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ABSTRACT: This paper investigates the dynamic response of a 

clamped-clamped non-uniform Bernoulli-Euler beam resting on a 

Pasternak elastic foundation to variable magnitude moving 

distributed masses. The predicament is dictated by a partial 

differential equation of fourth order, which features coefficients 

that are both variable and singular. The primary aim is to derive 

an analytical solution for this category of a dynamic problem. To 

achieve this, we employ the method of Galerkin with a series 

representation of the Heaviside function to reduce the equation to 

second-order ordinary differential equations with variable 

coefficients. We simplify these transformed equations using (i) the 

Laplace transformation technique in conjunction with convolution 

theory for solving moving force problems, and (ii) finite element 

analysis in conjunction with the Newmark method for solving 

analytically unsolvable moving mass problems due to their 

harmonic nature. We first solve the moving force problem using 

the finite element method and compare it against analytical 

solutions as validation for its accuracy in solving analytically 

unsolvable moving mass problems. The numerical solution 

obtained from the finite element method is shown to be 

comparable favorably against analytical solutions of our moving 

force problem. Lastly, we calculate displacement response curves 

for both moving distributed force and mass models at various time 

t for our dynamical problem presentation purposes.  

KEYWORDS: Bernoulli-Euler Beam, Pasternak Elastic 

Foundation, Clamped-Clamped, Newmark Method, Moving 

Distributed Masses. 
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INTRODUCTION 

The study of force-induced vibrations in elastic bodies, such as stretched strings, spring-mass 

systems, and rods, has been subject to extensive research by numerous authors (Krylov, 1905; 

Timoshenko, 1921; Kenney, 1954; Stanisic et al., 1968; Stanisic & Hardin, 1969; Stanisic et 

al., 1974; Sadiku & Leipholz, 1987; Esmailzadeh & Ghorashi, 1995; Oni, 1997; Oni & 

Ogunyebi, 2008; Oni & Omolofe, 2010). These vibrations may arise from (i) a force or load 

that is solely dependent on the spatial coordinates. (ii) a force that exhibits spatial and temporal 

variability. The forces in question may possess a steady or fluctuating intensity. The focus of 

this study is on the impact of a varying force, moving at an unchanging velocity, upon an elastic 

entity. Specifically, we examine the behavior of a beam subjected to such conditions. It is 

noteworthy to mention that an elastic body, whether it be slender or stout in shape, is commonly 

regarded as a one-dimensional entity (Oni, 1997; Stanisic & Hardin, 1969; Stanisic et al., 1974; 

Inglis, 1934). Its physical characteristics such as rigidity, weight and length are identified solely 

by its position along the elastic axis. Hence, the partial differential equation that characterizes 

the movement of an elastic body is composed solely of two autonomous variables: distance 

along the axis and time. When examining a finite beam in motion due to a moving force, 

scholars such as Timoshenko (1921), Inglis (1934), and Muscolino and Palmeri (2007) limited 

their discussions to analyzing transverse oscillations induced by a uniform velocity harmonic 

force. It was assumed that the beam was subjected to simple support while an evaluation of the 

impact of a dynamic force on the beam is provided. Steele (1971) conducted a study on the 

impact of a unit force moving at a constant velocity on beams. The analysis focused on both 

elastic and non-elastic foundation scenarios. Wu and Dai’s (1987) previous research centered 

around dynamic responses of multi-span non-uniform beams under moving loads using the 

transfer matrix method. Dogush and Eisenberger (2002) conducted a comprehensive study on 

the dynamic behavior of non-uniform beams with multiple spans, which were subjected to 

moving loads at both constant and variable velocities. The author employed modal analysis 

and direct methods to investigate this phenomenon thoroughly. Similarly, Ahmadian et al. 

(2006) explored the analysis of a variable cross-section beam that was exposed to a moving 

concentrated force and mass using finite element method. Although the aforementioned 

research on both uniform and non-uniform beams is noteworthy, it should be noted that moving 

loads have been simplified as concentrated loads that are applied at specific points along a 

single line in space. In other words, the moving load is represented as a lumped load. In 

practical application, it is widely acknowledged that loads are distributed over either a small 

segment or the entire length of a structural member as they traverse through the structure. These 

moving loads are commonly referred to as uniform distributed loads. Concentrated forces, on 

the other hand, are purely mathematical abstractions and cannot be observed in real-world 

scenarios where surface forces act upon an area and body forces operate within a volume. It 

should also be noted at this point that only long thin uniform beams known as Euler's beam - 

that rest on one parametric foundation or bi-parametric foundation with non-harmonic 

characteristics were taken into consideration.  

The current study focuses on the vibration of a clamped-clamped non-uniform Bernoulli-Euler 

beam resting on a Pasternak elastic foundation, subject to varying magnitudes of moving 

distributed masses. The investigation takes into account critical aspects related to inertia terms, 

while also considering the beam's elastic properties such as its flexural rigidity and mass per 

unit length both assumed not constant due to the non-uniform cross-section of the beam. It is 

important to note that damping effects are negligible in this scenario. 
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Problem Formulation 

This study examines the problem of a clamped-clamped non-uniform Bernoulli-Euler beam 

that carries a mass M. The properties of the beam, including its moment of inertia I and mass 

per unit length µ, vary along its span length L.  

 

                                        

Figure 1: Geometry of a variable moving masses of non-uniform Bernoulli–Euler beam resting 

on Pasternak foundation. 

Figure 1 depicts the transverse displacement V(x,t) of the beam as it moves at a constant speed. 

The equation of motion is given as 

            

In this problem, the time coordinate is represented by t, while µ(x) denotes the variable mass 

per unit length of the beam. Additionally, EI(x) refers to the variable flexural stiffness and x 

represents the spatial coordinate. K0 represents foundation stiffness, G0 signifies shear 

modulus, N0 indicates axial force, and P(x,t) denotes uniform distributed load acting on the 

beam. It should be noted that in this particular scenario, the distributed load moving across the 

beam possesses a mass comparable to that of said beam. As such, it cannot be overlooked as 

its inertia plays a significant role in determining dynamical system behavior. Therefore, P(x,t) 

will take on a specific form based on these factors as follow 

          

where g denotes the acceleration due to gravity, 
𝑑2

𝑑𝑡2 is a convective acceleration operator, 
𝜕2

𝜕𝑡2 

is the support beam’s acceleration at the point of contact with the moving mass, 
𝑑𝑓(𝑡)

𝑑𝑡

𝜕2

𝜕𝑥𝑑𝑡
 is is 

the well-known Coriolis acceleration,  ( 
𝑑𝑓(𝑡)

𝑑𝑡
)

2 𝜕2

𝜕𝑥2 is the centripetal acceleration of the moving 

mass and 
𝑑2𝑓(𝑡)

𝑑𝑡2

𝜕

𝜕𝑥
 is the acceleration component in the vertical direction when the moving load 

is not constant. 
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Similarly, for a consistent speed of c, the direction and distance covered by the load on the 

beam at any given moment in time t can be expressed as follows. 

                                              

Furthermore, it is postulated that the mobile weight bears a mass denoted by M and that time t 

is confined to the duration during which mass M rests on the beam. In other words, 

                                           

The function H [x-f (t)] is the Heaviside function, commonly used in engineering applications 

to measure functions that are binary in nature, i.e., either "on" or "off". Its definition reads as 

follows. 

           

For instance, consider the variable moment of inertia denoted by I and the mass per unit length 

of the beam as defined in [18]. 

               

where I0 and µ0 represent the constant moment of inertia and mass per unit length, respectively, 

for the corresponding uniform beam. To achieve this, by substituting equations (2), (3) and (6) 

into equation (1) and conducting necessary simplification and rearrangement, we obtain the 

desired result as follow 

 

  

The boundary conditions of the aforementioned problem are considered to be arbitrary, 

meaning they can adopt any form of classical boundary conditions. Conversely, the initial 

conditions without sacrificing generality are provided as follows. 

 

http://eq2.png/
http://eq3.png/
http://eq6.png/
http://eq1.png/
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Equation (7) constitutes the fundamental equation in the dynamic problem. 

 Solution Procedure 

Equation (7) is a partial differential equation with variable coefficients that is non-

homogeneous. It appears that the separation of variables method cannot be used due to a 

difficulty in obtaining separate equations whose functions are dependent on only one variable. 

As a result, we turn to an adapted version of the approximate method, which is best suited for 

solving various problems related to structural dynamics and commonly known as Galerkin's 

Method. In order to reduce the fourth order partial differential equation into a sequence of 

second order ordinary differential equations, we employ Galerkin's method as described by Oni 

and Awodola (2003, 2010). This approach leads us towards finding solutions in the form 

                      

The kernel function Um(x) is thoughtfully selected for the Galerkin's method in equation (9) to 

ensure that the specified boundary conditions are met. It should be noted that our analysis 

assumes general boundary conditions at x = 0 and x = L for the beam in question. Therefore, 

we must carefully choose a suitable set of functions to represent the beam shapes in order to 

obtain the mth normal mode of vibration. 

     

is chosen such that the boundary conditions are satisfied. The kernel is chosen as 

         

In equations (10) and (11), λm and λk respectively denote the mode frequency. The constants 

Am,  Bm, Cm,  Ak,  Bk  and Ck are determined by substituting equations (6) and (7) into the relevant 

boundary condition. Consequently, upon substitution of equation (9) into equation (7), we 

obtain: 

http://eq7.png/
http://eq9.png/
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To derive an expression for Ym(t), let us examine a mass M that moves uniformly at velocity c 

along the x-coordinate. The solution for any number of moving masses may be obtained by 

superimposing the individual solutions, as the governing equation is linear. In order to 

determine the expression for a single mass M1, it is necessary that the left-hand side of Eq. (12) 

be orthogonal to function Uk(x). Therefore, utilizing Equations. (10) and (11) in (12) produces 

 

where 

 

Using the property of Heaviside function, it can be expressed in series form given by 

Adekunle et al. (2017) i.e. 

 

http://eq12.png/
http://eq10.png/
http://eq11.png/
http://eq12.png/
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Thus, in view of (14)–(20) and (21), it can be shown that 

 

where 

                                                               

Equation (22) stands as the fundamental governing equation for the dynamic problem. This 

coupled, non-homogeneous second-order ordinary differential equation applies to all variants 

of classical boundary conditions. Consequently, two distinct cases emerge from Equation (22): 

the moving force and moving mass problems. 

Non-uniform Bernoulli–Euler Beam Traversed by Moving Distributed Force for 

Clamped-Clamped End Condition 

In this segment, we derive an approximate model for the differential equation that characterizes 

the reaction of the elastic structure. This is achieved by disregarding inertia terms, specifically 

setting ε0 to zero. Furthermore, we will focus solely on the clamped-clamped end condition as 

our example. Under these circumstances, both displacement and bending moment are 

negligible and vanish entirely. 

                       

and hence for normal modes 

                

            

http://eq22.png/
http://eq22.png/
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which implies 

                             

It is easily shown that 

 ,            (27) 

and 

,                                      (28) 

substituting equations (24)–(28) into equation (22), yields 

   ,               (29) 

where 

                                 ,                 (30) 

Thus, by applying the Laplace transform technique and convolution theory with the given 

initial conditions (8), we can obtain a solution to equation (29) as follow 

 

, 

(31) 

The aforementioned (31) illustrates the transverse displacement reaction to a distributed force 

that moves at a constant velocity of a non-uniform Bernoulli-Euler beam, which is clamped at 

both ends and rests on an elastic foundation known as Pasternak. 
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Non-uniform Bernoulli–Euler Beam Traversed by Moving Distributed Mass for 

Clamped-Clamped End Condition 

In this section, we seek the solution to equation (22) in its entirety without neglecting any terms 

of the coupled differential equation. It is clear that an exact solution to this equation cannot be 

attained through conventional means. Even Struble's widely-used technique Struble (1962) 

fails to handle it due to the fluctuating magnitude of the moving load. Therefore, we turn to 

employing finite element method (FEM) for modeling the structure and subsequently utilize 

Newmark numerical integration method for solving the resulting semi-discrete time-dependent 

equation in order to obtain our desired responses. 

Finite Element Method (FEM) 

The finite element method postulates that the indeterminate transverse deflection of the non-

uniform beam, V(x, t), can be approximated by a collection of piecewise continuous functions 

defined over discrete sub-regions known as elements. These elements consist of numerical 

values representing the unknown deflection within each region. Consequently, the initial step 

in implementing this technique involves partitioning the spatial solution domain of said non-

uniform beam, which happens to be its length in this case, into a finite number of sub-domains 

designated as finite elements. These elements are interconnected at specific points called nodes. 

Subsequently, the weak or variational form corresponding to governing equation (1) is 

constructed thus: 

Let us take into account a customary segment of dimension L, with its domain λe = (0, L). By 

inserting equations (2) and (3) into equation (1), we obtain. 

         

 

To address the resolution of equation (32), we will examine a mass M that moves uniformly at 

a velocity c along the x-coordinate. As the governing equation is linear, finding solutions for 

any number of moving masses can be achieved through superposition of individual solutions. 

For the single mass M1, let Galerkin's weight function W(x) be utilized. By multiplying equation 

(32) with this weight function and integrating over the domain λe, simplification and 

rearrangement lead to its solution. 
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where 

   

λ represents the shear force, while φ denotes the bending moment. The four boundary terms, 

Be (where k ranges from 1 to 4), are crucial and mandatory for both end nodes of the element. 

Additionally, it can be easily demonstrated that 

                                          

Thus, equation (33) becomes 

        

The weak form of the variable magnitude moving distributed masses of the non-uniform 

Bernoulli-Euler beam, which is resting on an elastic foundation, can be found in equation (36). 

In order to obtain an approximate solution for the element being analyzed and develop its 

corresponding shape function, we assume that the unknown deflection V(x,t) can be expressed 

approximately. 
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where Hj(x) are called Hermite cubic shape functions and Vk(t) are the modal deflection 

functions and H is a row vector defined as 

                                              

Employing the methodologies entailed in formulating the Hermite-cubic interpolation 

functions as delineated by Junkins and Kim (1993), produces. 

        

where x is the spatial coordinate. Now substituting equations. (37)–(39) into the weak form 

(36), after some simplification and rearrangement gives 

                           

The matrix equation (40) serves as the governing equation that characterizes the behavior of a 

typical finite element within a non-uniform beam subjected to a harmonic moving load. [Ke] 

denotes the stiffness matrix of the element, [Me] represents its mass matrix, [Ce] signifies its 

centripetal matrix, {f e} is indicative of the force vector and {Qe} reflects the element boundary 

term vector.  

Subsequently, the next step involves assembling these aforementioned equations. The process 

for amalgamating various matrices and vectors for multiple beam elements that form a mesh 

has been extensively discussed by Wu (2005) and Irvine (2010). Henceforth, this culminates 

in an assembled governing equation of motion which describes the dynamic behavior exhibited 

by problems involving moving loads with Pasternak foundation. 

                       

where [K], [M] and [C] are the assembled (global or overall) stiffness,  mass,  centripetal and 

load vector. 

To acquire a comprehensive and distinctive resolution (41), it is imperative to enforce the 

specified boundary conditions on both the deflection/slopes and shear force/bending moments. 

Ultimately, in a free vibration system that lacks the centripetal matrix, (41) diminishes into a 

harmonic form. 

                                                    

The natural frequency is represented by ω2  while the system's corresponding mode shape is 

denoted by V(t). Several techniques can be employed to determine both the eigenvalue ω2  and 

its corresponding V(t). The dynamic response of a non-uniform beam subjected to a partially 

distributed moving load can be derived through the direct solution of equation (41) using the 

Newmark method. 
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 COMMENTS ON THE CLOSED FORM SOLUTIONS 

In theory, the deflections of a non-uniform Bernoulli-Euler beam have the potential to exceed 

reasonable limits. In practice, this phenomenon indicates that the beam is in a state of 

resonance. The velocity at which a load induces such resonance within the system is referred 

to as its critical speed. As demonstrated by (31), when subject to a moving distributed force 

and supported by a Pasternak foundation with clamped-clamped supports, said beam inevitably 

reaches such resonant states when 

                              

Equation. (30) shows that, the dynamic system will attain the state of resonance whenever 

velocity is 

                              

  

 

ANALYSIS OF RESULT AND DISCUSSION 

To illustrate the presented analysis, a non-uniform beam with a length of 5 meters is examined. 

The load velocity is set at 50 meters per second, while the Young modulus amounts to 2.10924 

x 109 Newtons per square meter and the moment of inertia measures at 0.00287698 cubic 

meters to the fourth power. The value of π is equal to approximately 22 divided by seven, and 

the mass per unit length of the beam equals 2758.291 kilograms per cubic meter; furthermore, 

the ratio between load mass and beam mass stands at 0.25. 

The transverse deflection of this beam can be calculated for various values of axial force N, 

foundation stiffness K as well as shear modulus G, which are all subject to variation in this 

study: N varies between four times ten raised to three and nine times ten raised to eight units 

(4 x 103 - 4 x 109), K ranges from four times ten raised to three and nine times ten raised to 

eight units (4 x 103 - 4 x 109), whereas G varies from four times ten raised to three up until nine 

times ten raised to eight newtons per cubic meter cubed (N/m3).  

These calculations result in several graphs displayed across figures number two through seven 

that showcase our findings on these variables' impact on transverse deflection over time. 
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Figure 2: Transverse displacement of the non-uniform clamped-clamped Bernoulli-

Euler beam for various values of axial force N and fixed values of K(4000) and G(4000) 

that traversed by moving distributed force. 

 

 

Figure 3: Transverse displacement of the non-uniform clamped-clamped Bernoulli-

Euler beam for various values of axial force N and fixed values of K(4000) and G(4000) 

that traversed by moving distributed mass. 
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Figure 4: Transverse displacement of the non-uniform clamped-clamped Bernoulli-

Euler beam for various values of foundation stiffness K and fixed values of G(4000) and 

N(4000) that traversed by moving distributed force. 

 

 

 

 

Figure 5: Transverse displacement of the non-uniform clamped-clamped Bernoulli-

Euler beam for various values of foundation stiffness K and fixed values of G(4000) and 

N(4000) that traversed by moving distributed mass. 
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Figure 6: Transverse displacement of the non-uniform clamped-clamped Bernoulli-

Euler beam for various values of shear modulus G and fixed values of N(4000) and 

K(4000) that traversed by moving distributed force. 

 

 

Figure 7: Transverse displacement of the non-uniform clamped-clamped Bernoulli-

Euler beam for various values of shear modulus G and fixed values of N(4000) and 

K(4000) that traversed by moving distributed mass. 
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Figures 2-4 depict the transverse displacement responses of a non-uniform clamped-clamped 

Bernoulli-Euler beam subjected to distributed moving load traveling at constant velocity under 

the influence of moving distributed force. The figures display various values of (i) axial force 

N while other parameters remain fixed, (ii) foundation stiffness K while other parameters 

remain fixed, and (iii) shear modulus G while other parameters remain fixed. It is observed that 

as N, K, and G increase, there is a decrease in the deflection of the beam. Similar outcomes are 

achieved when the beam encounters moving mass, as shown in Figures 5-7. 

 

 

Figure 8: Comparison of the transverse displacement of the moving distributed mass 

and moving distributed force for the non-uniform clamped-clamped Bernoulli-Euler 

beam. 

 

 

Figure 9: Comparison of the transverse displacement of the exact and numerical 

solutions for the non-uniform clamped-clamped Bernoulli-Euler beam. 
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Figure 10: Comparison of the transverse displacement of the moving distributed mass 

and moving distributed with SEM force for the non-uniform clamped-clamped 

Bernoulli–Euler beam. 

 

Various comparisons of the lateral displacements are depicted in Figures 8-10. To authenticate 

the precision of the current approach, we compare the vibration caused by moving distributed 

masses with varying magnitudes on a non-uniform Bernoulli-Euler beam that is clamped-

clamped and rests on a Pasternak elastic foundation, as obtained through our method and 

frequency-domain spectral element method (SEM) at two different velocities illustrated in 

Figure 10. The findings indicate that dynamic responses generated through our procedure are 

nearly identical to those acquired via SEM. 

 

CONCLUSION 

The investigation concerns the vibration of distributed masses that vary in magnitude and move 

under a clamped-clamped non-uniform Bernoulli-Euler beam resting on an elastic foundation 

governed by fourth-order partial differential equations with variable and singular coefficients. 

The primary objective is to obtain a closed-form solution for this type of dynamical problem, 

specifically when dealing with the non-uniform Bernoulli-Euler beam that varies along its span. 

Finite integral transform cannot be used to solve the governing equation due to its complexity, 

hence Galerkin's method - commonly employed in solving such problems - is utilized instead 

to transform the governing equation with singular and variable coefficients. The resulting 

equations of Galerkin are subsequently solved through (i) the utilization of Laplace 

transformation and convolution theory to obtain analytical solutions for the one-dimensional 

dynamic problem caused by a moving force, and (ii) finite element analysis in conjunction with 

Newmark method for instances involving a moving mass, which is analytically unsolvable due 

to its harmonic nature. To validate the accuracy of the aforementioned methodology used in 

(i), dynamic responses obtained via finite element method (FEM) for a clamped-clamped non-

uniform Bernoulli-Euler beam are compared in Fig. 9, while those from frequency-domain 

spectral element method (SEM) are presented in Fig. 10. The acquired analytical solutions 

undergo an analysis where resonance conditions related to the problems at hand are identified. 

Numerical analysis is conducted whereby this study exhibits several interesting features: 
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1. As the axial force values escalate, the displacement amplitude of a non-uniform 

Bernoulli-Euler beam that is clamped-clamped and subjected to uniformly distributed 

force decreases. This result holds true for fixed shear modulus G and foundation stiffness 

K. The same outcomes and analyses are obtained in the case of moving mass. 

2. In the dynamic scenario, as the stiffness of the Pasternak foundation increases, the 

displacement of a clamped-clamped non-uniform Bernoulli-Euler beam subjected to a 

moving distributed force and resting on said foundation decreases. This holds true when 

both axial force N and shear modulus G remain constant. Similar findings and analyses 

are observed for cases involving moving mass. 

3. For a constant axial force N and foundation stiffness K, the response amplitude of the 

clamped-clamped non-uniform Bernoulli-Euler beam subjected to a moving force 

decreases as the shear modulus G is increased. Similar findings and analyses are 

applicable for cases involving moving masses. This research has suggested valuable 

techniques for solving dynamic problems concerning clamped-clamped non-uniform 

Bernoulli-Euler beams under variable magnitude distributed masses. 
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