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ABSTRACT: One of the major tasks in portfolio management is 

to determine the number of stocks with relatively high net value on 

the stock market. This work presents a knapsack based portfolio 

selection model that considers the expected returns, prices and 

budget. It represents a typical resource allocation model in which 

limited resource is apportioned among a finite number of stocks. 

The objective is to maximize an associated return function. The 

work is implemented for some numerical data to illustrate the 

application of the model and demonstrate the effectiveness of the 

designed algorithm. Numerical results have shown that the 

optimization model yields promising results.      

KEYWORDS: Portfolio management, Knapsack programming, 

Integer linear programming, Backward recursive equation.  

 

PORTFOLIO MANAGEMENT STRATEGIES USING KNAPSACK 

PROGRAMMING 

Joy Ijeoma Adindu-Dick 

Department of Mathematics, Imo State University, Owerri, Nigeria 

Email: ji16adindudick@yahoo.com  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

   

Cite this article: 

Joy I. A. (2024), Portfolio 

Management Strategies using 

Knapsack Programming. 

African Journal of 

Mathematics and Statistics 

Studies 7(2), 172-182. DOI: 

10.52589/AJMSS-LHIDP7KN 

 

Manuscript History 

Received: 19 Jan 2024 

Accepted: 25 Apr 2024 

Published: 17 May 2024 

 

Copyright © 2024 The Author(s). 

This is an Open Access article 

distributed under the terms of 

Creative Commons Attribution-

NonCommercial-NoDerivatives 
4.0 International (CC BY-NC-ND 

4.0), which permits anyone to 

share, use, reproduce and 
redistribute in any medium, 

provided the original author and 

source are credited.  

 

 

mailto:ji16adindudick@yahoo.com


African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323   

Volume 7, Issue 2, 2024 (pp. 172-182)  

 
173  Article DOI: 10.52589/AJMSS-LHIDP7KN  

  DOI URL: https://doi.org/10.52589/AJMSS-LHIDP7KN 

 

www.abjournals.org 

INTRODUCTION 

The concept of portfolio refers to the combination of stocks, bonds and cash which can also be 

referred to as financial assets. The major concern of investors in the portfolio selection model 

is to allocate capital among different assets in a way that the risk and return are optimized 

simultaneously in the portfolio. A mean-variance (MV) model for the selection of an optimal 

asset portfolio was introduced by Markowitz [1, 2]. In reality, some of the assumptions in the 

Markowitz model are rarely feasible. The model did not consider some real financial market 

constraints like transaction costs [3, 4] cardinality constraint [5, 6], and multi-period cardinality 

constraint mean-variance (CCMV) [7, 8]. Since then, there have been efforts by many 

researchers to provide methods for stocks analysis in financial markets [9]. Complexity and 

uncertainty in decision-making processes is another problem in the financial market. Based on 

the uncertain conditions, many approaches have been developed to look into the real condition 

of financial markets in portfolio selection models. They include: approach in a robust-based 

[10]; approach in a scenario-based [11, 12] and fuzzy methods [13, 14]. Zadeh [15] introduced 

fuzzy sets while Turksen [16] presented interval-valued fuzzy sets. Liu [17] proposed two 

approaches on linear programming for obtaining the upper and lower bounds of the interval 

number of returns in the Markowitz model. In extending the work, Liu et al. [18, 19] proposed 

a multi-period MV model with risk, turnover rates of risky assets and interval returns. 

Mercangoz [20] moved into Markowitz mean-variance model which is a bedrock of modern 

portfolio theory. The work focused on Particle Swarm Optimization (PSO). Bitar et al. [21] 

combined covariance matrix estimators with different portfolio allocation techniques to meet 

two types of client’s requirements. Zhou and Xu [22] proposed some qualitative portfolio 

models under the fuzzy environment when all or part of the qualitative data is not reachable. 

Furthermore, variance which is known as a symmetric risk measurement factor is considered 

in the Markowitz model as a risk measurement factor. This has been criticized by many 

researchers. A number of studies have used other forms of risk measurement in the portfolio 

optimization models. These studies used interval uncertainty to examine the model. Examples 

include mean-Value-at-Risk (VAR) portfolio optimization model [23] and Mean-Variance 

Skewness (MVS) portfolio selection model [24]. A portfolio composition using the knapsack 

problem was introduced by Bevilaqua da Silva, & De Mattos [25]. They compared its 

performance to an investment website’s share portfolio.  

This work presents a knapsack based portfolio selection model that considers the expected 

returns, prices and budget. It represents a typical resource allocation model in which limited 

resource is apportioned among a finite number of stocks. The objective is to maximize an 

associated return function. The work is implemented for some numerical data to illustrate the 

application of the model and demonstrate the effectiveness of the designed algorithm.      

 

METHODOLOGY 

Integer Linear Programming  

Integer Linear Programs (ILPs) are linear programs in which some or all the variables are 

restricted to integer (or discrete) values. Its algorithms are based on exploiting the tremendous 

computational success of Linear Program (LP). The strategy of these algorithms involves three 

steps.  
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Step I: Relax the solution space of the ILP by deleting the integer restriction on all integer 

variables and replacing any binary variable, say 𝑦 with the continuous range 0 ≤ 𝑦 ≤ 1. The 

result of the relaxation is a regular LP.  

Step II: Solve the LP, and identify its continuous optimum.  

Step III: Starting from the continuous optimum point add special constraints that iteratively 

modify the LP solution space in a manner that will eventually render an optimum extreme point 

satisfying the integer requirements.  

Backward Recursive Method 

The basic model is based on the knapsack programming, which is as follows. The backward 

recursive equation is developed for the general problem of an 𝑛 − 𝑠𝑡𝑜𝑐𝑘, 𝐵 revenue portfolio. 

This is represented by the following Integer Linear Programming Problem (ILPP). 

                                  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃 = 𝑟1𝑚1 + 𝑟2𝑚2 + ⋯ + 𝑟𝑛𝑚𝑛 

                                  𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       𝑏1𝑚1 + 𝑏2𝑚2 + ⋯ + 𝑏𝑛𝑚𝑛 ≤ 𝐵                            (1) 

                                                            𝑚1, 𝑚2, ⋯ , 𝑚𝑛 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 

where 𝑃 is the total profit, 𝑟𝑖 is the return of stock 𝑖, 𝑚𝑖 is the desired number of stock 𝑖 which 

can be chosen in the portfolio, 𝑏𝑖 is the price of stock 𝑖 and 𝐵 is the total available budget.  

Stage 𝑖 is represented by item 𝑖 where 𝑖 = 1,2,3, ⋯ , 𝑛. The alternatives at stage 𝑖 are 

represented by 𝑚𝑖. The associated return is 𝑟𝑖𝑚𝑖. Let [
𝐵

𝑏𝑖
] be the largest integer less than or 

equal to 
𝐵

𝑏𝑖
 . hence, 𝑚𝑖 = 0,1,2, ⋯ , [

𝐵

𝑏𝑖
]. The state at stage 𝑖 is represented by 𝑥𝑖, which is the 

total revenue assigned to items 𝑖, 𝑖 + 1, 𝑖 + 2, ⋯ , 𝑛 . The above definition reflects the fact that 

the revenue constraint is the only restriction that links all 𝑛 stages together. Let 𝑓𝑖(𝑥𝑖) be the 

maximum return for stages 𝑖, 𝑖 + 1 and 𝑛 given state 𝑥𝑖. The recursive equation can then be 

determined by a two-step procedure. Firstly, express 𝑓𝑖(𝑥𝑖) as a function of 𝑓𝑖(𝑥𝑖+1) as follows:  

               𝑓𝑖(𝑥𝑖) = {𝑟𝑖𝑚𝑖 + 𝑓𝑖+1(𝑥𝑖+1)}, 𝑖 = 1,2, ⋯ , 𝑛                                  (2) 

                         𝑓𝑛+1(𝑥𝑛+1) ≡ 0.                                                                                             (3) 

Secondly, express 𝑥𝑖+1 as a function of 𝑥𝑖 to ensure that the left-hand side, 𝑓𝑖(𝑥𝑖) is a function 

of 𝑥𝑖 only. By definition, 𝑥𝑖 − 𝑥𝑖+1 = 𝑏𝑖𝑚𝑖 represents the revenue used at stage, 𝑖. Thus, 

 𝑥𝑖+1 = 𝑥𝑖 − 𝑏𝑖𝑚𝑖, and the proper recursive equation is given as  

                 𝑓𝑖(𝑥𝑖) = {𝑟𝑖𝑚𝑖 + 𝑓𝑖+1(𝑥𝑖 − 𝑏𝑖𝑚𝑖)}, 𝑖 = 1,2, ⋯ , 𝑛 .                    (4)     

The Model 

An investor with a maximum budget of 𝐵 wants to build his portfolio with one or more of 𝑛 

stocks. Using the backward recursive equation, we start from stage 𝑛 and move backward till 

we get to stage 1. 
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Stage 𝑛: The exact revenue to be allocated to stage 𝑛 is not known in advance, but must assume 

one of the values 0,1,2,3, ⋯ , 𝐵. The states 𝑥𝑛 = 0 𝑎𝑛𝑑 𝑥𝑛 = 𝐵, respectively represent the 

extreme cases of not including stock 𝑛 at all in the portfolio and allocating the entire budget to 

it. The remaining values of 𝑥𝑛 = 1,2,3, ⋯ , 𝑛 imply a partial allocation of the portfolio capacity 

to stock 𝑛. In effect, the given range of values for 𝑥𝑛 covers all possible allocations of the 

portfolio capacity to stock 𝑛.  

The maximum number of units of stock 𝑛 that can be allocated is 
𝐵

𝑏𝑛
, which means that the 

possible values of 𝑚𝑛 are 0,1,2,3, ⋯ , 𝑛. An alternative 𝑚𝑛 is feasible only if 𝑏𝑛𝑚𝑛 ≤ 𝑥𝑛. Thus, 

all the infeasible alternatives (those for which 𝑏𝑛𝑚𝑛 > 𝑥𝑛) are excluded. The following 

equation is the basis for comparing the alternatives of stage 𝑛: 

                       𝑓𝑛(𝑥𝑛) = {𝑟𝑛𝑚𝑛} , {𝑚𝑛}  = [
𝐵

𝑏𝑛
].                                                        (5) 

The following table compares the feasible alternatives for each value of 𝑥𝑛.   

Table I: Comparing the alternatives of stage 𝑛 using 𝑓𝑛(𝑥𝑛) = {𝑟𝑛𝑚𝑛} , {𝑚𝑛}  = [
𝐵

𝑏𝑛
].  

𝑟𝑛𝑚𝑛 Optimum Solution 

𝑥𝑛 𝑚𝑛 = 0 𝑚𝑛 = 1 𝑚𝑛 = 2 ⋯ 
𝑚𝑛 = [

𝐵

𝑏𝑛
] 

𝑓𝑛(𝑥𝑛) 

0 0 𝑟𝑛: 𝑏𝑛 ≤ 0 2𝑟𝑛: 2𝑏𝑛 ≤ 0 ⋯ 
[

𝐵

𝑏𝑛
] 𝑟𝑛: [

𝐵

𝑏𝑛
] 𝑏𝑛 ≤ 0 

 

 
{𝑟𝑛𝑚𝑛}  

  
1 0 𝑟𝑛: 𝑏𝑛 ≤ 1 2𝑟𝑛: 2𝑏𝑛 ≤ 1 ⋯ 

[
𝐵

𝑏𝑛
] 𝑟𝑛: [

𝐵

𝑏𝑛
] 𝑏𝑛 ≤ 1 

2 0 𝑟𝑛: 𝑏𝑛 ≤ 2 2𝑟𝑛: 2𝑏𝑛 ≤ 2 ⋯ 
[

𝐵

𝑏𝑛
] 𝑟𝑛: [

𝐵

𝑏𝑛
] 𝑏𝑛 ≤ 2 

3 0 𝑟𝑛: 𝑏𝑛 ≤ 3 2𝑟𝑛: 2𝑏𝑛 ≤ 3 ⋯ 
[

𝐵

𝑏𝑛
] 𝑟𝑛: [

𝐵

𝑏𝑛
] 𝑏𝑛 ≤ 3 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝐵 0 𝑟𝑛: 𝑏𝑛 ≤ 𝐵 2𝑟𝑛: 2𝑏𝑛 ≤ 𝐵 ⋯ 

[
𝐵

𝑏𝑛
] 𝑟𝑛: [

𝐵

𝑏𝑛
] 𝑏𝑛 ≤ 𝐵 

  

Stage 𝑛 − 1:  Similarly, the exact revenue to be allocated to stage 𝑛 − 1 is not known in 

advance, but must assume one of the values 0,1,2,3, ⋯ , 𝐵. The states 𝑥𝑛−1 = 0 𝑎𝑛𝑑 𝑥𝑛−1 = 𝐵, 

respectively represent the extreme cases of not including stock 𝑛 − 1 at all in the portfolio and 

allocating the entire budget to it. The remaining values of 𝑥𝑛−1 = 1,2,3, ⋯ , 𝑛 − 1 imply a 

partial allocation of the portfolio capacity to stock 𝑛 − 1. Therefore, the given range of values 

for 𝑥𝑛−1 covers all possible allocations of the portfolio capacity to stock 𝑛 − 1.    

The maximum number of units of stock 𝑛 − 1 that can be allocated is 
𝐵

𝑏𝑛−1
, which means that 

the possible values of 𝑚𝑛−1 are 0,1,2,3, ⋯ , 𝑛 − 1. An alternative 𝑚𝑛−1 is feasible only if 
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𝑏𝑛−1𝑚𝑛−1 ≤ 𝑥𝑛−1. Thus, all the infeasible alternatives (those for which 𝑏𝑛−1𝑚𝑛−1 > 𝑥𝑛−1) 

are excluded. The following equation is the basis for comparing the alternatives of stage 𝑛 −
1: 

      𝑓𝑛−1(𝑥𝑛−1) = {𝑟𝑛−1𝑚𝑛−1 + 𝑓𝑛(𝑥𝑛−1 − 𝑏𝑛−1𝑚𝑛−1)}, {𝑚𝑛−1}  = [
𝐵

𝑏𝑛−1
].         (6) 

The table below compares the feasible alternatives for each value of 𝑥𝑛−1.     

Table II: Comparing the alternatives of stage 𝑛 − 1 using 

                𝑓𝑛−1(𝑥𝑛−1) = {𝑟𝑛−1𝑚𝑛−1 + 𝑓𝑛(𝑥𝑛−1 − 𝑏𝑛−1𝑚𝑛−1)}, {𝑚𝑛−1}  = [
𝐵

𝑏𝑛−1
].  

𝑟𝑛−1𝑚𝑛−1 + 𝑓𝑛(𝑥𝑛−1 − 𝑏𝑛−1𝑚𝑛−1) Optimum Solution 

𝑥𝑛−1 𝑚𝑛−1 = 0 𝑚𝑛−1 = 1 ⋯ 
𝑚𝑛−1 = [

𝐵

𝑏𝑛−1
] 

𝑓𝑛−1(𝑥𝑛−1) 

0  
{𝑟𝑛𝑚𝑛}  

 

𝑟𝑛−1 + {𝑟𝑛𝑚𝑛}  
: 𝑏𝑛−1 ≤ 0 

 

⋯ 
𝑟𝑛−1 [

𝐵

𝑏𝑛−1
] + {𝑟𝑛𝑚𝑛}  

: 𝑏𝑛−1 [
𝐵

𝑏𝑛−1
] ≤ 0 

 

 

 
{𝑟𝑛−1𝑚𝑛−1 +
𝑓𝑛(𝑥𝑛−1 −
𝑏𝑛−1𝑚𝑛−1)}, {𝑚𝑛−1}  =

[
𝐵

𝑏𝑛−1
]  

 

1 𝑟𝑛−1 + {𝑟𝑛𝑚𝑛}  
: 𝑏𝑛−1 ≤ 1 

 

⋯ 
𝑟𝑛−1 [

𝐵

𝑏𝑛−1
] + {𝑟𝑛𝑚𝑛}  

: 𝑏𝑛−1 [
𝐵

𝑏𝑛−1
] ≤ 1 

 

2 𝑟𝑛−1 + {𝑟𝑛𝑚𝑛}  
: 𝑏𝑛−1 ≤ 2 

 

⋯ 
𝑟𝑛−1 [

𝐵

𝑏𝑛−1
] + {𝑟𝑛𝑚𝑛}  

: 𝑏𝑛−1 [
𝐵

𝑏𝑛−1
] ≤ 2 

 

3 𝑟𝑛−1 + {𝑟𝑛𝑚𝑛}  
: 𝑏𝑛−1 ≤ 3 

 

⋯ 
𝑟𝑛−1 [

𝐵

𝑏𝑛−1
] + {𝑟𝑛𝑚𝑛}  

: 𝑏𝑛−1 [
𝐵

𝑏𝑛−1
] ≤ 3 

 

⋮ ⋮ ⋮ ⋮ 
𝐵 𝑟𝑛−1 + {𝑟𝑛𝑚𝑛}  

: 𝑏𝑛−1 ≤ 𝐵 

 

⋯ 
𝑟𝑛−1 [

𝐵

𝑏𝑛−1
] + {𝑟𝑛𝑚𝑛}  

: 𝑏𝑛−1 [
𝐵

𝑏𝑛−1
] ≤ 𝐵 
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The process of the ongoing allocation continues in the same manner to stage 1, which is the 

last stage.  

Stage 1: Lastly, the exact revenue to be allocated to stage 1 is not known in advance, but must 

assume one of the values 0,1,2,3, ⋯ , 𝐵. The states 𝑥1 = 0 𝑎𝑛𝑑 𝑥1 = 𝐵, respectively represent 

the extreme cases of not including stock 1 at all in the portfolio and allocating the entire budget 

to it. The remaining values imply a partial allocation of the portfolio capacity to stock 1. 

Therefore, the given range of values for 𝑥1 covers all possible allocations of the portfolio 

capacity to stock 1.    

The maximum number of units of stock 1 that can be allocated is 
𝐵

𝑏1
. An alternative 𝑚1 is 

feasible only if 𝑏1𝑚1 ≤ 𝑥1. Thus, all the infeasible alternatives (those for which 𝑏1𝑚1 > 𝑥1) 

are excluded. The following equation is the basis for comparing the alternatives of stage 1: 

                 𝑓1(𝑥1) = {𝑟1𝑚1 + 𝑓2(𝑥1 − 𝑏1𝑚1)} , {𝑚1}  = [
𝐵

𝑏1
].                            (7)  

The table below compares the feasible alternatives for each value of 𝑥1.    

Table III: Comparing the alternatives of stage 1 using  

               𝑓1(𝑥1) = {𝑟1𝑚1 + 𝑓2(𝑥1 − 𝑏1𝑚1)} , {𝑚1}  = [
𝐵

𝑏1
]. 

𝑟1𝑚1 + 𝑓2(𝑥1 − 𝑏1𝑚1) Optimum Solution 

𝑥1 𝑚1 = 0 𝑚1 = 1 ⋯ 
𝑚1 = [

𝐵

𝑏1
] 

𝑓1(𝑥1) 

0  
{𝑟2𝑚2

+ 𝑓3(𝑥2

− 𝑏2𝑚2)}  

𝑟1

+ {𝑟2𝑚2

+ 𝑓3(𝑥2

− 𝑏2𝑚2)}  
: 𝑏1 ≤ 0 

 

⋯ 
𝑟1 [

𝐵

𝑏1
]

+ {𝑟2𝑚2

+ 𝑓3(𝑥2 − 𝑏2𝑚2)}  

: 𝑏1 [
𝐵

𝑏1
] ≤ 0 

 

 

 

 
{𝑟1𝑚1 + 𝑓2(𝑥1 − 𝑏1𝑚1)}:  

{𝑚1}  = [
𝐵

𝑏1
] 

1 𝑟1

+ {𝑟2𝑚2

+ 𝑓3(𝑥2

− 𝑏2𝑚2)}  
: 𝑏1 ≤ 1 

 

⋯ 
𝑟1 [

𝐵

𝑏1
]

+ {𝑟2𝑚2

+ 𝑓3(𝑥2 − 𝑏2𝑚2)}  

: 𝑏1 [
𝐵

𝑏1
] ≤ 1 

 

2 𝑟1

+ {𝑟2𝑚2

+ 𝑓3(𝑥2

− 𝑏2𝑚2)}  
: 𝑏1 ≤ 2 

⋯ 
𝑟1 [

𝐵

𝑏1
]

+ {𝑟2𝑚2

+ 𝑓3(𝑥2 − 𝑏2𝑚2)}  
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: 𝑏1 [

𝐵

𝑏1
] ≤ 2 

 

3 𝑟1

+ {𝑟2𝑚2

+ 𝑓3(𝑥2

− 𝑏2𝑚2)}  
: 𝑏1 ≤ 3 

 

⋯ 
𝑟1 [

𝐵

𝑏1
]

+ {𝑟2𝑚2

+ 𝑓3(𝑥2 − 𝑏2𝑚2)}  

: 𝑏1 [
𝐵

𝑏1
] ≤ 3 

 

⋮ ⋮ ⋮ ⋮ 
𝐵 𝑟1

+ {𝑟2𝑚2

+ 𝑓3(𝑥2

− 𝑏2𝑚2)}  
: 𝑏1 ≤ 𝐵 

 

⋯ 
𝑟1 [

𝐵

𝑏1
]

+ {𝑟2𝑚2

+ 𝑓3(𝑥2 − 𝑏2𝑚2)}  

: 𝑏1 [
𝐵

𝑏1
] ≤ 𝐵 

 

 

The optimum solution is now determined in the following manner. Given the maximum budget, 

𝐵, from stage 1, choose the optimum alternative, that is, 𝑓1(𝑥1) . Determine the remaining 

budget, which is the total budget minus the amount allocated in stage, 1. Next, move up to 

stage, 2, choose 𝑓2(𝑥2)  based on the remaining budget. The allocation continues in the same 

manner to stage, 𝑛, which is the final stage. 

Numerical Application 

An investor with a budget of 6 million USD is to build his portfolio with one or more of three 

stocks. The table (Table IV) below gives the unit price, 𝑏𝑖, in millions of USD and the unit 

return, 𝑟𝑖 in thousands of USD for stock 𝑖. Advice the investor on the best way to allocate the 

USD 6 million to maximize his total return.  

Table IV: Available stocks for the investor.    

Stock 𝑖 𝑏𝑖 𝑟𝑖 

1 4 70 

2 1 20 

3 2 40 

Using the backward recursive method with 𝐵 = 𝑈𝑆𝐷 6 𝑚𝑖𝑙𝑙𝑖𝑜𝑛, we have the following tables.  
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Stage III: 𝑓3(𝑥3) = {40𝑚3}, {𝑚3}  = [
6

2
] = 3. 

Table V: Possible allocations of 𝑠𝑡𝑜𝑐𝑘 3. 

40𝑚3 Optimum solution 

𝑥3 𝑚3 = 0 𝑚3 = 1 𝑚3 = 2 𝑚3 = 3 𝑓3(𝑥3) 𝑚3
∗  

0 0 - - - 0 0 

1 0 - - - 0 0 

2 0 40 - - 40 1 

3 0 40 - - 40 1 

4 0 40 80 - 80 2 

5 0 40 80 - 80 2 

6 0 40 80 120 120 3 

 

Stage II: 𝑓2(𝑥2) = {20𝑚2 + 𝑓3(𝑥2 − 𝑚2)}, {𝑚2}  = [
6

1
] = 6. 

Table VI: Possible allocations of 𝑠𝑡𝑜𝑐𝑘 2. 

20𝑚2 + 𝑓3(𝑥2 − 𝑚2) Optimum 

solution 

𝑥2 𝑚2 = 0 𝑚2 = 1 𝑚2 = 2 𝑚2 = 3 𝑚2 = 4 𝑚2 = 5 𝑚2 = 6 𝑓2(𝑥2) 𝑚2
∗  

0 0 + 0
= 0 

- - - - - - 0 0 

1 0 + 0
= 0 

20 + 0
= 20 

- - - - - 20 1 

2 0 + 40
= 40 

20 + 0
= 20 

40 + 0
= 40 

- - - - 40 0,2 

3 0 + 40
= 40 

20 + 40
= 60 

40 + 0
= 40 

60 + 0
= 60 

- - - 60 1,3 

4 0 + 80
= 80 

20 + 40
= 60 

40 + 40
= 80 

60 + 0
= 60 

80 + 0
= 80 

- - 80 0,2,

4 

5 0 + 80
= 80 

20 + 80
= 100 

40 + 40
= 40 

60 + 40
= 100 

80 + 0
= 80 

100 + 0
= 100 

- 100 1,3,

5 

6 0 + 120
= 120 

20 + 80
= 100 

40 + 80
= 120 

60 + 40
= 100 

80 + 40
= 120 

100 + 0
= 100 

120 + 0
= 120 

120 0,2,

4,6 
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Stage I: 𝑓1(𝑥1) = {70𝑚1 + 𝑓2(𝑥1 − 4𝑚1)}, {𝑚1}  = [
6

4
] = 1. 

Table VII: Possible allocations of 𝑠𝑡𝑜𝑐𝑘 1. 

70𝑚1 + 𝑓2(𝑥1 − 4𝑚1) Optimum solution 

𝑥1 𝑚1 = 0 𝑚1 = 1 𝑓1(𝑥1) 𝑚1
∗ 

0 0 + 0 = 0 - 0 0 

     

1 0 + 20 = 20 - 20 0 

2 0 + 40 = 40 - 40 0 

3 0 + 60 = 60 - 60 0 

4 0 + 80 = 80 70 + 0 = 70 80 0 

5 0 + 100 = 100 70 + 20 = 90 100 0 

6 0 + 120 = 120 70 + 40 = 110 120 0 

 

ANALYSIS OF THE POSSIBLE OPTIMAL ALLOCATIONS 

From stage I (Table VII), 𝑥1 = 6 gives the optimum alternative with 𝑚1
∗ = 0. Therefore, 0 unit 

of stock 1 will be added in the portfolio. This leaves, 

                                         𝑥2 = 𝑥1 − 4𝑚1
∗ = 6.                                                              (8) 

From stage II (Table VI), 𝑥2 = 6 gives 𝑚2
∗ = 0,2,4,6. Hence, 

                                        𝑥3 = 𝑥2 − 𝑚2
∗ .                                                                        (9) 

Considering the various values of 𝑚2
∗  and using equation (9) gives the following.  

                  𝑚2
∗ = 0: 𝑥3 = 𝑥2 − 0 = 6,                                                                             (10) 

                   𝑚2
∗ = 2: 𝑥3 = 𝑥2 − 2 = 4,                                                                             (11) 

                    𝑚2
∗ = 4: 𝑥3 = 𝑥2 − 4 = 2,                                                                            (12) 

                      𝑚2
∗ = 6: 𝑥3 = 𝑥2 − 6 = 0.                                                                          (13) 

From stage III (Table V),  

                      𝑥3 = 6 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑚3
∗ = 3,                                                                             (14) 

                       𝑥3 = 4 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑚3
∗ = 2,                                                                             (15) 

                        𝑥3 = 2 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑚3
∗ = 1,                                                                            (16) 

                         𝑥3 = 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑚3
∗ = 0.                                                                           (17) 

Therefore, the optimum solution is  

                     (𝑚1
∗ , 𝑚2

∗ , 𝑚3
∗) = (0,0,3) 𝑜𝑟 (0,2,2) 𝑜𝑟 (0,4,1) 𝑜𝑟 (0,6,0).                           (18) 
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From equation (18), (𝑚1
∗ , 𝑚2

∗ , 𝑚3
∗) = (0,0,3) means that the investor should add 0 unit of stock 

1, 0 unit of stock 2 and 3 units of stock 3 to his portfolio. While (𝑚1
∗ , 𝑚2

∗ , 𝑚3
∗) = (0,2,2) means 

that the investor should add 0 unit of stock 1, 2 units of stock 2 and 2 units of stock 3 to his 

portfolio. Similarly, (𝑚1
∗ , 𝑚2

∗ , 𝑚3
∗) = (0,4,1) means that the investor should add 0 unit of stock 

1, 4 units of stock 2 and 1 unit of stock 3 to his portfolio. Finally, (𝑚1
∗ , 𝑚2

∗ , 𝑚3
∗) = (0,6,0) 

means that the investor should add 0 unit of stock 1, 6 units of stock 2 and 0 unit of stock 3 to 

his portfolio.  

 

CONCLUSION  

This work represents a typical resource allocation model in which limited resource is 

apportioned among a finite number of stocks. The objective is to maximize an associated return 

function. The definition of the state at each stage is similar to the definition given for the model. 

That is, the state at stage 𝑖 is the total resource amount allocated to stages 𝑖, 𝑖 + 1, 𝑖 + 2, ⋯ , 𝑛. 

The optimization model has maximized the returns of the investment by taking into account 

the expected returns, prices and budget in the objective functions and constraints, 

simultaneously. The model has the ability to determine the optimal portfolio of assets. A 

numerical example has been given to illustrate the application of the model and demonstrate 

the effectiveness of the designed algorithm for solving the model. Numerical results have 

shown that the optimization model yields promising results.   
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