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ABSTRACT: The agglomerative hierarchical clustering methods 

are the most popular type of hierarchical clustering used to group 

objects in clusters based on their similarity. The methods are 

represented by a bottom-up approach where each object starts in 

its cluster and pairs of clusters are merged as it moves up the 

hierarchy. In this paper, we present six agglomerative 

hierarchical clustering methods namely: the single linkage 

method, complete linkage method, average linkage method, 

centroid method, median method, and Ward’s method. We also 

evaluated how these methods work on a practical basis using a 

matrix of distance pairs of five points. It was observed that the 

single linkage method through its dendrogram produced the most 

similarity measure between 𝑥𝑖 and 𝑥𝑗, while Ward’s method 

produced the highest distance measure between 𝑥𝑖 and 𝑥𝑗. 

KEYWORDS: Agglomerative methods; Dendrogram; Distance 

matrix; Objects; Similarities.  
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INTRODUCTION 

     In carrying out a cluster analysis of an n-dimensional multivariate dataset, one may wish to 

compare two or more hierarchical clustering methods of the same set of objects. Agglomerative 

clustering procedures are the most widely used of the hierarchical methods. The methods start 

with every single object in a single cluster and repeat merging the closest pair of clusters 

according to some similarity criteria until all of the data are in one cluster; or perhaps the 

process continues similarly until n objects are formed (Dillon & Goldstein, 1984). Just as with 

many other multivariate methods, objects to be classified have numerical measurements on a 

set of attributes or variables. So, the analysis is carried out on the rows of an array or a matrix. 

The objects or rows of the matrix can be viewed as a vector in a multidimensional space in 

which the dimensionality of the space is the number of variables or columns (Murtagh et al., 

2008). 

     Hierarchical clustering methods are generally represented by a tree diagram called a 

dendrogram (Gordon, 1996) and it could be represented either as a bottom-up clustering (also 

known as agglomerative clustering) method or viewed as a top-down clustering (divisive 

clustering) method. Divisive hierarchical clustering starts with all objects in one cluster and 

carries out the splitting of large clusters into smaller pieces. Both agglomerative and divisive 

hierarchical clustering have some disadvantages such as (a) when data points that have been 

incorrectly grouped at the early stage cannot be reallocated and (b) different similarity 

measures for measuring the similarity between clusters may lead to different results (Gan et 

al., 2007). 

     A dendrogram is an n-tree-like diagram in which each internal node is associated with a 

height satisfying the condition that: ℎ(𝐴) ≤ ℎ(𝐵)  ⟺ 𝐴 ⊆ 𝐵 for all subset of data points 𝐴 and 

𝐵 if 𝐴 ∩ 𝐵 ≠ 0 where ℎ(𝐴) and ℎ(𝐵) denotes the heights of A and B respectively. Hence, it 

suffices that the heights in the dendrogram satisfy the ultra-metric condition in Equation (1) 

below (Johnson, 1967) where: 

ℎ𝑖𝑗 ≤ 𝑚𝑎𝑥{ℎ𝑖𝑘, ℎ𝑗𝑘} ∀ 𝑖, 𝑗, 𝑘 ∈  {1, 2, … , 𝑛}                                                                            (1)        

In fact, the ultra-metric condition is a necessary and also sufficient condition for a dendrogram 

(Gordon, 1987). 

     The purpose of this paper is to evaluate and compare six agglomerative hierarchical 

clustering methods concerning the measures of distance or similarities of objects. 

     The rest of this paper is organised as follows: section 2 discusses the distance or similarity 

of objects as regards the measure of how close or far objects are to each other, it is known as 

the proximity of objects. In section 3, six agglomerative hierarchical clustering methods are 

discussed. Section 4 gives an illustrative example of how these six methods work in practice. 

Section 5 is the conclusion of the paper.  
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MEASURES OF PROXIMITY 

     Clusters are considered as groups containing data objects that are similar to each other than 

data objects in different clusters. Thus, in attempting to identify clusters of observations which 

may be present in data is knowledge of how “close” individuals or objects are to each other, or 

how far apart they are from each other (Jain & Dubes, 1988; Xu & Wunsch, 2008). Many 

clustering investigations have as their starting point a one-mode matrix, the elements which 

reflect in some sense, a quantitative measure of closeness, commonly referred to as 

dissimilarity (distance) or similarity, with a general term being known as proximity. Two 

individuals or objects are “close” when their dissimilarity or distance is small or their similarity 

is large (Everitt et al., 2011; Romesburg, 1984). 

     The term proximity is the generalization for both dissimilarity and similarity. A dissimilarity 

or distance function on a data set x is defined to satisfy the following condition of a metric 

space (Anderberg, 1973; Zhang & Srihari, 2003): 

● 𝑑(𝑥, 𝑦) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑎𝑛𝑑 𝑦                                                                      (Non-negativity) 

● 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)                                                                                          (Symmetry) 

● 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧                                             (Triangle inequality) 

● 𝑑(𝑥, 𝑦) = 0 𝑖𝑓𝑓 𝑥 = 𝑦                                                                                 (Reflexivity) 

A metric space (𝑋, 𝑑) is a set 𝑋 with a metric 𝑑 defined on 𝑋, but if the triangle inequality is 

not satisfied, the function is called a semi-metric. A metric is a function that defines a concept 

of distance between any two points of the set Also, if a metric is an ultra-metric (Johnson, 

1967) implies that it satisfies a stronger condition that states that:  𝑑(𝑥, 𝑦) ≤
𝑚𝑎𝑥 {𝑑(𝑥, 𝑦)} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 where 𝑥, 𝑦, 𝑧 are arbitrary data points. 

     In application, the choice of distance is important and the best choice is often achieved 

through the combination of experience, skill and sometimes luck. There are many distances in 

practice, but the Euclidean distance is probably the most common distance ever used for 

numerical data. If we have two data points 𝑥 and 𝑦 in n-dimensional space, the Euclidean 

distance between them is defined in Equation (2) below:  

𝑑𝑒𝑢𝑐(𝑥, 𝑦) =  [∑𝑛
𝑖=1 (𝑥𝑖, 𝑦𝑖)

2]
1

2 = ⟦(𝑥 − 𝑦)𝑇(𝑥 − 𝑦)⟧
1

2                                                  (2)  

Where 𝑥𝑖 and 𝑦𝑖 respectively are the values of the 𝑖𝑡ℎ attribute of 𝑥 and 𝑦. The generalised case 

of the above distance is known as the Minkowski distance which is defined as 

𝑑𝑚𝑖𝑛𝑘(𝑥, 𝑦) = [∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖|

𝑝]
1

𝑝                                                                                            (3) 

  

and p is called the order or the exponent of the above Minkowski distance. Note that if we take 

𝑝 = 1, 2, 𝑎𝑛𝑑 ∞, we get the Manhattan (City block) distance, Euclidean distance, and the 

Maximum (Chebyshev) distance as well (Mao & Jain, 1996). 
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AGGLOMERATIVE HIERARCHICAL CLUSTERING METHODS 

     Many agglomerative hierarchical clustering methods have been proposed at one time or 

another but we are interested in six of the agglomerative clustering methods namely: single 

linkage method, complete linkage method, average linkage method, centroid method, median 

method, and Ward’s method. Amongst these methods mentioned, the single, complete, and 

average linkage methods are referred to as graph methods, while the centroid, median, and 

Ward’s methods are referred to as geometric methods (Murtagh, 1983); in the graph methods, 

a cluster can be represented by a subgroup or interconnected points while in geometric 

methods, a cluster can be represented by a centre point. 

     The steps in the graph methods (algorithms) for grouping n objects can be summarised as 

follows (Johnson & Wichern, 2007): 

1) Start with n clusters, each containing a matrix of distance (or similarities) 𝐷 = {𝑑𝑖𝑘} 

2) Search the distance matrix for the nearest (most similar) pair of clusters. Let the distance 

between the “most similar” cluster 𝑥 and 𝑦 be 𝑑(𝑥, 𝑦) or 𝑑𝑖𝑘 

3) Merge cluster 𝑥 and 𝑦. Label the newly formed cluster (𝑥𝑦). Update the entries in the 

distance matrix by deleting the rows and columns corresponding to the cluster 𝑥 and 𝑦, 

by adding a row and column giving the distance between the cluster (𝑥𝑦) and the 

remaining clusters 

4) Repeat steps (2) and (3) for a total of 𝑛 − 1 times (all objects will be in a single cluster 

after the algorithm terminates). Record the identity of clusters that are merged and the 

levels (distances or similarities) at which the mergers take place. 

     To determine which group should be merged in agglomerative hierarchical clustering, we 

will first start with the single linkage method which is the simplest of all the methods. The 

single linkage (Sneath, 1957) utilises a minimum distance rule that starts by first, the two 

objects having the shortest (smallest) or largest similarity distance are merged; they constitute 

the first cluster. At the next stage, one of these two things can happen: Either a third object will 

join the already formed cluster of two, or the two closest un-clustered objects will be joined to 

form the second cluster. The decision rests on whether the distance from one of the un-clustered 

objects to the first cluster is shorter than the distances between the two closest un-clustered 

objects. The process continues until all objects belong to a single cluster. To find the minimum 

distance in 𝐷 = {𝑑𝑖𝑘}, merge the corresponding objects: say 𝑥 and 𝑦 to get the cluster (𝑥𝑦) and 

any other cluster 𝑧 are computed as 𝑑(𝑋𝑌)𝑍 = 𝑚𝑖𝑛{𝑑𝑋𝑍, 𝑑𝑌𝑍}, where, 𝑑𝑋𝑍, and 𝑑𝑌𝑍 are the 

distance between the nearest neighbours of cluster 𝑥 and 𝑦 respectively.  

     The complete linkage method (McQuitty, 1960; Sokal & Sneath, 1963) uses the farthest 

neighbour distance to measure the dissimilarity between two groups. This method ensures that 

all items in a cluster are within the same maximum distance (or minimum similarity) to each 

other. To find the maximum distance 𝐷 = {𝑑𝑖𝑘}, we merge the corresponding objects 𝑥 and 𝑦 

to get a cluster (𝑥𝑦). For step 3 of the graph algorithm, the distance between clusters (𝑥𝑦) and 

any other cluster z is computed as 𝑑(𝑋𝑌)𝑍 = 𝑚𝑎𝑥{𝑑𝑋𝑍, 𝑑𝑌𝑍}, where 𝑑𝑋𝑍 and 𝑑𝑌𝑍 are distances 

between the most distant members of the cluster 𝑥 and 𝑧 and cluster 𝑦 and z respectively. 
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     The average linkage method is sometimes referred to as the unweighted pair group method 

using arithmetic averages (Jain and Dubes, 1988; Sokal and Michener, 1958). This method 

treats the distance between two clusters as the average distance between all pairs of items where 

one member of the pair belongs to each cluster. The distance can be computed as 

     𝑑(𝑋𝑌)𝑍 =
∑𝑖 ∑𝑘 𝑑𝑖𝑘

𝑁(𝑥𝑦)𝑁𝑧
                                                                                                                 (4)  

where 𝑑𝑖𝑘 is the distance between the object 𝑖 in the cluster (𝑥𝑦) and the object 𝑘 in the 

cluster 𝑧.  𝑁(𝑥𝑦) and 𝑁𝑧 are the number of items in the cluster (𝑥𝑦) and 𝑧 respectively. 

     The fourth is the centroid method where the distance between two clusters 𝑖 and 𝑘 is defined 

as the Euclidean distance between the mean vectors (often called centroids) of the two clusters 

stated as: 

 𝑑(𝑖, 𝑘) = 𝑑(𝑥𝑖𝑥𝑘)                                                                                                                    (5)  

where 𝑥𝑖 and 𝑥𝑘 are the mean vectors for the observation in 𝑖 and the observation in 𝑘 

respectively, while 𝑑(𝑥𝑖 , 𝑥𝑘) is the respective distance mean in the Euclidean space. The two 

clusters with the smallest distance between centroids are merged at each step; after the two 

clusters 𝑖 and 𝑘 are joined; the centroid of the new cluster (𝑖𝑘) is calculated using the weighted 

average 

𝑥𝑖𝑘 =
𝑛𝑖𝑥𝑖+𝑛𝑘𝑥𝑘

𝑛𝑖+𝑛𝑘
                                                                                                                            (6)  

     The fifth is the median method which is also known as the “weighted pair group method 

using centroid” (Jain & Dubes, 1988). It was proposed by Gower (1967) to alleviate some 

disadvantages of the centroid method. In the centroid method, if the sizes of the two groups to 

be merged are quite different, then the centroid of the new group will be very close to that of 

the large group and may remain within that group (Everitt, 1993). In the centroid method, the 

centroid of the new group is independent of the size of the groups that form the new group. A 

disadvantage of this method is that it is not suitable for measures such as correlation 

coefficients, since interpretation in a geometrical sense is no longer possible (Lance & 

Williams, 1967). To avoid weighting the mean vector according to cluster size, we can use the 

median (midpoint) of the line joining 𝑖 and 𝑘 as the point for computing the next distance to 

other clusters 𝑀𝑖𝑘 =
1

2
(𝑥𝑖 + 𝑥𝑘). The two clusters with the smallest distance between medians 

are merged at each step. 

     The sixth is Ward’s method which was proposed by Ward and Hook (1963); it is a 

procedure-seeking method that forms the partition 𝑝𝑘, 𝑝𝑘−1, 𝑝𝑘−2, … , 𝑝1 in a manner that 

minimises the loss of information associated with the merging. Usually, the loss of information 

is quantified in terms of an error sum of squares (𝐸𝑆𝑆) criterion. So, Ward’s method is often 

referred to as the “minimum variance” method. Given a group c, the associated with c is given 

by: 𝐸𝑆𝑆(𝑐) = ∑𝑥∈𝑐 (𝑥 − 𝜇(𝑐))(𝑥 − 𝜇(𝑐))
𝑇

= ∑𝑥∈𝑐 𝑥𝑥𝑇 −
1

|𝑐|
(∑𝑥∈𝑐 𝑥)(∑𝑥∈𝑐 𝑥)

𝑇
  

= ∑𝑥∈𝑐 𝑥𝑥𝑇 − |𝑐|𝜇(𝑐)𝜇(𝑐)𝑇   Where 𝜇|𝑐| is the mean of c, that is, 𝜇|𝑐| =
1

|𝑐|
∑𝑥∈𝑐 𝑥. 
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Suppose there are k groups 𝑐1, 𝑐2, … , 𝑐𝑘 in one level of the clustering. Then the information 

loss is represented by 𝐸𝑆𝑆 = ∑𝑘
𝑖=1 𝐸𝑆𝑆(𝑐𝑖) which is the total within-group of the  𝐸𝑆𝑆. At 

each step of Ward’s method, the union of every possible pair of groups is considered and two 

groups whose fusion results in the minimum increase in loss of information are merged. If the 

squared Euclidean distance is used to complete the dissimilarity matrix, then the dissimilarity 

matrix can be updated by the lance-William formula (Wishart, 1969) during the process of 

clustering as follows: 

𝐷(𝑐𝑘, 𝑐𝑖 ∪ 𝑐𝑗) =
|𝑐𝑘|+|𝑐𝑖|

∑𝑖𝑗𝑘  
𝐷(𝑐𝑘, 𝑐𝑖) +

|𝑐𝑘|+|𝑐𝑗|

∑𝑖𝑗𝑘  
𝐷(𝑐𝑘, 𝑐𝑗) −

|𝑐𝑘|

∑𝑖𝑗𝑘  
𝐷(𝑐𝑖, 𝑐𝑗)                             (7)  

Initially, every single point forms a cluster and the total 𝐸𝑆𝑆 is 𝐸𝑆𝑆𝑘 = 0. 

ILLUSTRATIVE EXAMPLE OF THE METHODS    

     Matrix of distance pair of five objects (Dillon and Goldstein, 1984) was used to illustrate 

the procedural steps of the agglomerative hierarchical clustering methods starting from the 

single linkage method: 

                           1     2     3     4    5 

𝐷 = 𝑑𝑖𝑘 =

5

4

3

2

1























02678

20486

64035

7830)1(

86510

 

 

Treating each object as a cluster, we begin clustering by merging two closest items since 𝑑𝑖𝑘 =

𝑑12 = 1, object 2 and 1 are merged to form cluster (12). To implement the next level of 

clustering, we need the distances between the cluster (12) and the remaining objects 3, 4, and 

5. 

The nearest neighbor distances are: 𝑑(12)3 = 𝑚𝑖𝑛{𝑑13, 𝑑23} = 𝑚𝑖𝑛{5,3} = 3. 𝑑(12)4 =

𝑚𝑖𝑛{𝑑14, 𝑑24} = 𝑚𝑖𝑛{6,8} = 6.  𝑑(12)5 = 𝑚𝑖𝑛{𝑑15, 𝑑25} = 𝑚𝑖𝑛{8, 7} = 7. Deleting the rows 

and columns of 𝐷 corresponding to object 1 and 2, and adding the remaining rows and columns 

for the cluster (12); we obtain the new distance matrix as what we have below because a 

distance matrix will be symmetric and the lower echelon is shown because the upper echelon 

can be filled in by reflection: 

       (12) 3    4    5          

𝐷2 =

5

4

3

)12(



















0267

046

03

0
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The smallest distance between pair of clusters is now 𝑑45 = 2, so we merge object 4 and 5 to 

form cluster (45). Calculating the nearest neighbor distances, we have: 

 𝑑(12)(45) = 𝑚𝑖𝑛{𝑑(12)4, 𝑑(12)5} = 𝑚𝑖𝑛{6,7} = 6.   𝑑3(45) = 𝑚𝑖𝑛{𝑑34, 𝑑35} = 𝑚𝑖𝑛{4,6} = 4. 

The distance matrix becomes: 

        (12) 3 (45) 

 𝐷3 =

)45(

3

)12(

















046

03

0

 

The smallest distance between pairs of clusters is now 𝑑(12)3 = 3, so we merge cluster (12) 

and 3 to get the next cluster (123). Now the cluster left are cluster (123) and (45). Their 

nearest neighbor distance is 𝑑(123)(45) = 𝑚𝑖𝑛{𝑑(12)(45), 𝑑3(45)} = 𝑚𝑖𝑛{6,4} = 4. The final 

distance matrix becomes: 

         (123) (45) 

𝐷4 =
)45(

)123(









04

0
  

Consequently, clusters (123) and (45) are merged to form a single cluster of all five objects 

(12345) when the nearest neighbor distance reaches 4. The dendrogram is given below as: 

 

 

 

 

 

 

 

 

Figure 1: Single Linkage Dendrogram for distances between five objects.  
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For the complete linkage method using the same data, we have: 

                            1     2     3      4    5  

𝐷 = 𝑑𝑖𝑘 =

5

4

3

2

1























02678

0486

035

0)1(

0

      

Treating each object as a cluster, clustering commences by merging the two closest items, 

since 𝑑𝑖𝑘 = 𝑑12 = 1. Object 1 and 2 are merged to form cluster (12) like the single linkage 

method which uses the minimum distance or most (maximum) similarity. At stage 2, we 

compute the maximum distance between clusters (12) and object 3, 4, and 5 as: 

𝑑(12)3 = 𝑚𝑎𝑥{𝑑13, 𝑑23} = 𝑚𝑎𝑥{5,3} = 5.  𝑑(12)4 = 𝑚𝑎𝑥{𝑑14, 𝑑24} = 𝑚𝑎𝑥{6,8} = 8.    

𝑑(12)5 = 𝑚𝑎𝑥{𝑑15, 𝑑25} = 𝑚𝑎𝑥{8,7} = 8    Which distance matrix becomes: 

       (12)  3    4     5    

𝐷2 =

5

4

3

)12(



















0268

048

05

0

    

The maximum similarity between pair of clusters 4 and 5 is 𝑑45 = 2. At stage 3, the distance 

matrix becomes: 

         (12)   3   (45) 

𝐷3 =  

)45(

3

)12(

 

















068

05

0

     

The maximum similarity between clusters (12) and 3 is 𝑑(12)3 = 5 to give cluster (123). Now 

the clusters left are cluster (123) and (45). The maximum distance between them is:  

𝑑(123)(45) = 𝑚𝑎𝑥{𝑑(12)(45), 𝑑3(45)} = 𝑚𝑎𝑥{8,6} = 8. The final distance matrix becomes: 

        (123) (45) 

𝐷4 =  
)45(

)123(









08

0
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At this final stage, clusters (123) and (45) are merged to form a single of all five objects (12345) 

when the maximum neighbor distance reaches 8. The dendrogram of the complete linkage is 

given in figure 2 below: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Complete Linkage Dendrogram for distance between five objects. 

For the average linkage method: 

 

                            1     2     3     4    5  

𝐷 = 𝑑𝑖𝑘 =

5

4

3

2

1























02678

0486

035

0)1(

0

      

Since min 𝑑𝑖𝑘 = 𝑑12 = 1, object 1 and 2 are merged to form cluster (12). To calculate the 

average distance we use Equation (4) which is: 

𝑑(𝑋𝑌)𝑍 =
∑ ∑ 𝑑𝑖𝑘𝑘𝑖

𝑁(𝑥𝑦)𝑁𝑧
  =  𝑑(12)3 =  

1

2
𝑑13 +

1

2
 𝑑23 =  

5

2
+

3

2
= 4 .  𝑑(12)4 =

1

2
𝑑14 +

1

2
𝑑24 =

6

2
+

8

2
= 7. 𝑑(12)5 =

1

2
𝑑15 +

1

2
𝑑25 =

8

2
+

7

2
=

15

2
 .  The distance matrix becomes 
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         (12)     3       4       5 

𝐷2 =  

5

4

3

)12(





















026
2

15

047

04

0

 

The minimum distance between pair of clusters is now 𝑑45 = 2. So object 4 and 5 are merged 

to form cluster (45) and the average distance is computed as:    𝑑(12)(45) =  
1

2
𝑑(12)4 +

1

2
𝑑(12)5 =

7

2
+

15

4
=

29

4
    𝑑3(45) =

1

2
𝑑34 +

1

2
𝑑35 =

4

2
+

6

2
= 5  then the distance matrix becomes: 

         (12)     3   (45) 

𝐷3 =

)45(

3

)12(

















05429

04

0

  

Since the minimum distance between pair of clusters is now 𝑑(12)3 = 4. We merge cluster (12) 

and 3 to form cluster (123) and (45) which average distance is 𝑑(123)(45) =
1

2
𝑑(12)(45) +

1

2
𝑑3(45) =

29

8
+

5

2
=

49

8
, so the final distance becomes 

         (123)   (45) 

𝐷4 =
)45(

)123(









0849

0
  

At this final stage, cluster (123) and (45) are merged to form a single cluster (12345) when the 

average distance reaches 
49

8
= 6.125. 

The dendrogram of the average linkage method is given in figure 3 below 

 

 

 

 

 

 

Figure 3: Average Linkage Dendrogram for distance between five objects 
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For the centroid method 

 

                            1     2     3     4    5  

𝐷 = 𝑑𝑖𝑘 =

5

4

3

2

1























02678

0486

035

0)1(

0

      

Since min 𝑑𝑖𝑘 = 𝑑12 = 1, object 1 and 2 are merged to form cluster (12), then the distance is 

updated as:   𝑑(12)3 =
1

2
{𝑑13 + 𝑑23} −

1

4
𝑑12 =

1

2
{5 + 3} −

1

4
(1) = 3.75  

 𝑑(12)4 =
1

2
{𝑑14 + 𝑑24} −

1

4
(1) =

1

2
{6 + 8} −

1

4
(1) = 6.75   

 𝑑(12)5 =
1

2
{𝑑15 + 𝑑25} −

1

4
(1) =

1

2
{8 + 7} −

1

4
(1) = 7.25    The distance matrix becomes 

        (12)     3     4    5 

𝐷2 =

5

4

3

)12(



















02625.7

0475.6

075.3

0

  

The minimum distance between pair of clusters is 𝑑45 = 2, so we merge object 4 and 5 to form 

cluster (45). At the second stage, the distance is updated as:  

𝑑(12)(45) =
1

2
{𝑑(12)4 + 𝑑(12)5} −

1

4
𝑑45 =

1

2
{6.75 + 7.25} −

1

4
(2) = 6.5    

𝑑3(45) =
1

2
{𝑑34 + 𝑑35} −

1

4
𝑑45 =

1

2
{4 + 6} −

1

4
(2) = 4.5.   Then the distance matrix becomes 

         (12)      3    (45) 

𝐷3 =

)45(

3

)12(

















05.45.6

075.3

0

  

The minimum distance between pair of cluster is now 𝑑(123) = 3.75, so cluster (12) and 3 are 

merged to form cluster (123). Now, the clusters left are (123) and (45). At this third stage, the 

distance is updated as:       
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𝑑(123)(45) =
2

3
𝑑(12)(45) +

1

3
𝑑3(45) −

2

9
𝑑(123) =

2

3
(6.5) +

1

3
(4.5) −

2

9
(3.75) = 5. And the final 

distance matrix becomes 

        (123)  (45) 

𝐷4 =
)45(

)123(









05

0
   

The dendrogram of the centroid method is given below in figure 4 

 

 

 

 

 

 

 

Figure 4: The centroid dendrogram for distance between five objects 

For the median method 

                             1      2      3     4    5  

𝐷 = 𝑑𝑖𝑘 =

5

4

3

2

1























02678

0486

035

0)1(

0

      

Since min 𝑑𝑖𝑘 = 𝑑12 = 1, object 1 and 2 are merged to form cluster (12). The median distance 

between newly formed groups and other groups are computed using Equation (8) below 

𝐷(𝑐𝑘, 𝑐𝑖 ∪ 𝑐𝑗) =
1

2
𝐷(𝑐𝑘, 𝑐𝑖) +

1

2
𝐷(𝑐𝑘, 𝑐𝑗)

−
1

4
𝐷(𝑐𝑖, 𝑐𝑗)                                                                                  (8) 

𝑑(12)3 =
1

2
{𝑑13 + 𝑑23} −

1

4
𝑑12 =

1

2
{5 + 3} −

1

4
(1) = 3.75  

𝑑(12)4 =
1

2
{𝑑14 + 𝑑24} −

1

4
𝑑12 =

1

2
{6 + 8} −

1

4
(1) = 6.75  
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𝑑(12)5 =
1

2
{𝑑15 + 𝑑25} −

1

4
𝑑12 =

1

2
{8 + 7} −

1

4
(1) = 7.25   The distance matrix becomes 

        (12)     3    4    5 

𝐷2 =

5

4

3

)12(



















02625.7

0475.6

075.3

0

  

 The minimum distance between pair of clusters is 𝑑45 = 2, so we merge objects 4 and 5 to 

form a cluster (45). The median distance becomes 

𝑑(12)(45) =
1

2
{𝑑(12)4 + 𝑑(12)5} −

1

4
𝑑45 =

1

2
{6.75 + 7.25} −

1

4
(2) = 6.5    

𝑑3(45) =
1

2
{𝑑34 + 𝑑35} −

1

4
𝑑45 =

1

2
{4 + 6} −

1

4
(2) = 4.5.   Then the distance matrix becomes 

         (12)      3    (45) 

𝐷3 =

)45(

3

)12(

















05.45.6

075.3

0

  

The minimum distance between pair of cluster is now 𝑑(123) = 3.75, so cluster (12) and 3 are 

merged to form cluster (123). The median distance becomes   𝑑(123)(45) =
1

2
{𝑑(12)(45) +

𝑑3(45)} −
1

4
𝑑123 =

1

2
{6.5 + 4.5} −

1

4
(3.75) = 4.56  and the final matrix distance becomes 

         (123)  (45) 

𝐷4 =
)45(

)123(









056.4

0
  

The dendrogram of the median method is given below in figure 5 
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Figure 5: The median dendrogram of distance between five objects. 

For the Ward’s method  

                            1      2     3     4     5  

𝐷 = 𝑑𝑖𝑘 =

5

4

3

2

1























02678

0486

035

0)1(

0

      

Min 𝑑𝑖𝑗 = 𝑑12 = 1. When we compute the dissimilarity matrix for a data set 𝐷 =

{𝑥1, 𝑥2, … , 𝑥𝑘} using the squared Euclidean distance, then the entry (𝑖, 𝑗) of the dissimilarity 

matrix is 𝑑𝑖𝑗
2 = 𝑑(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑗)

𝑇
= ∑ (𝑥𝑖 − 𝑥𝑗)

2
𝑖=1  where d is the 

dimensionality of the data set D. Initially, 𝐸𝑆𝑆0 = 0, 1 𝑎𝑛𝑑 2 will merge at first stage and the 

increase in 𝐸𝑆𝑆 that result from the fusion (merger) of 1 and 2 is ∆𝐸𝑆𝑆12 =
1

2
(1) = 0.5 hence 

the 𝐸𝑆𝑆 becomes 𝐸𝑆𝑆1 = 𝐸𝑆𝑆0 + ∆𝐸𝑆𝑆12 = 0 + 0.5 = 0.5 using Equation (7) and the 

distance are updated as  

𝑑(12)3 =
2

3
(𝑑13 + 𝑑23) −

1

3
𝑑12 =

2

3
(5 + 3) −

1

3
= 5  

𝑑(12)4 =
2

3
(𝑑14 + 𝑑24) −

1

3
𝑑12 =

2

3
(6 + 8) −

1

3
= 9  

𝑑(12)5 =
2

3
(𝑑15 + 𝑑25) −

1

3
𝑑12 =

2

3
(8 + 7) −

1

3
= 9.67    The distance matrix becomes 

          (12)     3    4    5 

𝐷2 =

5

4

3

)12(



















02667.9

048

05

0

  

At the second stage, 4 and 5 will merge and the resulting increase in 𝐸𝑆𝑆 is ∆𝐸𝑆𝑆45 =
1

2
(2) =

1. The total 𝐸𝑆𝑆 becomes 𝐸𝑆𝑆2 = 𝐸𝑆𝑆1 + ∆𝐸𝑆𝑆45 = 0.5 + 1 = 1.5, after 4 and 5 are merged, 

the distances are updated as 𝑑(12)(45) =
1

4
(𝑑(12)4 + 𝑑(12)5) −

1

4
𝑑45 =

3

4
(8 + 9.67) −

2

4
(2) =

12.25 

𝑑3(45) =
2

3
(𝑑34 + 𝑑35) −

1

3
𝑑45 =

2

3
(4 + 6) −

1

3
(2) = 6  The matrix becomes 

           (12)    3   (45) 
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D3 =

)45(

3

)12(

















0625.12

05

0

  

At the third stage, 1, 2 and 3 are merged and the resulting increase in 𝐸𝑆𝑆 is ∆𝐸𝑆𝑆 =
1

2
(5) =

2.5, then the total 𝐸𝑆𝑆 becomes 𝐸𝑆𝑆3 = 𝐸𝑆𝑆2 + 𝐸𝑆𝑆(12)3 = 1.5 + 2.5 = 4 and the distance is 

updated as 𝑑(123)(45) =
4

5
𝑑(12)(45) +

3

5
𝑑3(45) −

2

5
𝑑123 =

4

5
(12.25) +

3

5
(6) −

2

5
(5) = 11.4 and 

the distance matrix becomes 

          (123)    (45) 

𝐷4 =
)45(

)123(









04.11

0
  

 

 

 

When all the data points are merged to a single cluster, the increase in 𝐸𝑆𝑆 will be 

∆𝐸𝑆𝑆(123)(45) =
1

2
(11.4) = 5.7 and the total 𝐸𝑆𝑆 will be 𝐸𝑆𝑆4 = 𝐸𝑆𝑆3 + ∆𝐸𝑆𝑆(123)(45) =

4 + 5.7 = 9.7, the dendrogram of Ward’s method is shown below in figure 6. 

 

 

 

 

 

 

 

 

 

 

Figure 6: The Ward’s Dendrogram of distance between five objects 
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     Matrix of distance pair of five objects (Dillon and Goldstein, 1984) was used to illustrate 

the procedural steps of the agglomerative hierarchical clustering methods starting from the 

single linkage method: 

                           1     2     3     4    5 

𝐷 = 𝑑𝑖𝑘 =  

Treating each object as a cluster, we begin clustering by merging two closest items since 𝑑𝑖𝑘 =
𝑑12 = 1, object 2 and 1 are merged to form cluster (12). To implement the next level of 

clustering, we need the distances between the cluster (12) and the remaining objects 3, 4, and 

5. 

The nearest neighbour distances are: 𝑑(12)3 = 𝑚𝑖𝑛{𝑑13, 𝑑23} = 𝑚𝑖𝑛{5,3} = 3. 𝑑(12)4 =

𝑚𝑖𝑛{𝑑14, 𝑑24} = 𝑚𝑖𝑛{6,8} = 6.  𝑑(12)5 = 𝑚𝑖𝑛{𝑑15, 𝑑25} = 𝑚𝑖𝑛{8, 7} = 7. Deleting the rows 

and columns of 𝐷 corresponding to objects 1 and 2, and adding the remaining rows and 

columns for the cluster (12); we obtain the new distance matrix as what we have below because 

a distance matrix will be symmetric and the lower echelon is shown because the upper echelon 

can be filled in by reflection: 

       (12) 3    4    5          

𝐷2 =                     

The smallest distance between pair of clusters is now 𝑑45 = 2, so we merge object 4 and 5 to 

form cluster (45). Calculating the nearest neighbour distances, we have: 

 𝑑(12)(45) = 𝑚𝑖𝑛{𝑑(12)4, 𝑑(12)5} = 𝑚𝑖𝑛{6,7} = 6.   𝑑3(45) = 𝑚𝑖𝑛{𝑑34, 𝑑35} = 𝑚𝑖𝑛{4,6} = 4. 

The distance matrix becomes: 

        (12) 3 (45) 

 𝐷3 = 

The smallest distance between pairs of clusters is now 𝑑(12)3 = 3, so we merge cluster (12) 

and 3 to get the next cluster (123). Now the cluster left are cluster (123) and (45). Their 

nearest neighbour distance is 𝑑(123)(45) = 𝑚𝑖𝑛{𝑑(12)(45), 𝑑3(45)} = 𝑚𝑖𝑛{6,4} = 4. The final 

distance matrix becomes: 

         (123) (45) 

𝐷4 =  

Consequently, clusters (123) and (45) are merged to form a single cluster of all five objects 

(12345) when the nearest neighbour distance reaches 4. The dendrogram is given below as 
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Figure 1: Single Linkage Dendrogram for distances between five objects.  

For the complete linkage method using the same data, we have: 

                            1     2     3      4    5  

𝐷 = 𝑑𝑖𝑘 =      

Treating each object as a cluster, clustering commences by merging the two closest items, 

since 𝑑𝑖𝑘 = 𝑑12 = 1. Objects 1 and 2 are merged to form cluster (12) like the single linkage 

method which uses the minimum distance or most (maximum) similarity. At stage 2, we 

compute the maximum distance between clusters (12) and objects 3, 4, and 5 as 

𝑑(12)3 = 𝑚𝑎𝑥{𝑑13, 𝑑23} = 𝑚𝑎𝑥{5,3} = 5.  𝑑(12)4 = 𝑚𝑎𝑥{𝑑14, 𝑑24} = 𝑚𝑎𝑥{6,8} = 8.    

𝑑(12)5 = 𝑚𝑎𝑥{𝑑15, 𝑑25} = 𝑚𝑎𝑥{8,7} = 8    Which distance matrix becomes: 

       (12)  3    4     5    

𝐷2 =    

The maximum similarity between pair of clusters 4 and 5 is 𝑑45 = 2. At stage 3, the distance 

matrix becomes: 

         (12)   3   (45) 

𝐷3 =       

The maximum similarity between clusters (12) and 3 is 𝑑(12)3 = 5 to give cluster (123). Now 

the clusters left are clusters (123) and (45). The maximum distance between them is:  

𝑑(123)(45) = 𝑚𝑎𝑥{𝑑(12)(45), 𝑑3(45)} = 𝑚𝑎𝑥{8,6} = 8. The final distance matrix becomes: 
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        (123) (45) 

𝐷4 =   

At this final stage, clusters (123) and (45) are merged to form a single of all five objects (12345) 

when the maximum neighbour distance reaches 8. The dendrogram of the complete linkage is 

given in Figure 2 below: 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 2: Complete Linkage Dendrogram for distance between five objects. 

For the average linkage method: 

 

                            1     2     3     4    5  

𝐷 = 𝑑𝑖𝑘 =      

Since min 𝑑𝑖𝑘 = 𝑑12 = 1, object 1 and 2 are merged to form cluster (12). To calculate the 

average distance we use Equation (4) which is: 

𝑑(𝑋𝑌)𝑍 =
∑𝑖 ∑𝑘 𝑑𝑖𝑘

𝑁(𝑥𝑦)𝑁𝑧
  =  𝑑(12)3 =  

1

2
𝑑13 +

1

2
 𝑑23 =  

5

2
+

3

2
= 4 .  𝑑(12)4 =

1

2
𝑑14 +

1

2
𝑑24 =

6

2
+

8

2
= 7. 𝑑(12)5 =

1

2
𝑑15 +

1

2
𝑑25 =

8

2
+

7

2
=

15

2
 .  The distance matrix becomes 
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         (12)     3       4       5 

𝐷2 =   

The minimum distance between pairs of clusters is now 𝑑45 = 2. So object 4 and 5 are merged 

to form cluster (45) and the average distance is computed as:    𝑑(12)(45) =  
1

2
𝑑(12)4 +

1

2
𝑑(12)5 =

7

2
+

15

4
=

29

4
    𝑑3(45) =

1

2
𝑑34 +

1

2
𝑑35 =

4

2
+

6

2
= 5  then the distance matrix becomes: 

         (12)     3   (45) 

𝐷3 =  

Since the minimum distance between pairs of clusters is now 𝑑(12)3 = 4. We merge clusters 

(12) and 3 to form clusters (123) and (45) which average distance is 𝑑(123)(45) =
1

2
𝑑(12)(45) +

1

2
𝑑3(45) =

29

8
+

5

2
=

49

8
, so the final distance becomes 

         (123)   (45) 

𝐷4 =  

At this final stage, clusters (123) and (45) are merged to form a single cluster (12345) when 

the average distance reaches 
49

8
= 6.125. 

The dendrogram of the average linkage method is given in Figure 3 below 

 

 

 

 

 

 

 

 

 

 

Figure 3: Average Linkage Dendrogram for the distance between five objects 
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For the centroid method 

 

                            1     2     3     4    5  

𝐷 = 𝑑𝑖𝑘 =      

Since min 𝑑𝑖𝑘 = 𝑑12 = 1, object 1 and 2 are merged to form cluster (12), then the distance is 

updated as:   𝑑(12)3 =
1

2
{𝑑13 + 𝑑23} −

1

4
𝑑12 =

1

2
{5 + 3} −

1

4
(1) = 3.75  

 𝑑(12)4 =
1

2
{𝑑14 + 𝑑24} −

1

4
(1) =

1

2
{6 + 8} −

1

4
(1) = 6.75   

 𝑑(12)5 =
1

2
{𝑑15 + 𝑑25} −

1

4
(1) =

1

2
{8 + 7} −

1

4
(1) = 7.25    The distance matrix becomes 

        (12)     3     4    5 

𝐷2 =  

The minimum distance between pairs of clusters is 𝑑45 = 2, so we merge objects 4 and 5 to 

form cluster (45). In the second stage, the distance is updated as:  

𝑑(12)(45) =
1

2
{𝑑(12)4 + 𝑑(12)5} −

1

4
𝑑45 =

1

2
{6.75 + 7.25} −

1

4
(2) = 6.5    

𝑑3(45) =
1

2
{𝑑34 + 𝑑35} −

1

4
𝑑45 =

1

2
{4 + 6} −

1

4
(2) = 4.5.   Then the distance matrix becomes 

         (12)      3    (45) 

𝐷3 =  

The minimum distance between pairs of clusters is now 𝑑(123) = 3.75, so clusters (12) and 3 

are merged to form cluster (123). Now, the clusters left are (123) and (45). At this third stage, 

the distance is updated as:       

𝑑(123)(45) =
2

3
𝑑(12)(45) +

1

3
𝑑3(45) −

2

9
𝑑(123) =

2

3
(6.5) +

1

3
(4.5) −

2

9
(3.75) = 5. And the final 

distance matrix becomes 

        (123)  (45) 

𝐷4 =   

The dendrogram of the centroid method is given below in Figure 4 
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Figure 4: The centroid dendrogram for the distance between five objects 

For the median method 

                             1      2      3     4    5  

𝐷 = 𝑑𝑖𝑘 =      

Since min 𝑑𝑖𝑘 = 𝑑12 = 1, object 1 and 2 are merged to form cluster (12). The median distance 

between newly formed groups and other groups is computed using Equation (8) below 

𝐷(𝑐𝑘, 𝑐𝑖 ∪ 𝑐𝑗) =
1

2
𝐷(𝑐𝑘, 𝑐𝑖) +

1

2
𝐷(𝑐𝑘, 𝑐𝑗)

−
1

4
𝐷(𝑐𝑖, 𝑐𝑗)                                                                                  (8) 

𝑑(12)3 =
1

2
{𝑑13 + 𝑑23} −

1

4
𝑑12 =

1

2
{5 + 3} −

1

4
(1) = 3.75  

𝑑(12)4 =
1

2
{𝑑14 + 𝑑24} −

1

4
𝑑12 =

1

2
{6 + 8} −

1

4
(1) = 6.75  

𝑑(12)5 =
1

2
{𝑑15 + 𝑑25} −

1

4
𝑑12 =

1

2
{8 + 7} −

1

4
(1) = 7.25   The distance matrix becomes 

        (12)     3    4    5 

𝐷2 =  

 The minimum distance between pairs of clusters is 𝑑45 = 2, so we merge objects 4 and 5 to 

form a cluster (45). The median distance becomes 

𝑑(12)(45) =
1

2
{𝑑(12)4 + 𝑑(12)5} −

1

4
𝑑45 =

1

2
{6.75 + 7.25} −

1

4
(2) = 6.5    

𝑑3(45) =
1

2
{𝑑34 + 𝑑35} −

1

4
𝑑45 =

1

2
{4 + 6} −

1

4
(2) = 4.5.   Then the distance matrix becomes 

         (12)      3    (45) 

𝐷3 =  
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The minimum distance between the pair of cluster is now 𝑑(123) = 3.75, so clusters (12) and 3 

are merged to form cluster (123). The median distance becomes   𝑑(123)(45) =
1

2
{𝑑(12)(45) + 𝑑3(45)} −

1

4
𝑑123 =

1

2
{6.5 + 4.5} −

1

4
(3.75) = 4.56  and the final matrix 

distance becomes 

         (123)  (45) 

𝐷4 =  

The dendrogram of the median method is given below in Figure 5 

 

 

 

 

 

 

 

 

 

 

Figure 5: The median dendrogram of the distance between five objects. 

For Ward’s method:  

                            1      2     3     4     5  

𝐷 = 𝑑𝑖𝑘 =      

𝑀𝑖𝑛 𝑑𝑖𝑗 = 𝑑12 = 1. When we compute the dissimilarity matrix for a data set 𝐷 =
{𝑥1, 𝑥2, … , 𝑥𝑘} using the squared Euclidean distance, then the entry (𝑖, 𝑗) of the dissimilarity 

matrix is 𝑑𝑖𝑗
2 = 𝑑(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑗)

𝑇
= ∑𝑖=1 (𝑥𝑖 − 𝑥𝑗)

2
 where d is the 

dimensionality of the data set D. Initially, 𝐸𝑆𝑆0 = 0, 1 𝑎𝑛𝑑 2 will merge at the first stage and 

the increase in 𝐸𝑆𝑆 that result from the fusion (merger) of 1 and 2 is ∆𝐸𝑆𝑆12 =
1

2
(1) = 0.5 

hence the 𝐸𝑆𝑆 becomes 𝐸𝑆𝑆1 = 𝐸𝑆𝑆0 + ∆𝐸𝑆𝑆12 = 0 + 0.5 = 0.5 using Equation (7) and the 

distance are updated as  

𝑑(12)3 =
2

3
(𝑑13 + 𝑑23) −

1

3
𝑑12 =

2

3
(5 + 3) −

1

3
= 5  

𝑑(12)4 =
2

3
(𝑑14 + 𝑑24) −

1

3
𝑑12 =

2

3
(6 + 8) −

1

3
= 9  
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𝑑(12)5 =
2

3
(𝑑15 + 𝑑25) −

1

3
𝑑12 =

2

3
(8 + 7) −

1

3
= 9.67    The distance matrix becomes 

          (12)     3    4    5 

𝐷2 =  

In the second stage, 4 and 5 will merge and the resulting increase in 𝐸𝑆𝑆 is ∆𝐸𝑆𝑆45 =
1

2
(2) =

1. The total 𝐸𝑆𝑆 becomes 𝐸𝑆𝑆2 = 𝐸𝑆𝑆1 + ∆𝐸𝑆𝑆45 = 0.5 + 1 = 1.5, after 4 and 5 are merged, 

the distances are updated as 𝑑(12)(45) =
1

4
(𝑑(12)4 + 𝑑(12)5) −

1

4
𝑑45 =

3

4
(8 + 9.67) −

2

4
(2) =

12.25 

𝑑3(45) =
2

3
(𝑑34 + 𝑑35) −

1

3
𝑑45 =

2

3
(4 + 6) −

1

3
(2) = 6  The matrix becomes 

           (12)    3   (45) 

𝐷3 =  

At the third stage, 1, 2 and 3 are merged and the resulting increase in 𝐸𝑆𝑆 is ∆𝐸𝑆𝑆 =
1

2
(5) =

2.5, then the total 𝐸𝑆𝑆 becomes 𝐸𝑆𝑆3 = 𝐸𝑆𝑆2 + 𝐸𝑆𝑆(12)3 = 1.5 + 2.5 = 4 and the distance is 

updated as 𝑑(123)(45) =
4

5
𝑑(12)(45) +

3

5
𝑑3(45) −

2

5
𝑑123 =

4

5
(12.25) +

3

5
(6) −

2

5
(5) = 11.4 and 

the distance matrix becomes 

          (123)    (45) 

𝐷4 =  

When all the data points are merged to a single cluster, the increase in 𝐸𝑆𝑆 will be 

∆𝐸𝑆𝑆(123)(45) =
1

2
(11.4) = 5.7 and the total 𝐸𝑆𝑆 will be 𝐸𝑆𝑆4 = 𝐸𝑆𝑆3 + ∆𝐸𝑆𝑆(123)(45) =

4 + 5.7 = 9.7, the dendrogram of Ward’s method is shown below in Figure 6. 

 

 

 

 

 

 

 

 

 

Figure 6: The Ward’s Dendrogram of distance between five objects 
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 CONCLUSION 

     In this paper, we have presented six agglomerative hierarchical clustering methods and also 

evaluated how these methods work on a matrix of distance pairs of five objects. 

     The dendrograms of the agglomerative hierarchical clustering methods show all the steps in 

the hierarchical procedure which includes the distances (or similarities) at which clusters are 

merged. The dendrograms displayed information in respective tables in the form of a tree 

diagram. It was observed that in each dendrogram; points (observations) in the x-axis, that is, 

1, 2, … , 5 made up of one single cluster (12345). The y-axis indicates the distances or heights 

(ℎ𝑖𝑗)  of the internal nodes for each pair of data points. 

     Small values of (ℎ𝑖𝑗) indicate a high similarity and large values of (ℎ𝑖𝑗) indicate a high 

distance between 𝑥𝑖 and 𝑥𝑗. It was observed that the single linkage method via its dendrogram 

produced the most similarity measure between 𝑥𝑖 and 𝑥𝑗, while Ward’s method provided the 

highest distance measure between 𝑥𝑖 and 𝑥𝑗. 
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