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ABSTRACT: Deep learning emerges as a promising technique, 

utilizing nonlinear transformations for feature extraction from 

high-dimensional datasets. However, its application encounters 

challenges in genome-wide association studies (GWAS) dealing 

with high-dimensional genomic data. This study introduces an 

innovative three-step method termed SWAT-CNN for the 

identification of genetic variants. This approach employs deep 

learning to pinpoint phenotype-related single nucleotide 

polymorphisms (SNPs), facilitating the development of precise 

disease classification models. In the first step, the entire genome 

undergoes division into non overlapping fragments of an optimal 

size. Subsequently, convolutional neural network (CNN) analysis 

is conducted on each fragment to identify phenotype-associated 

segments. The second step, employs a Sliding Window Association 

Test (SWAT), where CNN is utilized on the selected fragments to 

compute phenotype influence scores (PIS) and detect phenotype-

associated SNPs based on these scores. The third step involves 

running CNN on all identified SNPs to construct a comprehensive 

classification model. Validation of the proposed approach utilized 

GWAS data from the Alzheimer’s disease Neuroimaging Initiative 

(ADNI), encompassing 981 subjects, including cognitively normal 

older adults (CN) and individuals with Alzheimer's disease (AD). 

Notably, the method successfully identified the widely recognized 

APOE region as the most significant genetic locus for AD. The 

resulting classification model exhibited an area under the curve 

(AUC) of 0.82, demonstrating compatibility with traditional 

machine learning approaches such as random forest and 

XGBoost. SWAT-CNN, as a groundbreaking deep learning-based 

genome-wide methodology, not only identified AD-associated 

SNPs but also presented a robust classification model for 

Alzheimer's disease, suggesting potential applications across 

diverse biomedical domains. 

KEYWORDS: Deep neural networks, genetic variations, 

Alzheimer’s disease, GWAS, phenotype impact scores. 
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INTRODUCTION 

Deep learning, a prominent machine learning algorithm, stands out for its capability to perform 

nonlinear transformations for extracting features from high-dimensional data [1]. This is in 

contrast to traditional machine learning models, which predict a linear combination of weights 

by assuming a linear relationship between input features and the phenotype of interest. In the 

medical field, deep learning has proven to be effective in predicting disease outcomes by 

directly handling original high-dimensional medical imaging data without the need for feature 

selection procedures [2, 3]. In genetic research, deep learning frameworks have been applied 

to explore molecular phenotypes predicting the effects of noncoding variants [4–10], 

differential gene expression [11], and potential transcription factor binding sites [12]. These 

frameworks utilize CHIP-Seq or DNase-Seq data as training data to predict chromatin features 

from DNA sequences. 

Recent applications of deep learning extend to capturing mutations and analyzing gene 

regulations, showcasing its potential in advancing our understanding of epigenetic regulation 

[13]. Moreover, in the field of gene therapy, deep learning is actively employed to design 

CRISPR guide RNAs using gene features derived from deep learning models [14–19]. 

Genome-wide association studies (GWAS) conventionally use a statistical approach, 

considering one single nucleotide polymorphism (SNP) at a time across the entire genome to 

identify population-based genetic risk variations for human diseases and traits [20, 21]. 

However, deep learning has yet to be extensively employed in GWAS due to the inherent 

challenges posed by the high-dimension low-sample-size (HDLSS) problem [22], which 

significantly impacts phenotype prediction using genetic variation. Although feature reduction 

approaches are commonly applied [23–25], resolving this problem remains challenging, 

particularly when dealing with high-dimensional genomic data. Therefore, there is a need to 

develop a deep learning framework specifically tailored for identifying genetic variants using 

whole-genome data. 

This study introduces a novel three-step deep learning-based approach to select informative 

SNPs and develop classification models for a target phenotype. In the initial step, the whole 

genome is divided into non overlapping fragments of an optimal size, and deep learning 

algorithms are utilized to select phenotype-associated fragments containing relevant SNPs. 

various fragment sizes and deep learning algorithms are tested to determine the optimal 

combination. The second step involves running the optimal deep learning algorithm using an 

overlapping Sliding Window Association Test (SWAT) within selected fragments to calculate 

phenotype influence scores (PIS) using SNPs and the target phenotype, thus identifying 

informative SNPs. The final step consists of running the optimal algorithm on all identified 

informative SNPs to construct a comprehensive classification model. Focusing on Alzheimer's 

disease (AD), the most prevalent form of dementia, characterized by progressive memory and 

cognitive function deterioration, this study tested the proposed approach using only whole-

genome data for AD (N = 981; cognitively normal older adults (CN) = 650 and AD = 331). 

The approach successfully identified the well-known APOE region as the most significant 

genetic locus for AD. Utilizing this identified region, a classification model was developed 

using Convolutional Neural Network (CNN). To assess the algorithm's performance relative to 

traditional machine learning algorithms, XGBoost and random forest were also applied. The 

classification model achieved 75.2% accuracy, showing compatibility with traditional machine 

learning methods and outperforming XGBoost and random forest by 3.8% and 9.6%, 
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respectively. This novel deep learning-based approach demonstrates the potential to identify 

informative SNPs and develop an accurate classification model for AD by aggregating nearby 

SNPs. 

Materials and Method 

Sourcing the Datasets 

The individuals analyzed in this study were sourced from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) cohort [53, 54]. The ADNI was initiated with its first phase 

(ADNI-1) in 2003, with the objective of evaluating the viability of integrating serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, as 

well as clinical and neuropsychological assessments to assess the progression of mild cognitive 

impairment (MCI) and early-stage Alzheimer's disease (AD). Subsequent phases (ADNI-GO, 

ADNI-2, and ADNI-3) extended ADNI-1 for continuous follow-up of existing participants and 

the inclusion of new enrollees. Comprehensive demographic information, APOE and whole 

genome genotyping data, and clinical details are openly accessible via the ADNI data 

repository (www.loni.usc.edu/ADNI/). Informed consent was obtained from all subjects. 

Top of Form 

Genotype and Imputation 

ADNI participants underwent genotyping utilizing various Illumina platforms, including 

Illumina Human610-Quad BeadChip, Illumina HumanOmniExpress BeadChip, and Illumina 

HumanOmni 2.5M BeadChip [54]. Due to the diverse genotyping platforms employed by 

ADNI, distinct quality control procedures were independently applied to each genotyping 

platform's data. Imputation of un-genotyped single nucleotide polymorphisms (SNPs) was 

carried out separately using MACH and the Haplotype Reference Consortium (HRC) data as a 

reference panel [55]. 

Before the imputation process, rigorous quality control measures were implemented for both 

samples and SNPs, consistent with established criteria: (1) SNP criteria included SNP call 

rate < 95%, Hardy–Weinberg P value < 1 × 10−6, and minor allele frequency (MAF) < 1%, and 

(2) sample criteria comprised sex inconsistencies and sample call rate < 95% [56]. 

Additionally, to mitigate spurious associations arising from population stratification, only non-

Hispanic participants of European ancestry, aligning with HapMap CEU (Utah residents with 

Northern and Western European ancestry from the CEPH collection) or TSI (Toscani in Italia) 

populations based on multidimensional scaling (MDS) analysis and HapMap genotype data, 

were selected [56, 57]. 

Post-imputation, standard quality control procedures were applied to the imputed genotype 

data, consistent with previously established protocols [58]. Notably, an r2 value of 0.30 served 

as the threshold for accepting imputed genotypes. In this study, imputed genome-wide 

genotyping data from 981 ADNI non-Hispanic participants (650 cognitively normal older 

adults (CN) and 331 AD patients) were utilized, encompassing a total of 5,398,183 SNPs 

(minor allele frequency (MAF) > 5%). 

 

http://www.loni.usc.edu/ADNI/
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Genome-wide Association Study (GWAS) 

Utilizing imputed genotypes, a genome-wide association study (GWAS) for Alzheimer's 

disease (AD) was undertaken. Logistic regression, incorporating age and sex as covariates, was 

executed using PLINK [59] to assess the association of each single nucleotide polymorphism 

(SNP) with AD. To account for the impact of multiple testing, a stringent threshold for genome-

wide significant association (P < 5 × 10−8) was applied, utilizing a Bonferroni correction. 

Fragmentation of Whole Genome Data  

Genomic information for 981 participants was partitioned into non-overlapping fragments, 

ranging in size from 10 SNPs to 200 SNPs, with the aim of identifying the optimal fragment 

size. These subsets, each comprising fragments of the same size, were further segmented into 

train–test–validation sets in a ratio of 60:20:20. Convolutional neural network (CNN) [60], 

long short-term memory (LSTM) [61], LSTM-CNN [62], and attention [63] algorithms were 

individually applied to each subset. To prevent overfitting, early stopping mechanisms were 

implemented based on a validation set, followed by the assessment of training time and 

accuracy (ACC). 

Deep Learning on Fragments 

The evolution of deep learning can be traced back to seminal developments such as the 

perceptron [64, 65], which introduced weight adjustment to mimic human brain behavior 

through interconnected neurons with on–off functions in a network structure [66], and Adaline 

[67], which utilized gradient descent for weight updates. These early neural networks 

progressed into the multilayer perceptron, incorporating hidden layers to address the XOR 

problem [68]. A pivotal theoretical advancement occurred with the introduction of 

backpropagation to update hidden layer weights [69–72]. Overcoming the inherent challenge 

of vanishing gradients in backpropagation, particularly in deep networks [73], was addressed 

through the incorporation of activation functions like the sigmoid and ReLU [74, 75], and the 

development of optimization methods enhancing gradient descent, such as Ada-Grad [76], 

RMSprop [77], and Adam [78]. These advancements, coupled with GPU hardware 

improvements, ushered in the era of contemporary deep learning. 

Deep learning has established the theoretical underpinnings of backpropagation, activation 

functions, and optimization methods for enhanced gradient descent. Widely used deep learning 

algorithms, including CNN, LSTM, and attention, embody a hierarchical structure that refines 

and extends the foundational principles of deep learning. The intricate technical details of each 

algorithm are extensively expounded in relevant literature; hence, our focus here centers on the 

core deep learning technology applied in our experiment. 

In our experiments, we employed ReLU as the activation function underlying the deep learning 

algorithms. ReLU, a prevalent choice in the deep learning community, replaces values less than 

zero with zero and retains values greater than zero. This characteristic ensures a derivative of 

one when the value is positive, facilitating gradient adjustments through the hidden layer 

without vanishing. The optimization method chosen was Adam, currently the most favored for 

deep learning. Adam leverages momentum SGD [79] and RMSprop, expressed as Gt being the 

sum of the squared modified gradient, and ε is a constant preventing division by zero in the 

equation. 
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Backpropagation is employed to compute the initial error value based on a randomly assigned 

weight, utilizing the least squares method. Subsequently, it iteratively updates the weight 

through the chain rule until the derivative becomes zero. In this context, a derivative value of 

zero signifies that the weight remains unchanged when the gradient is subtracted from the 

preceding weight. 

 

 

When yo1 and yo2 represent the output values from the output layer passing through the hidden 

layer, and the actual values of the given data are denoted as yt1 and yt2, the partial derivative 

of the error (ErrorYo) with respect to the weight of the output layer can be computed using the 

chain rule as follows: 
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The calculation for the partial derivative of the error (ErrorYo) with respect to the weight of 

the hidden layer is as follows: 

 

 

(a) 

 

(b) 

 

Accordingly, the weight wh of the hidden layer is updated as follows: 

 

 

Calculation of Phenotype Influence Score Using Deep Learning  

Predictive accuracy was determined through the application of deep learning to each fragment 

and then transformed into a z-score. The z-score conforms to a normal distribution with 

parameters μ = 1 and σ = 0, assuming no intrinsic relationship between the variables in the 

population. Fragments with z-scores exceeding the median were chosen for further analysis. 
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An overlapping Sliding Window Association Test (SWAT) was subsequently employed for 

calculating Phenotype Influence Scores (PIS) within these selected fragments. In this process, 

with the fragment length denoted as 'w,' the window is positioned at 'w-1' from the initial SNP 

of the fragment, progressing by one SNP until reaching the final SNP of the fragment. Each 

region within the SWAT undergoes subdivision into a train–test–validation set (60:20:20), with 

the inclusion of early stopping using a validation set to prevent overfitting. When the kth SNP 

is represented as Sk, the calculation of PIS is carried out as follows: 

Top of Form 

 

 

The Sliding Window Association Test (SWAT) is systematically applied to all chosen 

fragments, generating Phenotype Influence Scores (PIS) for all Single Nucleotide 

Polymorphisms (SNPs). 

Phenotype Classification Using Deep Learning  

We opted for the top 100 to 10,000 SNPs based on Phenotype Influence Scores (PIS). For the 

classification of AD-CN, a Convolutional Neural Network (CNN) was utilized, incorporating 

convolution layers with a kernel size of 5, pooling the layer with a max-pool size of 2, a fully 

connected layer comprising 64 nodes, and an output layer with a softmax activation function. 

The challenges posed by gradient vanishing and explosion, resulting from the recurrent weight 

matrix's repeated multiplication, hindered the effective training of Recurrent Neural Network 

(RNN) or its variants. To facilitate performance comparison, we also applied traditional tabular 

data classification algorithms such as Random Forest and XGBoost. XGBoost, a popular 

gradient boosting implementation, was trained using the 'xgboost' package for Python 

(https://xgboost.readthedocs.io/). Random Forest, an ensemble learning method utilizing 

multiple decision trees as classifiers [80, 81], was trained using the scikit-learn package for 

Python, with the number of trees set to 10 and the maximum depth of each tree limited to 3. 

RESULTS 

Our deep learning approach comprises three sequential steps aimed at the identification of 

informative SNPs and the construction of an accurate classification model. In the initial step, 

we partitioned the entire genome into nonoverlapping fragments of an optimized size. To 

determine the optimal fragment size and the most suitable deep learning algorithm, we assessed 

the mean accuracy and computation time for Alzheimer's disease (AD) classification across 

various fragment sizes containing 10 to 200 SNPs, employing several deep learning algorithms 

(CNN, LSTM, LSTM-CNN, Attention). The analysis specifically focused on 10–200 SNPs 

within a region surrounding the APOE gene, recognized as the most potent and resilient genetic 

risk locus for AD. Figure 1 illustrates the average accuracy and computation time for CNN, 

LSTM, LSTM-CNN, and attention as functions of the fragment size. 

As depicted in Figure 1A, the analysis revealed the highest accuracy for AD classification with 

a fragment size of 40 SNPs. Figure 1B demonstrates the average accuracy and time concerning 

https://xgboost.readthedocs.io/
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the deep learning algorithm, with a window size of 40 within the APOE gene region. CNN and 

LSTM-CNN models exhibited the highest accuracy for AD classification, followed by LSTM. 

However, the computation time for CNN and LSTM models was 5.9 and 40.4 seconds, 

respectively. The computation time of LSTM, LSTM-CNN, and attention models significantly 

increased compared to CNN due to the larger number of SNPs in the fragment. Consequently, 

we selected a fragment with 40 SNPs as the optimal fragment size for CNN and the optimal 

deep learning algorithm. The entire genome was subsequently divided into 134,955 fragments, 

each containing 40 SNPs. We applied CNN to each fragment, calculating z-scores based on 

classification accuracy, and identified phenotype-associated fragments. A total of 1,802 

fragments with z-scores surpassing the median were chosen for further analysis. 

 

 
Fig 1. Optimal fragment size and the most suitable deep learning algorithm were selected 

through the assessment of mean accuracy and computation time for Alzheimer's disease (AD) 

classification. This involved analyzing various fragment sizes, ranging from 10 to 200 SNPs 

within the APOE region, and employing different deep learning algorithms (CNN, LSTM, 

LSTM-CNN, and attention). The results presented in Figure (A) demonstrate the average 

accuracy and time in relation to the fragment size. Notably, the highest accuracy for AD 

classification was observed with a fragment containing 40 SNPs across CNN, LSTM-CNN, and 

LSTM models. Although the accuracy difference was minimal across different window sizes, 

processing time exhibited an increase with larger window sizes. 

Figure (B) showcases the average accuracy and time as functions of the deep learning 

algorithm, using a window size of 40. It is evident that the computation time for LSTM, LSTM-

CNN, and attention models experienced a significant surge compared to CNN due to the 

inclusion of a greater number of SNPs in their respective fragments. 

In the second phase, a Sliding Window Association Test (SWAT) was employed, and 

Convolutional Neural Network (CNN) was executed on the selected fragments. This process 

aimed to calculate the Phenotype Influence Score (PIS) of each Single Nucleotide 

Polymorphism (SNP) within the chosen fragments, identifying phenotype-associated SNPs 

based on their respective PIS values, as illustrated in Figure 2. For each SNP, a mean accuracy 
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of 40 windows, represented by the PIS of the SNP, was computed. Utilizing these PIS values, 

z-scores and one-tailed P-values were then calculated. The resulting Manhattan plot in Figure 

3 displays the −log10 P-values on the y-axis against the SNP position in the genome on the x-

axis. Notably, the SNP with the smallest P-value was identified as rs5117 in the APOC1 gene 

(P-value = 1.04E−22), followed by rs429358 in the APOE gene with a P-value of 1.41E-16. 

This genetic region encompassing APOE/APOC1/TOMM40 genes is widely recognized as the 

most robust genetic risk locus for Alzheimer's disease (AD) [30, 82–84]. Additionally, other 

significant genetic loci were identified at SNX14, SNX16, BICD1, WDR72, and GLT1D1 

genes. 

 
 

 
Fig 2. Sliding Window Association Test (SWAT) for genetic variants. (A) Inside view of a 

sliding window that traverses the entire genome sequence to find a location that is associated 

with a specific phenotype. A CNN consisting of a convolutional layer with a kernel size of 10, 

a pooling layer with a maximum pool size of 2, a fully connected layer of 64 nodes, and an 

output layer with softmax activation was used. (B) Framework to calculate phenotype influence 

scores of SNPs. We divided the whole genome into 134 955 fragments, each with 40 SNPs. To 

calculate a phenotype influence score for each of the 40 SNPs included in one fragment, we 

used an overlapping window approach and CNN. w is the number of SNPs in the fragment and 

Sk is the kth SNP in the fragment. 
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Fig 3. A Manhattan plot is depicted, where the X-axis represents the positions of SNPs in the 

genome, and the Y-axis displays the -log10 of P-values. Notably, the genetic region 

encompassing APOE, APOC1, and TOMM40 genes is recognized as the most robust genetic 

risk locus for Alzheimer's disease. The SNP with the most significant P-value was identified as 

rs5117 in the APOC1 gene, with a P-value of 1.04E−22. Another noteworthy SNP, rs429358 

in APOE, exhibited a P-value of 1.41E−16. Additionally, the subsequent genetic loci were 

identified at SNX14, SNX16, BICD1, WDR72, and GLT1D1 genes. 

In the third step, Convolutional Neural Network (CNN) was executed on the identified Single 

Nucleotide Polymorphisms (SNPs) to construct an Alzheimer's disease (AD) classification 

model. The classification outcomes of AD versus cognitively normal (CN) individuals are 

presented in Table 1, utilizing subsets ranging from the top 100 to 10,000 SNPs based on 

Phenotype Influence Scores (PIS). To facilitate comparison with conventional machine 

learning techniques, XGBoost and random forest were employed as classifiers. 

The highest mean accuracy achieved through 10-fold cross-validation for AD classification by 

CNN was 75.02%, with an Area Under the Curve (AUC) of 0.8157, observed for a subset 

containing 4000 SNPs. This result indicated a 6.3% higher accuracy compared to random forest 

for a subset with 2000 SNPs and a 1.94% higher accuracy than XGBoost for a subset with 1000 

SNPs. Notably, when classifying AD using only the count of APOE ε4 alleles, the accuracy 

was 66.7%, reflecting an 8.3% lower accuracy than our proposed method. In all instances, our 

CNN models demonstrated superior performance compared to the two traditional machine 

learning models, random forest and XGBoost, as illustrated in Figure 4. 
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Fig 4. Classification Results for AD versus CN. The horizontal axis depicts the quantity of top 

SNPs chosen using the phenotype influence score for AD classification. The vertical axis 

illustrates the accuracy (A) and AUC (B) derived from 10-fold cross-validation. Our CNN-

based approach demonstrated the highest accuracy and AUC at 75.02% and 0.8157, 

respectively, with a selection of 4000 SNPs. In every instance, our CNN models surpassed the 

performance of two conventional machine learning models, random forest, and XGBoost. 

 

 
Fig 5. LocusZoom plots depicting SNPs within the 300 kb upstream and downstream region 

from the boundary of the APOE gene. The horizontal axis represents SNP locations, and the 

vertical axis represents the -log10 of P-values. Each dot on the plot signifies an SNP, with the 

color indicating the squared correlation coefficient (r2) with the most significant SNP. (A) 

illustrates P-values computed using PLINK, with the most significant SNP identified as 

rs429358 in APOE. (B) displays P-values computed using our deep learning approach, 
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identifying rs5117 in APOC1 as the most significant SNP. Notably, in (B), a linear increase is 

observed on the left side of rs5117, contrasting with a linear decrease on the right side of 

rs5117. This pattern differs from PLINK results in (A), which lack such linear trends. 

Additionally, in (B), three strongly correlated SNPs (r2 > 0.8) with rs5117 are evident on the 

left side, while no SNPs on the right side exhibit such correlations. 

DISCUSSION 

While deep learning has proven effective in addressing various real-world challenges, its 

application in Genome-Wide Association Studies (GWAS) and sequence data for genetic 

variant identification and disease/risk classification has been limited, primarily due to the high 

dimensionality of genomic data [22]. In this investigation, we introduce a novel deep learning-

based sliding window approach designed to identify and select disease-associated Single 

Nucleotide Polymorphisms (SNPs) and construct an accurate classification model using high-

dimensional genomic data, validated on the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) cohort (N = 981). Our method successfully pinpointed significant genetic loci for 

Alzheimer's disease (AD), including the well-established APOE genetic locus, and revealed 

additional risk loci. Notably, our deep learning-based approach demonstrated compatibility 

with traditional machine learning methods in AD classification. 

The three-step deep learning-based approach for genetic variant identification begins with the 

division of the entire genome into non overlapping fragments of an optimal size, presenting an 

innovative fragmentation and windowing methodology, the first of its kind in deep learning-

based genetic variant identification. 

In the second step, we employed an overlapping window and Convolutional Neural Network 

(CNN) algorithm to compute a Phenotype Influence Score (PIS) for each SNP within the 

selected fragments. PIS serves as a novel index for identifying disease-related variants and 

predicting disease outcomes. Additionally, z-scores and one-tailed P-values were calculated 

using PIS, leading to a Manhattan plot showcasing the most significant genetic loci, particularly 

within the APOE/APOC1/TOMM40 genes, renowned as robust genetic risk factors for AD. 

Our method also brought to light several novel candidate genetic loci, such as sorting nexin 

(SNX) 14 and SNX16, situated on chromosomes 6 and 8, respectively, not previously 

associated with AD. 

The third step involves the selection of top SNPs based on PIS to construct classification 

models for AD. Sets of highly AD-related SNPs were chosen, and CNN, along with traditional 

machine learning algorithms, XGBoost and random forest, were employed for classification. 

Classification accuracy varied with the number of selected SNPs and the classification 

algorithms. CNN exhibited the highest mean accuracy of 75.0% when applied to the top 4000 

SNPs, comparable to traditional machine learning algorithms. Importantly, this accuracy 

surpassed that achieved by considering only the number of APOE ε4 alleles, indicating the 

efficacy of our proposed method. Notably, our method demonstrated the potential for 

extracting SNPs related to a phenotype by considering surrounding SNPs, contrasting with 

PLINK results that did not show SNPs with r2 greater than 0.8. 

In conclusion, our innovative deep learning-based approach presents a robust means to identify 

AD-related SNPs and construct a classification model using genome-wide data. Given the 

estimated heritability of AD up to 80%, the identification of novel genetic loci related to the 
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disease is crucial. Despite a modest sample size, our method identified a significant genetic 

locus with a classification accuracy of 75%. Future endeavors will involve applying our 

approach to large-scale whole genome sequencing datasets, refining classification models and 

exploring early stages of the disease for more nuanced risk assessment. Additionally, 

investigations into quantitative endophenotypes will contribute valuable insights into specific 

disease pathways and mechanisms. 
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CONCLUSION 

Although deep learning has been successfully applied to many scientific fields, deep learning 

has not been used in genome-wide association studies (GWAS) in practice due to the high 

dimensionality of genomic data. 

To overcome this challenge, we propose a novel three-step approach (SWAT-CNN) for 

identification of genetic variants using deep learning to identify phenotype-related single 

nucleotide polymorphisms (SNPs) that can be applied to develop accurate disease classification 

models. 

To accomplish this, we divided the whole genome into non overlapping fragments of an 

optimal size and ran a deep learning algorithm on each fragment to select disease-associated 

fragments. 

We calculated phenotype influence scores (PIS) of each SNP within selected fragments to 

identify disease-associated significant SNPs and developed a disease classification model by 

using overlapping window and deep learning algorithms. 

In the application of our method to Alzheimer’s disease (AD), we identified well-known 

significant genetic loci for AD and achieved higher classification accuracies than traditional 

machine learning methods. 
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