δ 0.025 

𝑞0 0.05 𝑞1 0.017 

𝑞2 0.275 𝑞3 0.15 
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In Figure 2, we have the graph of traced humans and those that are not traced. The graph shows 

that the two compartments are equal for a very short period. However, the number of those that 

are not traced grows higher than the number that are traced. The number of persons that are not 

traced outnumbered those that are traced because of more contacts that are made by those that 

are not traced. In Figure 3, the graph shows at any point in time t, the number of infected 

persons isolated is always higher than the number of infected persons that are not isolated. 

Figure 4 shows that increasing the rate at which infected persons are isolated, helps to reduce 

the number of infected persons in the population. In the same way, as shown in Figure 5, 

isolation of infected persons helps to reduce the number of deaths due to the disease. 

                    

Figure 2: Number of persons traced and not traced at time t 

 

 

Figure 3: Number of infectious persons isolated and not isolated at time t 
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Figure 4: Effect of Isolation on the Number of Infected Persons 

                   

Figure 5: Effect of Isolation on the Number of Deceased Persons 

 

SUMMARY AND CONCLUSION 

In this paper, we have proposed a mathematical model which implements the Trace-Test-

Isolate-Treat strategy for managing the spread of COVID-19. The model is a deterministic 

system of nonlinear ordinary differential equations which describes the transmission dynamics 

of COVID-19 in an 8-compartmental human population. In the stability analysis of the disease-

free and endemic equilibrium of the model, we have that the disease-free equilibrium is both 

locally and globally asymptotically stable when 𝑅𝑒𝑓𝑓 < 1, while the model has a unique 

endemic equilibrium when 𝑅𝑒𝑓𝑓 > 1, which is locally asymptotically stable if 𝑅𝑒𝑓𝑓 > 1. The 

importance of contact tracing, testing, isolating, and treatment of infected persons in the 

management of COVID-19 and other related infections cannot be overemphasized. The Trace-

Test-Isolate-Treat Strategy has proved to be an effective way of handling outbreaks of 

infectious viral diseases such as coronavirus disease. 
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