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ABSTRACT: The structure of groups plays an important role in 

the study of the nature of the groups. We examine some basic 

properties and structural characteristics of the dihedral group of 

degree n, where n is a natural number, by group-theoretic 

approach. We begin the exploration by providing a foundational 

understanding of dihedral groups, elucidating their definitions 

and essential properties. Furthermore, we investigated the 

algebraic and geometric aspects of these groups, highlighting 

their role in describing symmetries of n-gons and other 

mathematical entities. Special attention is given to the distinctive 

features that differentiate dihedral groups from other algebraic 

structures. The analytic expressions for the order of subgroups 

are obtained and the commutativity investigated. The groups are 

all represented for further analysis and applications. 
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INTRODUCTION 

Background of the Study  

A group is a finite or infinite set of elements together with a binary operation (called the 

group operation) that together satisfy the four fundamental properties of closure, 

associativity, the identity property, and the inverse property. Until the mid nineteenth century, 

the concept of a group was essentially that of a permutation group, and even though we now 

have a more abstract concept of a group, it is the simple result of Cayley’s theory  that any 

group can be embedded into a permutation group (Cayley, 1844). Although it is often less 

beneficial to study groups within this framework, permutation groups are still quite important 

and  not only appear in many other branches of mathematics (for example, combinatorics) but 

also form an active field of research today. Although group theory is a mathematical subject, 

it is indispensable to many areas of modern theoretical physics, from atomic physics to 

condensed matter physics, particle physics to string theory. In this work, we shall focus on a 

subset of symetric group called the Dihedral group. In mathematics, a dihedral group is the 

group of symmetries of an n-sided regular polygon for n > 1, which includes rotations and 

reflections. Dihedral group is denoted as Dn. According to Conrad (2018 and 2018b) the 

order of the Dihedral group is 2n and every rotation in the dihedral group is conjugate to its 

inverse. Dihedral groups are among the simplest examples of finite groups, and they play an 

important role in group theory, geometry, and chemistry. Jaume et al, (2017) gave a new 

classification of the infinite dihedral groups, and they showed that a complete classification of 

all representations can be described by a system of numerical invariants for the dihedral 

group of rank 2. Müller (2013) proved that it is only dihedral group which does not admit any 

outer automorphisms among the various types of groups. A dihedral group is simply a group 

of rotations and reflections for a regular polygon, the dihedral group for n-polygon is denoted 

by D2n, where the order of this group is the number of rotations and reflections for the 

vertices of n-polygon, That is by determining the symmetric axes (which depends on whether 

n is odd or even), and then find the reflections and rotations in term of each symmetric axis. 

The number of distinct rotations is n which is also the number of distinct reflections, so |Dn| = 

2n, this is why we use the notation D2n. In general, let S = {s0,s1,··· ,sn−1} be the set of all 

reflection symmetries and R = {r0,r1,··· ,rn−1} be the set of all rotational symmetries both are 

outcomes by permutating  the vertices of n-polygon then, according to (Marlos and 

Vasudevan, 2015), we can give the following definition.  

Definition. A dihedral group, D2n, for the regular n-polygon is the set S ∪ R equipped with the 

composition operation ◦, given by the following relations: 

ri ◦ rj = r(i+j) mod n , si ◦ sj = s(i+j) mod n , ri ◦ rj = s(i−j) mod n and si ◦ sj = r(i−j) mod n, where the 

composition of symmetries is also symmetric. Notice that r0 = e the counter clockwise 

rotations by 0◦ is the identity element (David and Richard, 2014). 

In this project work, we shall focus on the finite dihedral groups of degree n for n > 1, their 

application, their elements, their subgroups and their structures. 
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METHOD  

The method we are using in this research is the theoretical method and here are some relevant 

theorems and proofs. 

Theorem (Cameron, 1981) 

The symmetric group on 𝑛 letters, 𝑆𝑛, is a group with n! elements, where the binary operation 

is the composition of maps. 

Proof: 

The identity of 𝑆𝑛 is just the identity map that sends 1 to 1, 2 to 2, … , 𝑛 to 𝑛. If 𝑓: 𝑆𝑛 → 𝑆𝑛 is 

a permutation, then 𝑓−1 exists, since f is one-to-one and onto; hence, every permutation has 

an inverse. Composition of maps is associative, which makes the group operation associative. 

Theorem (Cayley, 1854) 

Any finite group 𝐺 is isomorphic to a subgroup of the symmetric group 𝑆𝑛 of degree 𝑛, where 

𝑛 =  |𝐺|. 

Proof:  

Let 𝐺 act on itself by right multiplication 𝑔ℎ = 𝑔ℎ for all 𝑔, ℎ ∈ 𝐺. If 𝑔ℎ = 𝑔 then 𝑔ℎ = 𝑔 

and so ℎ = 1. That is, the kernel of the action is {1}. The mapping 𝑓: 𝐺 → 𝑠𝑦𝑚(𝐺) define by 

𝑓: 𝑔 → 𝑓𝑔 where 𝛼𝑓𝑔 = 𝛼𝑔 for any 𝛼 ∈ 𝐺 is a homomorphism. Then 𝐺
ker 𝑓⁄ ≅ 𝑖𝑚 𝑓. But 

𝑘𝑒𝑟 𝑓 =  {1} and 𝑖𝑚 𝑓 ≤ 𝑠𝑦𝑚(𝐺) = 𝑆𝑛. Accordingly 𝐺 ≤ 𝑆𝑛. In general we have that if 𝐺 

acts on Ω with 𝑘 kernel of the action then 𝐺 𝑘⁄ ≤ 𝑠𝑦𝑚(Ω). 

The Permutation Representation (grove, 1997, p,99) 

Supposed 𝐺 acts on the set 𝑋 of 𝑛-elements such that for each  𝑔 ∈ 𝐺 we have a permutation 

of the form 𝑋𝑖𝑔 = 𝑥𝑖, 𝑖, 𝑗 = 1, … , 𝑛. Now let 𝑉 be an n-dimensional vector space with basis 

𝐵 = {𝑒𝑖, … , 𝑒𝑛}. For 𝑔 ∈ 𝐺 define p(𝑔) such that 𝑒𝑖p(𝑔) = 𝑒𝑗 . So p(𝑔) permutes the basis 

elements of 𝑉 in the same manner as 𝑔 act on 𝑋. 

The alternating group  

Lemma 3.4.1 Let n ≥ 2. The set An of all even permutations of {1....,n} is a subgroup of Sn. 

Moreover, An has index 2 in Sn. (In other words, there are precisely two right cosets of An in 

Sn.)  

Proof:  

 We use the subgroup test to show that An is a subgroup of Sn. Certainly An is closed: if σ, τ 

are composites of 2k, 2l transpositions respectively, then σ ◦ τ is a composite of 2(k + l) 

transpositions. The identity permutation is the composite of 0 transpositions. Finally, if σ is a 

composite τ1 ◦···◦ τ2k of 2k transpositions, then so is σ−1 = τ2k ◦···◦ τ1.  

Thus An is a subgroup. If τ is a transposition, then for any odd permutation α we have β := α ◦ 

τ ∈ An, and α = β ◦ τ (since τ2 = id). Hence the coset An ◦ τ contains all odd permutations. 
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Since An contains all even permutations, An ∪ An ◦ τ = Sn, so the only two right cosets of An 

in Sn are An and An ◦ τ = Sn\An.  

Example. S3 = {id, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}.  

     A3 = {id, (1, 2, 3), (1, 3, 2)} = <(1, 2, 3)>  ≅ Z3.  

The group An is known as the alternating group of degree n. It has order n!/2, since it is a 

subgroup of index 2 in the group Sn of order n!. 

Theorem (Disjoint Cycles Commute)  

If 𝛼 = (a1a2a3…am) and 𝛽 = (b1b2b3…bn) are two cycles having no entries in common, then 𝛼 

and 𝛽 commutes i.e., 𝛼𝛽 = 𝛽𝛼.  

Proof: Let 𝛼 and 𝛽 be permutations on set S given by;  

  S = {a1,a2,a3,…,am,b1,b2,b3,…,bn,c1,c2,c3,…,ck} 

Where cis are elements in S which are left fixed by both 𝛼 and 𝛽. Let A = {a1,a2,a3,…,am}, B 

= {b1,b2,b3,…,bn} and C = {c1,c2,c3,…,ck}. By definition, 𝛼 fixes every element of B ∪ C and 

𝛽 fixes every element of A ∪ C. Also, 𝛼(x)є A for all x є A and 𝛽(y) є B for all y є B.  

Now to show that 𝛼𝛽 = 𝛽𝛼, consider any element s є S. Then we have three possibilities:  

Case I:   x є A  

Then;  

 𝛼𝛽(x) = 𝛼(𝛽(x)) 

 = 𝛼(x)[x є A ⇒ 𝛽(x) = x (𝛽 fixes every element of A)] 

 = 𝛽(𝛼(x))[x є A ⇒ a(x) є A ⇒ 𝛽 (𝛼(x)) = 𝛼(x)] 

 = 𝛽𝛼(x).  

Case II:  x є B 

Then; 

 𝛽𝛼(x) = 𝛽(𝛼(x)) 

 = 𝛽(x)[x є B  ⇒  𝛼(x) = x (𝛼 fixes every element of B)] 

 =𝛼(𝛽(x)){x є B  ⇒ 𝛽(x) є B ⇒ 𝛼(𝛽(x)) = 𝛽(x)] 

 = 𝛼(𝛽(x).  

Case III:   x є  C  

Then; 

 𝛼(x) = x = 𝛽(x) and hence we have;  
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 𝛼𝛽(x) = 𝛼(𝛽(x)) = 𝛼(x) = x = 𝛽(x) = 𝛽(𝛼(x)) = 𝛽𝛼(x) 

Thus 𝛼𝛽 and 𝛽𝛼 agrees on every element of s, whence 𝛼𝛽 = 𝛽𝛼.  

Hence the two permutations 𝛼 and 𝛽 commutes.   

In the next theorem we give order of a cycle which we will be using later to find the order of 

a given permutation.  

Theorem (Order of a cycle)  

A cycle of length n has order n.  

Proof: Let 𝛼 = (a1a2…an) be a cycle of length n defined on set S. For any i (1 ≤ i ≤ n) and any 

k є ℕ 

Ak(ai) = ak-1(a(ai)) 

=ak-1(ai+1) 

=ak-2(a(ai+1)) 

=ak-2(ai+2) 

: = a1+k 

(with the assumption that ak = ak (mod n) for all k).  

It follows thata
k(ai) =ai if and only if k is a mutlipel of n. hence n is the smallest positive 

integer such that an fixes every member of A = {a1,…,an}. also, since 𝛼 fixes every element 

of S – A, therefore an fixes every element of S – A. Thus n is the smallest positive integer 

such that an
 fixes every element of s i.e., an =Is. consequently, │𝛼│= n and the theorem 

follows.  

Now having defined a cycle, given the formula for the order of a cycle and introduced 

multiplication between two cycles,, the next natural question that comes to our mind is how 

to apply these? In other words, if we have been given a permutation in array form, how we 

can represent it in the cycle form? Is it always possible to do so? We will have answer to 

these questions shortly.  

Before answering these questions let us consider a permutation given in array form.  

𝛼 = [
  1      2        3        4       5       6  7
   2      1        5        3       6       4   7

] 

Observe that here 1 → 2 → 1, 3 → 5 → 6 → 4 → 3, 7 → 7 

One can easily verify that we can write 𝛼 as follows;  

𝛼(12)(3564)(7) 

Thus we are able to express the given permutation 𝛼 into product of cycles (disjoint). Can we 

express every permutation defined on a finite set into cycles or product or cycles? Indeed in 
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the next theorem we prove that every permutation is either a cycle or is expressible as a 

product of disjoint cycles. The technique used in the proving the theorem is implicit in the 

way we decomposed the permutation 𝛼 is above example.   

Theorem (Order of a Permutation on a finite set)  

The order of a permutation defined on a finite set is the least common multiple of the lengths 

of the cycles in a decomposition of permutation into product of disjoint cycles.  

Proof: Let 𝛼 be any permutation of any finite set S and 𝛼 = a1a2….an be decomposition of 𝛼 

into product of disjoint cycles, where ai is a cycle of length mi.  

Theorem (Product of Disjoint Cycles)  

Any permutation on a finite set is either a cycle or is expressible as a product of disjoint 

cycles.  

Proof: Lets be any finite and 𝛼 be any permutation on S. consider my element x1 є S, then a1 

= x1, a2 = 𝛼(x1), a3 = a2 (x1)… are elements of S. Since S is finite and {a1,a2….} ⊆ S, 

therefore we can choose the least positive integer m1 such that am1+1= a1. If S = {a1,…,am1}, 

then 𝛼 = (a1a2…am1) and we are through.  

Other we choose any element x2 є s\{a1….,am1} and as before we can show the existence of a 

least positive integer m2 such that bm2+1 = b1, where bi = ai-1(x2). Further bi  ≠ aj for any i, j. for 

if, bi = aj for some i, j, then  

ai-1(b)=aj-1(a) 

⇒ b = aj-1(a) є {a1,…,am1} 

Which contradicts the choice of b. hence bi ≠ aj for an i,j. Again. If  

S = {a1,…,am1,b1,b2,…,bm2} 

Where they cycles are disjoint. Hence the theorem.  

We earlier mentioned that expressing permutations into cycles have many advantages. One of 

such advantages is that we can easily calculate the order of a given permutation by looking at 

its cycle decomposition. This indeed is an enormous advantage, as it really gives us a lot of 

depth into the study of permutations.   

Theorem (Order of a Permutation on a finite set)  

The order of a permutation defined on a finite set is the least common multiple of the lengths 

of the cycles in a decomposition of permutation into product of disjoint cycles.  

Proof: Let 𝛼 be any permutation of any finite set S and 𝛼 = a1a2….an be decomposition of 𝛼 

into product of disjoint cycles, where ai is a cycle of length mi.  

Claim:│a1a2….an│= l.c.m (m1,m2,…,mn) 
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We shall prove the claim using induction on n. For n = 1, 𝛼 = 𝛼1 and hence by Theorem 5.3 

│a1│=m1. Suppose the claim holds for n = k i.e., │a1a2…ak│= l.c.m (m1,m2….,mk). we need 

to show that │a1a2…akak+1│ = l.c.m (m1,m2,….,mk,mk+1) = p, l.c.m. (m1,m2,…,mk+1) = q and 

│a1a2…akak+1│= r.  

Now since ak+1 commutes with each ai(1 ≤ i ≤ k), therefore ak+1 commutes with a1a2…ak. 

Thus  

Is = {a1a2…akak+1)
r 

={a1a2…ak)rak+1r[{ab}r =arbr if a and b commutes] 

⇒ {a1a2…ak)r = ak+1-5
–r. 

Let ak+1 = (a1a2…amk+1). Then for each i(1 ≤ i ≤ k) and each j(1 ≤ j ≤ mk+1), ai fixes aj Hence 

for each j(1 ≤ j ≤ mk+1), a1a2…ak fixes aj and consequently {a1a2…ak}
r
 fixes aj. thus ak+1

-r fixes 

aj for each  j(1 ≤ j ≤ mk+1). Also, since ak+1 fixes every element of S which is not in ak+1,
-r 

fixes every element of S which is not in ak+1. Hence ak+1
-r

 fixes every element in S and 

therefore.  

{a1a2…ak}
r = ak+1

-r
 = Is. 

It follows that │a1a2…ak│ divides r and │ak+1│divides r i.e., p│r and mk+1│r, which further 

implies that q│r. Now consider. 

{a1a2…ak}
a = {a1}

q{a2}
q 

= IsIs…Is = Is[│ai│= mi divides q] 

Thus │a1a2…s.akak+1│=r divides q and therefore it follows that q = r. hence by induction our 

claim holds i.e., │a1a2…an│ = l.c.m. (m1,m2,…,mn)  

Theorem (Permutation as product of 2-cycles Cannon et al. (2001))  

Every permutation is Sn (n ≥ 2) is expressible as a product of 2-cycles.  

Proof: Let a be any permutation in Sn. Then by theorem 5.4, a is expressible as a product of 

disjoint cycles i.e.,  

 A = a1a2…ak 

Thus to express a as a product of 2-cycles it is enough to show that each ai is expressible as a 

product of 2-cycles. Now for any j є {1,2,…,k}, consider the cycle aj. if aj = (r) for some r є 

{1,2,…,n}, then we can write.  

aj = (r) = (rt) (rt) for any t є {1,2,…,n} – (5)  

and we are through in this case. Therefore let aj = (r1r2…rp) (p ≤ 2), then it can be easily 

verified that;  

aj = (r1rp) (r1rp-1)…(r1r2) 
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Since for any j є {1,2,….,k}, the cycle aj is expressible as a product of 2-cycles, therefore 

permutation a is expressible as a product of 2-cycles. Hence the theorem.  

Theorem Let H  be a sub-group of the symmetric group Sn. then either every permutation in 

H is an even permutation or exactly half of the permutations in H are even. 

Proof: Let H ≤ Sn, then In є H. Thus H contains at least one even permutation. Now if every 

permutation in H is an even permutation. Then we are done. Therefore let H contains an odd 

permutation 𝛼 (say).  

Now let EH be the set of all even permutations in H and OH be the set of all odd permutations 

in H. clearly, EH ≠ Ф and OH ≠ Ф. Define Ф:EH ⟶ OH as follows;  

Ф(𝛽) = 𝛼𝛽 ∀𝛽 є EH 

Claim: Ф is bijective.  

Injective: Consider for 𝛽1𝛽2 є EH such that;  

Ф(𝛽1) = Ф(𝛽2) 

⇒ 𝛼𝛽1 = 𝛼𝛽1 

⇒ a│a│-1𝛼𝛽1 = a│a│-1𝛼𝛽2 [Multiplying both sides by a│a│-1] 

⇒ a│a│𝛽1 = a
│a│𝛽2 

⇒ 𝛽1 = 𝛽2  

Thus Ф is injective.  

Surjective: Let y є OH be any arbitrary element. Since inverse of an odd permutation is odd, 

therefore 𝛼-1 is an odd permutation and consequently,   𝛼-1y є EH. Now.  

Ф(𝛼-1y) = 𝛼𝛼-1y = y.  

Since y is an arbitrary element in OH, therefore every element in OH has a pre-image under Ф. 

It follows that Ф is surjective.  

Thus Ф is bijective map, which further implies that │EH│ = │OH│. Hence the theorem. 

Corollary For n ≥ 2, the order of the group An is n!/2 i.e., 

│An│ =  
𝑛!

2
 

Proof: Since Sn is a subgroup of itself and it contains odd permutations, therefore by  

Theorem 2.7, exactly half of the permutation in Sn are even. Hence  

│An│= 
│S𝑛│

2
  =  

𝑛!

2
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Definition: The dihedral group of order 2n is the group formed by the symmetries of a 

regular n-gon. We denote this group as Dn (although the occasional book will write this as 

D2n). 

Theorem: Label the vertices of Dn starting with v1 and working clockwise to v2, v3, etc. Let r 

be rotation of the n-gon by 2π/n radians and let f be reflection across the line connecting v1 to 

the center of the object. 

(1) e, r, r2, ........, rn-1 are all distinct and rn = e so o(r) = n: 

(2) o(s) = 2. 

(3) s ≠ ri for any i. 

(4) rif ≠ rjf for all 0 ≤ i; j ≤ n - 1 with i ≠ j: 

From this we can conclude that Dn = {e, r, r2, ........, rn-1, f, rf,  r2f, .... rn-1s}. 

Proof:  

(1) Consider where v1 gets mapped under each symmetry. The symmetry r sends v1 to v2, 

while r2 sends v1 to v3 and ri sends v1 to vi+1   and  i + 1 ≠ j + 1 when i ≠ j  if  0 ≤ i;  j < n. 

(2)  Simply consider what applying f twice to each vertex will do to it.  

(3) The symmetry f fixes v1 yet the only ri which does this is rn = e but f is not the identity 

since it sends v2 to vn.  

(4) Since r i ≠ r j by (1), reflecting each by f will not produce the same symmetry. 

Definition: Since every element of Dn is a product of f and r, we say that those two elements 

generate the group. In general we say that a subset S of a group G generates the group if 

every element of the group may be written as a product of elements in S. 

 

Theorem: Let r, f  ∈ Dn be as defined above. 

(1) rf = fr-1: 

(2)  rif  = fr-i for all 0 ≤ i ≤ n. 

 

Proof:  

For (1) consider where rf sends v1. The symmetry f sends it to v1, followed by the symmetry r 

which sends v1 to v2. Conversely, for  fr-1 we first apply  r-1 to v1 which goes to vn and then f  

sends vn to v2. 

Similarly f sends v2 to vn and r sends vn to v1 while r-1 sends v2 to v1 and f preserves v1. 

In general, if  2 < i ≤ n then f  sends vi to vn-i+2 and r sends vn-i+2 to vn-i+3 whereas r-1 sends vi 

to vi-1 and f sends vi-1 to vn-(i-1)+2 = vn-i+. So rf and fr-1 send every vertex to the same vertex. 

Notice that (1) tells us that Dn is not abelian if n ≥ 3. The Theorem above is very useful for 

computations. For example if we want to know what f(rf) is in the group, we can rewrite rf as 

fr-1 and get f(rf) = f(fr-1) = (ff-1)r-1 = rn-1 since f  has order 2 and r · rn-1 = rn = e. 
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Theorem (Order of Dihedral Group) 

The Order of D2n is precisely 2n 

Proof: Let 𝜌 be a rotation that generate a sub-group of order n in D2n.  

Obviously <𝜌> captures all the pure rotations of a regular n-gon. Now let 𝜇 be any rotation, 

then the rest of the elements can that be found by composing each <𝜌> with 𝜇 to get the list 

of elements: 

D2n = {𝜄,𝜌,…,𝜌,
𝑛−1, 𝜇, 𝜇𝜌…𝜇𝜌𝑛}. 

Thus the order of D2n is 2n. 

 

RESULT AND DİSCUSSİON 

Dihedral groups are groups of symmetries of regular n-gons. We start with an example using 

structural approach. 

The Group D3  

Consider a regular triangle T, with vertices labeled 1, 2, and 3. We show T below, also using 

dotted lines to indicate a vertical line of symmetry of T and a rotation of T. 

1 

Figure 1. A Trangle with vertexes label 1, 2, 3. 

Note that if we reflect T over the vertical dotted line (indicated in the picture by f), T maps 

onto itself, with 1 mapping to 1, and 2 and 3 mapping to each other. Similarly, if we rotate T 

clockwise by 120° (indicated in the picture by r), T again maps onto itself, this time with 1 

mapping to 2, 2 mapping to 3, and 3 mapping to 1. Both of these maps are called symmetries 

of  T; f is a reflection or flip and r is a rotation. 

Of course, these are not the only symmetries of  T. If we compose two symmetries of T, we 

obtain a symmetry of  T: for instance, if we apply the map f o r to T (meaning first do r, then 

do f) we obtain reflection over the line connecting 2 to the midpoint of line segment 1- 3. 

Similarly, if we apply the map f o (ror) to T (first do r twice, then do f) we obtain reflection 

over the line connecting 3 to the midpoint of line segment 1-2. In fact, every symmetry of T 

can be obtained by composing applications of  f and applications of  r. 
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For convenience of notation, we omit the composition symbols, writing, for instance, fr for f 

o r, r o r as r2, etc. It turns out there are exactly six symmetries of T, namely: 

1. the map e from T  t o  T  sending every element to itself; 

2. f (i.e, reflection over the line connecting 1 and the midpoint of 2-3); 

3. r (that is, clockwise rotation by 120°); 

4. r2 (that is, clockwise rotation by 240°); 

5. fr (i.e., reflection over the line connecting 2 and the midpoint of 1-3); 

and  

6. fr2 (ie reflection over the line connecting 3 and the midpoint of 1-2).   

 

 

Figure 2. A labeled triangle after individual elements of D3 have been applied 

Declaring that f ° = r° = e, the set 

D3 = {e, f, r, r2, fr, fr2} = { f ir j: i = 0,1, j = 0,1,2} is the collection of all symmetries of  T. 

Remark: Notice that rf = fr2 and that f2 = r3 = e. 

Theorem 4.3.  D3 is a group under composition: 

Proof. 

First, as noted above, rf = fr2. So any map of the form firjfkrl (i, k = 0,1, j,l = 0,1,2) can be 

written in the form fsrt for some s,t Є N. Finally, let R2(s) and R3(t)  be the remainders when 

you divide s by 2 and t by 3; then fsrt = fR2(s)rR3(t)  Є D3.  So (D3, o) is a binary structure. 

Next, function composition is always associative, and the function e clearly acts as identity 

element in D3. Finally, let x = f{rj € D3. Then y = r3-jf2-i is in D3 with xy = yx = e. So D3 is a 

group. The Cayley table for the group D3  is as follows. 

 

× e r r2 f rf r2f 

e e r r2 f rf r2f 

r r r2 e rf r2f f 
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Table 1. Calay’s table for D3 

From the table the following are clearly seen. 

1. The orders of the elements of D3 are as below. 

 

element  e  r  r2  f  rf  r2f 

order  1  3  3  2  2  2  

 

2. List of elements of each order in D3 

 

order  1  2  3 

# elements  1  3  2  

 

 

3. The inverses of the elements of D3 

 

element  e  r  r2  f  rf  r2f 

inverse  e  r2  r  f  rf  r2f  

 

 

r2 r2 e r r2f f rf 

f f r2f rf e r2 r 

rf rf f r2f r e r2 

r2f r2f rf f r2 r e 
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Table 2. Calay’s table for D4 

 

× e r r2 r3 f rf r2f r3f 

e e r r2 r3 f rf r2f r3f 

r r r2 r3 e rf r2f r3f f 

r2 r2 r3 e r r2f r3f f rf 

r3 r3 e r r2 r3f f rf r2f 

f f r3f r2f rf e r3 r2 r 

rf rf f r3f r2f r e r3 r2 

r2f r2f rf f r3f r2 r e r3 

r3f r3f r2f rf f r3 r2 r e 
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Table 3. 

Calay’s table 

for D5 

From the table the following are clearly seen. 

1. The orders of the elements of D5: 

element e r r2 r3 r4 f rf r2f r3f r4f 

order 1 5 5 5 5 2 2 2 2 2 

 

2. The number of elements of each order in D5: 

 

order 1 2 3 4 5 

elts 1 5 0 0 4 

 

3. The inverses of the elements of D5: 

 

elt e r r2 r3 r4 f rf r2f r3f r4f 

inverse e r4 r3 r2 r f rf r2f r3f r4f 

 

Isomorphism of Dihedral group to the Symmetric group 

Let us look at D3 another way. Note that each map in D3 can be uniquely described by how it 

permutes the vertices 1,2,3 of T: that is, each map in D3 can be uniquely identified with a 

unique element of S3. For instance, f corresponds to the permutation (23) in S3, while fr 

corresponds to the permutation (13). It turns out that D3 ≅ S3, via the following 

correspondence. 

× e r r2 r3 r4 f rf r2f r3f r4f 

e e r r2 r3 r4 f rf r2f r3f r4f 

r r r2 r3 r4 e rf r2f r3f r4f f 

r2 r2 r3 r4 e r r2f r3f r4f f rf 

r3 r3 r4 e r r2 r3f r4f f rf r2f 

r4 r4 e r r2 r3 r4f f rf r2f r3f 

f f r4f r3f r2f rf e r4 r3 r2 r 

rf rf f r4f r3f r2f r e r4 r3 r2 

r2f r2f rf f r4f r3f r2 r e r4 r3 

r3f r3f r2f rf f r4f r3 r2 r e r2 

r4f r4f r3f r2f rf f r4 r3 r2 r e 
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           e     →     e 

                                                      f   →    (23) 

                                                      r   →    (123) 

                                                      r2  →    (132) 

                                                     fr   →    (13) 

                                                    fr2  →    (12) 

The group D3 is an example of class of groups called dihedral groups. 

 Result:  Each Dn is isomorphic to a subgroup of Sn. 

Proof. 

We described above how D3 is isomorphic to a subgroup (namely, the improper subgroup) of 

S3. One can show that each Dn is isomorphic to a subgroup of Sn by similarly labeling the 

vertices of the regular n-gon 1,2 ,...,n and determining how these vertices are permuted by 

each element of Dn. 

While D3 is actually isomorphic to S3 itself, for n > 3 we have that Dn is not isomorphic to Sn 

but is rather isomorphic to a proper subgroup of Sn. When n > 3 you can see that Dn cannot 

be isomorphic to Sn  

since |Dn| = 2n  < n! = |Sn| for n > 3. 

It is important to be able to do computations with specific elements of dihedral groups. We 

have the following theorem. 

Result: The following relations hold in Dn, for every n:    

      1. For every i, rif = fr-i (in particular, rf = fr-1 = frn-1); 

2. o(fri) = 2 for every i (in particular, f2 = e); 

3. o(r) = o ( r - 1 )  =  n ;  

 

Proof. 

1 .  We use induction on the exponent of r.  

We already know that  r1f = fr-1. Now suppose   ri-1f = fr-1(i-1) for some i ≥ 2. Then 

rif = r(ri-1f) = r(fr-(i-1)) = (rf)r -i+1 = (fr-1) r -i+1  = fr-i. 

2 .  For every i, fri ≠ e, but 

           (fri)2 = (fri) (fri) = f(rif)ri = f(fr-i)ri = f2r° = e. 
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Theorem:  Let n be an integer greater than or equal to 3. Then, again using the convention 

that f ° =  r° = e, Dn can be uniquely described as 

Dn = {f I r j : i = 0,1, j = 0,1,..., n-1} 

with the relations 

rf  = fr n-1  and  f 2 = r n = e. 

The dihedral group Dn is a nonabelian group of order 2n. 

Proof. 

The proof that Dn is a group parallels the proof, above, that D3 is a group. It is clear that Dn is 

nonabelian (e.g., r f = f rn-1 ≠ f r) and has order 2n. 

 

 CONCLUSİON 

In group theory, the study of dihedral groups have a wide application in Mathematics and 

other field of studies. In this work we have constructed  dihedral groups  by products 

permutations. We used the concept of group theory which includes Lagrange’s theory to 

carry out our analysis. We used examples to validate our results. 
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