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ABSTRACT: Commutativity degree is a numerical derivation 

that carries a lot of information about the structure of finite 

groups. It measures the extent to which two randomly selected 

non-identity elements of a group commute. The upper bound for 

the order of the centre of a finite group were obtained by Cody 

(2010), while Anna (2010) determined same in terms of degree of 

commutativity; Jelten et al. (2021) worked on commutativity 

degree p(G) of finite groups via the class equations. In the present 

paper, we use the derived group of a group as input and the degree 

equation as a tool to derive a scheme for the commutativity degree 

of groups of order  which are essentially groups of order  

with , where  is an even prime, , an odd prime such 

that ; and .  With this, we have that 

p(G) = (|G/| + 3) /|G| as one of our results and discovered that 24 

groups satisfy the restrictions given as outlined in our discussion 

in this paper. 

KEYWORDS: Representation, derived groups, prime, group 

ring, abelianization. 
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PRELIMINARIES  

Definition   

A group consists of a set G together with a rule for combining any two elements g and h to 

form another element written gh, which must satisfy the following axioms: 

(i) For all g, h and k in G, g (hk) = (gh) k  

(ii) There exists an element e in G called the identity element such that for all g in G,  

                  eg = ge = g  

(iii)  For all g in g, there exists an element g-1 in G called the inverse of g such that: 

                  g g-1 = g-1 g = e.  

The rule for combining the elements of G is called the product operation on g.  

It is to be noted that the commutative law is not in general required to hold for all groups. It 

becomes necessary to distinguish between ab and ba.  Hence, we have the next definition. 

Definition  

A group G with the property that ab = ba for every pair of elements a,b   G is said to be a 

commutative or abelian group. A group in which there exists a pair of elements a,b  G 

endowed with the property that ab ≠ ba  is called a non-abelian  or noncommutative group. 

In the next definition we have that a group consists of smaller groups.  

Definition 

A non-empty subset N of a group G is said to be a subgroup of G written N≤ G if N is a group 

under the operation inherited from G. The properties of the subgroup N determine whether it 

is proper or improper. We call G simple if the only subgroups of G are the trivial ones. 

Definition 

A group G is said to be cyclic if it is generated by a single element, say a and we write G = 

<a>, that is, G = {an: n  Z} in the finite case. In the infinite case, G is cyclic if the powers of 

a  G exhaust G. 

For every even number, there is at least one non abelian group of order 2n. An important fact 

about cyclic groups is that they are generally abelian. 

Definition 

The number of elements in a group G written |G| is called the order or cardinality of the group. 

If G is finite of order n, we have |G| = n, otherwise |G| = . If G has infinite order.   

The least number n if it exists such that an = 1 for a in G is called the order of a and we write 

o(a) = n, that is, o(a) = min{a > 0: an = 1}. If no such n exists, then o(a) =  . In the latter, we 
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say that powers of a are distinct but not all are distinct in the former. An element of order two 

is said to be an involution.   

Furthermore, the order of an element of G divides |G|. In particular, a|G| = 1, where G is finite.  

Definition 

Let G be a group and H < G.  For q  G, the subset Hq = {Hq: h  H} of G is called the right 

coset of H in G. Distinct right cosets of H in G form a partition of G, that is, every element of 

G is precisely in one of them. Left coset is similarly defined. The number of distinct right cosets 

of H in G written |G : H| is called the index of H in G. If G is finite, so is H and G is partitioned 

into |G:H| which coset each of order |H| and |H| and |G:H| divide |G|.  

Definition 

A subgroup N of G such that every left coset is a right coset and vice versa is called a normal 

subgroup of G, that is, Nx = xN or x-1Nx  ≤  N and we write N G.  Subgroups of abelian 

groups are abelian.  

The coset decomposition of G in 1.5 above leads to the following consequence:  

Proposition  

If H is a subgroup of G, then |G|=|G:H||H|. From this we derive a fundamental result in group 

theory: the Lagrange’s Theorem which relates a group to its subgroups. 

 

THEOREM  

If G is a finite group and H is a non-empty subgroup of G, then |H| divides |G|. 

Remark  

The right coset Hq is the equivalence class of q in G. These equivalence classes yield a 

decomposition of G into disjoint subsets. Consequently, two right cosets are either identical or 

disjoint. Cosets are also called ‘shifted’ or ‘translated’ subgroups. These arise as 

‘inhomogeneous solution spaces’ to linear equations and differential equations. The index of a 

subgroup in a group counts the number of such subgroups in the group.  

The lemma that follows provides us with the criterion for determining when subgroups are 

normal. 

Proposition  

If H is a subgroup of G such that H has only two right cosets itself and one other then, H is 

normal in G. In the finite case, this means that the order of H is one-half  of the order of G. 

Equivalently all subgroups of index 2 are normal. 
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Proof 

Any element in G is either in H or in G. If  x H, then xH = H = Hx. If x H, then xH is the set 

of elements in  G - H since H Hx = . Thus: 

                                         xH = G - H = Hx.  

Therefore, by definition, H is a normal subgroup of G. 

A consequence of Proposition 1.11 follows next. 

Lemma 

If H is a finite subgroup of G and if it is the only subgroup of order |H|, then H is normal in G. 

Definition 

Let V be a vector space over a field F. The general linear group GL(V) is the set of all 

automorphisms of V viewed as a group under composition. 

If V has finite dimension n, then GL(V) = GL(n, F) which is the group of invertible n by n 

matrices with entries in F.  

Definition 

The centre Z(G) of a group G is the set of all elements z in G that commute with every element 

q in G. We write: 

                           Z(G) = {z G|zq = qz,  for all q G} 

Note that Z(G) is a commutative normal subgroup of G  and  G modulo; its centre Z(G) is 

isomorphic to the inner automorphism,  inn(G) of G.  

If Z(G) = {e}, then G is said to have a trivial centre. The centre of a group G is its subgroup of 

largest order that commutes with every element in the group and its characteristic. 

We relate conjugacy class to the centre of the group.  

Definition  

Let a, q G. Then a is conjugate to q in G if there exists an element g G  such that q = g-1ag. 

The set of elements in G that are conjugate to a in G is denoted by C(a). And as such, C(a)  = 

{g-1 ag | g G}. This is called the conjugacy class of a in G. The order of the conjugacy class 

divides |G|. 

Distinct conjugacy classes form a partition of the group and hence induces a decomposition of 

G into disjoint equivalence classes, as in Herstein (1964). 
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Definition 

The centralizer CG(q) of an element q in G is the set of all elements g G that commute with 

q, that is: CG(q) = {g G | gq = qg, for some q G}. This is a subgroup of G. 

The index of CG(q) in G is the size of the conjugacy class C(q) of q in, that is,               |C(q)| = 

|G : CG(q)|. In particular, CG(q) is a subgroup of G but not a normal subgroup in general. 

Consequently, the quotient of G by CG(q) is not a group.  

Next is a corollary from James, G. and Martin, L. (2001) and Louis (1975). 

Corollary 

If G is a finite group, then: 

(i) Every group is a union of its conjugacy classes and distinct conjugacy classes are disjoint; 

(ii) A conjugacy class is an equivalence relation where the equivalence classes are the 

conjugacy classes. 

(iii) If H is a subgroup of Z(G), then H is a normal subgroup of G. In particular, Z(G) is normal 

in G.    

A relationship between the centre of G and the centralizer of the elements of G is given by: 

Lemma 

The centre Z(G) of a group G is the intersection of the centralizers CG(a) of elements a in G. 

The fact that the centre of a group is the union of conjugacy classes containing one element 

gives rise to an important theorem, the class equation. 

Definition 

If a G, then NG(a) is the normalizer of a in G. It comprises precisely the set of those elements 

in G which commute with a. It is a subgroup of G. 

Herstein, I. N. (1964) has it that if G is a finite group, then the number of elements conjugate 

to a in G is the index of the normalizer of a in G. 

What follows is the definition of a special function—the structure preserving function in 

groups. It is the central concept common to most aspects of modern algebra. 

Definition 

Let G and G* be groups, the function from G to G* which preserves the structure of the groups 

is called homomorphism. Equivalently the function  

: G G* with the property that: 

                                   (gh) =(g )(h ) for all g,h G is called a homomorphism. 

Next is Grun’s Lemma proved by Sandra, S. et al (2011). 
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Lemma 

If a group G has centre Z(G) other than {1} and if the centre of G/Z(G) is also different from 

{1} then, there exists a homomorphism map of G unto a subgroup of Z(G) other than {1}.  

Now we define a kind of homomorphism with a unique property.  

Definition  

A representation of a group G is a homomorphism  of G into another group A.  

That is:       : G → A , for all s,t G  such that:  

                                      (st)  = (s) (t)   

Note that ker  = {s G : s  = 1} and im  = {s  : s  G} are respectively the kernel and 

image of . If in particular A = GL(n, F), the set of n by n invertible matrices with entries in 

the field F, we define the representation of G as the homomorphism 

                                    : G → GL(n, F). 

 

Definition 

Let V be  a representation. We say W is a sub representation of V if W is a subspace of V that 

is invariant under G. That is for all w in W, gw is in W. 

Here, V is said to be irreducible if and only if the only sub representations of V are V and {0}. 

Definition 

Suppose that with each element x in G, there is associated an n by n  non-singular matrix 

M(x)=(aij(x)), i,j =1,2,...,n with coefficients in the field F in such a way that for x, y in G, 

M(x)M(y) = M(xy); then M(x) is called a matrix representation of G of dimension n over F. 

Matrix representation is also called an F - representation. 

Remark 

In representation theory, the group G is considered as a group of matrices where we replace 

each element of an abstract group with a matrix. The entire theory of group representation 

arises from matrix groups.  

Next is Lagrange’s theorem. 

Theorem 

If a group G is finite and H is a subgroup of G, then the order of H divides the order of G.  

The theorem that follows is from Mark, R. (2011): 
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Theorem 

If a finite group G has a centre Z(G) and G/Z(G) is cyclic; then G is abelian. 

From Houshang, B. and Hamid, M. (2009), we have the next proposition which is an important 

property of p - groups. 

Proposition 

If the order of a finite group G is a power of a prime p; then G has a non trivial centre. 

Equivalently the centre of a p group contains more than one element.  

A theorem for our consideration in this paper is due to Cody, C. (2010) on commutativity of 

finite non-abelian groups, where a bound for the size of the centre of a non-abelian group is 

given. 

Theorem 

If G is a finite non abelian group, then the maximum possible order of the centre of G is 

¼|G|.That is, |Z(G)| ≤ 1/4|G|. 

Proof 

Let z Z(G), since G is non abelian, Z(G) ≠ G. Thus there exists an element  

q G such that q is not in the centre. This implies that CG(q) ≠ G and  

CG(q) ≠ Z(G). Since z Z(G), every element in G commutes with z, so qlz = zq. It follows that 

z  CG(q). Since q  CG(q), we have that Z(G) is a proper subset of CG(q).  Since a group that 

is a subset of a subgroup under the same operation is itself a subgroup of the subgroup, we find 

that Z(G) is  a proper subgroup of CG(q). By Theorem 1.26 and corollary 1.28, it follows that: 

                                |Z(G)| ≤  1/2|CG(q)|. 

Now, since we assumed CG(q) ≠ G, then CG(q) is a proper subset of G. Therefore, by Theorem 

1.26 and the fact that the centralizer of any group element is a subgroup of G, we find that   

|CG(q)| ≤ 1/2|G|. That is:  

 |Z(G)| ≤  1/2|CG(q)| 

            ≤  1/2(1/2|G|) 

            ≤  1/4|G|. 

Anna, C. (2010) has the next definition. 

 

  



African Journal of Mathematics and Statistics Studies 

ISSN:  2689-5323 

Volume 7, Issue 1, 2024 (pp. 33-49)  

 
40  Article DOI: 10.52589/AJMSS-YSZUQY1A 

  DOI URL: https://doi.org/10.52589/AJMSS-YSZUQY1A 

www.abjournals.org 

Definition  

The commutativity degree of a finite group G is the probability p(G) that two elements of G 

selected at random (with replacement) commute. That is: 

 p(G)={(x,y):xy=yx, for any x and y in G}.  

A result which Sarah, M. et al. (1991) said is woven from elementary results on subgroups, 

centralizer, Lagrange’s theorem and conjugacy classes.  

Commutativity degree is a property of groups which is determined by the nature of the centre 

and measures the probability P(G) that pairs of elements of a finite non abelian group G selected 

at random commute. In the case of a non-abelian group, the probability is 5/8.  

Anna, C. (2010) proves the theorem that follows: 

Theorem 

If G is a finite non - abelian group, then the commutativity degree is 5/8 if and only if 

, the Klein 4- group. 

This theorem has a corollary which describes the structure of a group having commutativity 

degree of   (p2+p-1)/p3 as follows: 

 Corollary  

(a) Let p be the smallest prime dividing the order of G/Z(G) then:  

P(G) =   (p2+p-1)/p3 if and only if |G/Z(G)|=p2; 

(b) If the commutativity degree of G is (p2+p-1)/p3 where p is the smallest prime dividing the 

order of G/Z(G), then  such that P is a p - group and A is abelian. 

Remark 

The group product in (b) above is described in our result as preserving the maximal property 

of the centre of finite non abelian group with |Z(G)|≤1/4|G|.  

In 1991, Sarah, M. and Gary, J. on counting centralizers in finite groups have it that: the basic 

classification scheme for groups reflects the importance of the notion of commutativity in 

understanding group structure. This is because labelling a group as abelian, nilpotent, super 

nilpotent, soluble or simple indicates in  a sense the degree of commutativity that such groups 

enjoy.  

Theorem 

Let G be a finite group. Then the degree of commutativity p(G) of G is p(G) = |C|/|G|.  

Consequently, the commutativity degree of a finite group is the same as counting the number 

of conjugacy classes of G. 
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From James Gordon and Martin (2001), we have the definition of one of the inputs in this 

paper. 

Definition 

The subgroup G/ of a group G generated by the elements of the form sts-1t-1 , for all s, t G is 

called the derived group or commutator subgroup of G. We write [s,t] = sts-1t-1 and call this the  

commutator of  s and t. Thus:  

                                    G/ = { [s,t] : s, t G }. 

The commutator [s,t] is an element of G that measures the failure of the elements s and t to 

commute. The derived subgroup G/ is normal in G and the quotient G/G/ is called the 

abelianization of G. It is the largest abelian quotient of G. 

We can use G/ to determine whether a group is abelian or non abelian in the following sense: 

A finite group G is abelian if and only if G/={1}. 

From Keith, C. (2010), we have: 

Remark 

Commutativity of G is equivalent to both Z(G)=G and G/={1}. The conditions Z(G) = {1} and 

G/ = G are not equivalent. The commutativity of G is also equivalent to G/Z(G) and G/being 

trivial. However, if G/ is finite, G/Z(G) need not be finite. Any subgroup of G that is contained 

in Z(G) is normal in G. Since the centre is abelian. Furthermore,  any subgroup of G that 

contains [G,G] is normal in G since G/ G/ is abelian .  

For a non-abelian group, a measure of how close the group is to being abelian is based on how 

close the commutator subgroup is to the identity. The larger G/ is the less abelian G is since if 

G is abelian, G/={1}. In general  is a normal subgroup of G. By Lagrange’s theorem without 

loss of generality, we have that  divides . 

From Ledermann, W. & Weir, A.J. (1996)  and Louis, S. (1975) and Baumslag, B. and 

Chandler, B. (1968) more properties of the derived group include:  

Theorem 

If G is a finite group then: 

(i) the derived group G/ is a normal subgroup of G and G/G/ is abelian  

(ii) if H is any normal subgroup of G such that G/H is abelian then G/≤H. The quotient of G by 

G/ is the ‘largest’ quotient group of G which is abelian. 

We outline the following for reference from Herstein, I. N. (1964).  
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Theorem 

The derived subgroup G/ of a finite group G is the unique minimal normal subgroup of G such 

that G/G/ is abelian. That is, G/N is abelian implies that G/≤N, and G/G/ is also abelian. 

 Proposition  

(i) The number of the irreducible representations of any group G is equal to the number of 

conjugacy classes of G; 

(ii) Every irreducible representation of an abelian group G over the set of complex numbers is 

one dimensional. 

Proof  

(i) The class functions are determined by their values on the conjugacy classes of G. These are 

complex vector spaces. They have dimensions equal to the number of conjugacy classes. 

The irreducible representations form a basis for the same vector space. Thus, the number of 

conjugacy classes and the number of irreducible representations are the same. 

(ii) Since G is an abelian group, it has |G| conjugacy classes. From (i) above, it shows that G 

has |G| number of irreducible representation and we have that:  |G| = n1
2 + n2

2 + ... + n|G|
2. 

It clearly shows that this can be satisfied only when ni  = 1 for all i. 

Next, we count the number of inequivalent irreducible representations in terms of Z(G) proven 

by Jelten B. Naphtali (2015). 

Theorem 

Let G be a finite non abelian group with size pn. Then, G has  

|C|≤ |Z(G)| +3 inequivalent irreducible representations if  

|G/| ≤|Z(G)|. 

Definition 

The homomorphism  is a complex representation of the group G where n is the 

degree of the representation. The structure of is further described by theorems of Masches 

and Wedderburn whose combined theorem according to Anna (2010), is as follows: 

Theorem: (Masche and Wedderburn) 

Let G be a finite group. Then the group ring  can be written as 

 for some positive integer . 
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Any finite dimensional algebra described in the form above is said to be semi-simple. Over a 

single finite dimensional algebra, every module is a direct sum of single modules each of which 

is isomorphic to a simple  left-ideal. 

In the light of the above theorem, we have the next remark. 

Remark  

 has finitely many non-isomorphic single modules which can be explicitly expressed as 

,   1. 

This implies that G has  non-equivalent irreducible  representation of degrees . 

The factor C corresponds to the map  defined as  for all . Hence, we 

have from proposition 1.39 the following equation called the degree equation. 

Theorem 

 where = number of conjugacy classes. 

The irreducible representation of a group is intimately tied with the conjugacy classes of the 

group as in preposition 1.39. 

 Definition 

A representation that does not have proper sub representation is said to be irreducible otherwise 

reducible. 

Remark 

An irreducible representation of a finite abelian group G must  be one dimensional  and there are |G| distinct irreducible representations.  

From Louis (1975) and Herstein (1964), we have a relationship between the order of a finite 

group and its irreducible representations—a compressed form of theorem 1.44. 

 Corollary 

Equivalent representation consists of   matrices such that  where 

 is the number of conjugacy classes of G. The  are the degrees of the irreducible 

representation. Hence,  or  is the number of  such that =1. 

Next proposition gives some group theoretic properties of the derived subgroup from Gordon 

and Martin (2001). 
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Proposition  

Assume that . Then:  

i.  

ii.  if and only if   is abelian. In particular,  is abelian. 

Proof: 

i.   Note that for all , we have 

 and 

 

Now,  consists of elements of the form . 

Next, we prove that  for all . 

But  

              

              

Hence, . 

ii. Let , we have that  

 

Hence,  if and only if  is abelian; since we have proved ,  we deduce that 

 is abelian. 

Given G is finite,  is the number of . 

The next is the degree equation from Louis, S. (1975). 
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Theorem 

Let G be a group and the degrees of inequivalent irreducible representations of G be ri , for 1 

≤ i ≤ |C|, then: 

|G| = ∑ri 
2 ; where 

|C| is the number of conjugacy classes of G, |G/G/| is the number of ri  = 1, and 

each ri divides |G/Z(G)|. 

From proposition 1.39 and remark 1.43 and corollary 1.4.7, we get that: 

Theorem 

                                           

where ni>2. This is the form of the degree equation used in this paper. 

The degree equation is expressed in terms of the derived subgroup and the sum of the 

irreducible representations of degree (or equivalently conjugacy class) greater than one. It’s 

one of the primary tools beside the class equation used in determining the commutativity degree 

of a group G. However, the degree equation derives its construction from group representation 

and the group ring which we denoted by  earlier in this work. 

Remark 

Louis (1975) in a proposition involving direct products of derived group says, if 

then . This displays a relationship between the direct product of groups and their 

derived subgroups. 

Before we prove our results, for reference, next, we have in Table 1 the table for the 

commutativity degrees of finite groups of order less than 101 from Anna (2010). The groups 

in our work are groups of order 4n based on the restrictions stated in the abstract 

1.52 TABLE: Commutativity Degrees of Groups of Order Less Than 101 

|G| 12 16 20 24 28 32 36 40 44 48 52 56 

 ½ 5/8 2/5 5/8 5/8 5/8 ½ 5/8 7/22 5/8   

 1/3 7/16 ¼ ½ 5/14 17/32 1/3 2/5  ½   

    3/8  7/16 ¼ 13/40  7/16   

    1/3  11/32 1/6 ¼  3/8   

    7/24      1/3   

    5/24      5/16   

          7/24   

          ¼   

          5/24   

          1/6   



African Journal of Mathematics and Statistics Studies 

ISSN:  2689-5323 

Volume 7, Issue 1, 2024 (pp. 33-49)  

 
46  Article DOI: 10.52589/AJMSS-YSZUQY1A 

  DOI URL: https://doi.org/10.52589/AJMSS-YSZUQY1A 

www.abjournals.org 

|G| 60 64 68 72 76 80 84 88 92 96 100 

 ½  5/8 5/17 5/8 11/3

8 

½ ½ 5/8 13/4

6 

5/8, 17/32 2/5 

 2/5 17/32 2/17 ½  7/16 5/14 7/22  ½, 7/16 7/25 

 1/3  7/16  3/8  2/5 1/3 25/8

8 

 3/8, 11/32 ¼ 

 3/1

0 

25/64  1/3  13/50 2/7   1/3, 5/16 4/25 

 ¼  11/32  7/4  23/80 5/21   7/24, 9/32 13/100 

 1/5 19/64  ¼  ¼ 5/28   ¼, 7/32 1/10 

 1/1

2 

1/4  5/2

4 

 17/80 1/6   5/24,18/86  

  13/64  1/6  7/4 1/7   3/16, 1/6  

  1/32  1/8      7/48,13/96  

    1/1

2 

     1/8, 11/96  

          5/48  

 

RESULTS 

Theorem 

Let G be a group such that , then the commutativity degree of G is given by     

 

Proof 

From theorem 1.50, the degree equation  where  , 

;   for each i 

Then   
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 , given  

  

That is,  

       since , then  

. From theorem 1.34, we get 

 

Theorem 

Let G be a group such that , with G/ ≤ Z(G), then we deduce from theorem 2.1 above 

that the commutativity degree of G is  

(i). p(G) = 1 if the group is abelian (ii)  p(G) = 5/8 for |G/| ≥ 2 given that G is non-abelian and 

|G/| takes its lower bound. (iii)   for  |G/| ≥ 2 with  G/ ≤ Z(G) and G/ takes its 

upper bound. 

Proof  

(i)  Recall that in the abelian case , accordingly from theorem 2.1 above, we have 

  which is trivial. 

(ii)  Since G is non-abelian, ,  is the lower bound for G/. So, from theorem 

2.1, we have  . Combining theorem 1.34  and theorem 1.29,  we get 

p(G) = 5/8. 



African Journal of Mathematics and Statistics Studies 

ISSN:  2689-5323 

Volume 7, Issue 1, 2024 (pp. 33-49)  

 
48  Article DOI: 10.52589/AJMSS-YSZUQY1A 

  DOI URL: https://doi.org/10.52589/AJMSS-YSZUQY1A 

www.abjournals.org 

(iii) For , we have that , at best  the upper bound of G/ as G/ 

≤ Z(G), with theorem 1.29; we have from above that 

  

  

Consequently, the commutativity degree becomes 

  as required. 

 

DISCUSSION 

In this paper, we determine a scheme for computing the commutativity degree for , in 

particular . We applied our scheme to commutative and non-commutative groups. We 

also considered the commutativity degrees taking the lower bound and upper of the derived 

group. 

For  and 2 ≤ a ≤ 6, five groups satisfy the restrictions outlined in the abstract: All the five 

groups are -groups in fact 2 - groups in particular of order  with  as defined and  

Now, when ,  and sixteen groups all of order  satisfy the underlying 

conditions, if we consider , then the order of the group becomes . Here, we have 

 and three groups in all hold for our scheme. This gives a total of 24 groups which in 

all satisfy our restrictions for . 

The groups  are essentially groups of the form , described om corollary 

1.32(b) where A is a 2-group and B an abelian group while  assumes the upper bound. 
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CONCLUSION 

The results we obtained are highly simplified and are expressed in terms of the derived group, 

a major building block in the degree equation which is the main instrument in our paper. The 

numerical results from our paper give the same result as obtained by Anna (2010). 

For instance, for , , , then  gives , which implies that there 

is a group of order 12 with probability  of the likelihood that any two elements selected at 

random from the group commute. For ,  and , ; this gives a 

commutativity degree of , meaning there is a group of order 100 such that the probability 

that two randomly selected elements commute is . This corresponds with Anna’s (2010) as 

seen in Table 1.52 
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