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ABSTRACT: In this paper, we provided new methods that 

improve modeling flexibility of probability distributions. The 

methods focus on the construction of kernels for possible 

development of new probability models from (root) variable 

components or arbitrary functions. These approaches are further 

grouped into two different categories including construction of 

kernels from existing probability functions or directly using 

mathematical deterministic functions. The Direct substitution 

approach, homogeneous and inhomogeneous interaction methods 

are captured under kernel development from probabilistic 

functions. Two distributions namely, Lindley-Sine Distribution 

(LSD) and Alpha Lindley Distribution (ALD) were developed from 

the variable component of the Lindley distribution. More so, the 

combinations of normal and arcsine distribution, and Gumbel and 

exponential distributions birthed the Double Censored Normal-

ArcSine Distribution (DCNAD) and Left Censored Gumbel-

Exponential Distribution (LCGED) respectively. Interesting 

unconventional trends including decreasing sinusoidal, bathtub, 

triangular and circular trends realized from these developments 

validates the relevance of the approaches in probability 

forecasting. Finally, the asymptotic stability of the parameters of 

the derived distributions was established through simulation 

study. 

KEYWORDS: kernel development, censoring, trends, 

probability distribution. 
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INTRODUCTION 

Continuous probability distributions are realized majorly in two dimensions; either through 

density or distribution functions. Another approach could be from survival and hazard 

functions, which are technical component expressions of the probability density function (PDF) 

and or cumulative distribution function (CDF). Regardless of any approach adopted for 

methodological development, the common denominator is usually that the integral of the 

density function is one ∫
∞

−∞
𝑔(𝑥, 𝜔)𝑑𝑥 = 1. This integral validation of PDFs gave rise to the 

concept of normalizing constant; which implies that deterministic functions 𝑓(𝑥, 𝜔) can be 

converted to probability functions.  

The idea of normalization suggests that there are at most two components in a PDF: the variable 

component and the adjustable or unadjustable parameter component; where the parameter 

component is an inverted result of integrating the variable component. As reported in Feller 

(1998), Gaunt et al. (2019), Sun, Kong and Pal (2023), Mijoule et al. (2023), Wu et al. (2023), 

the concept of normalizing constant can be summarized thus: 

                                                    𝑔(𝑥, 𝜑) = 𝑍𝜑 𝑓(𝑥, 𝜑)                                                              (1) 

where 𝑍𝜑 =  [ ∫
∞

−∞
𝑓(𝑥, 𝜑)𝑑𝑥 ]−1 is a parameter function, 𝑥 𝑎𝑛𝑑 𝜑 are respectively the 

variable and the vector of constants or parameters. By extension, the multivariate 

representation is given by: 

                                                  𝑔(𝑥𝑖, 𝜑𝑖) = 𝑍𝜑𝑓(𝑥𝑖 , 𝜑𝑖) ,      𝑖 = 1, 2, 3, … , 𝑛                             (2) 

and                                            𝑍𝜑 = [∫
∞

−∞
∫

∞

−∞
… ∫

∞

−∞
𝑓(𝑥𝑖, 𝜑𝑖)𝑑𝑥𝑖]

−1
                                                                   

Lai (2013) studied different approaches to developing probability distributions including 

hazard and mean residual life function method, probability generating function induced G 

distribution, Laplace transform, Skewing, generalization, convolution, parameterization, 

mixture model and composite methods among others. Transformation, censoring and 

truncation of existing distributions are other methods too (Mandel 2007; Geskus 2011; Wang 

et al. 2023; Mohammed et al. 2023). Now, the offspring of various methodologies; however, 

can be treated in the light of equation (1); in fact all density functions follow the same principle 

when reaped apart. In other words, equations (1 and 2) are universal methodology for the 

development of PDFs. 

So far, the trends recorded in literature under continuous distribution as a result of these 

methodologies include monotone increasing and decreasing trends, left and right skewed 

trends, (approximate) symmetric trend, U-shape, inverted and bathtub shapes, bimodal and 

multimodal trends, and triangular and circular trends to the best of my knowledge. But, 

comparatively, bimodal, multimodal, triangular and circular trends do not come by easily; 

especially that multimodal sine wave, increasing and decreasing sinusoidal trends have not 

been realized. 

In this light, we seek to harness various uncommon methodological approaches by different 

construction of kernels for the development of PDFs, which will in turn yield some 

unprecedented trends. The sections that follow next include the methods of constructing 

kernels, vital developmental controls and the parameter estimation and simulation properties. 
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METHODS OF CONSTRUCTING KERNELS  

In this section, we investigate various means of constructing kernels or arbitrary functions for 

the development of PDFs. These various means of construction can be categorized under two 

different approaches:  

● Kernel development from existing probability functions (PDFs and CDFs). 

● Kernel development directly from deterministic functions.  

We engage the study of the former followed by the latter.  

Direct Substitution Method 

This methodology deals with premeditated interjection or replacement of a given variable with 

a function in the variable component (root kernel) 𝑓(𝑥, 𝜑) of an existing PDF. This function 

might be indicial, logarithmic, trigonometric or exponential, expressed as a parametric or 

variable factor, or even their combinations. This method leverages on the ease of adding extra 

parameters in contrast to many generalization methods. For example, we can realize new 

kernels 𝛻(𝑥, 𝜑) from the variable component 𝑓(𝑥, 𝜑) of Lindley distribution (Lindley 1958) 

as: 

                                                (1 + 𝑥)𝑒−𝑎𝑥  → (1 + [
1−𝑠𝑖𝑛[𝑥]

2
]) 𝑒−𝑎𝑥                                         (3) 

                                                (1 + 𝑥)𝑒−𝑎𝑥  →  (1 + 𝑥𝑏)𝑒−𝑎𝑥𝑐
                                                   (4) 

where 𝜑 is the vector of parameters and 𝑥 > 0. These modified kernels when converted to PDF 

would definitely increase the modeling options of their root distributions. We give illustrations 

adopting equations (3 and 4);    

                                              𝛻(𝑥, 𝜑) = (1 + [
1−𝑠𝑖𝑛[𝑥]

2
]) 𝑒−𝛾𝑥                                                                                             

                                              𝑝(𝑥, 𝛾) =
2𝛾(1+𝛾2)

3+𝛾(−1+3𝛾)
 [1 + (

1−𝑠𝑖𝑛[𝑥]

2
)] 𝑒−𝛾𝑥;   𝑥 > 0, 𝛾 > 0      (5) 

 

          

Figure 1: Graph plots of the PDFs as in equation (5) 
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Remark 

From Figure 1 we observe the outright consequence of the kernel development, transforming 

a unimodal function to multimodal model. This novel development assigns some credits to the 

root kernel. The development can be termed Lindley-Sine Distribution (LSD) and can serve as 

a forecast model in economies. Note that 𝑎 = 𝛾 as captured in the figure. 

From the kernel in equation (4) we obtain a PDF.  

                                       𝛻(𝑥, 𝜑) =  (1 + 𝑥𝛽)𝑒−𝛼𝑥𝑐
                                                       

                                       𝑝(𝑥, 𝜑) =
𝑐   𝛼

1+𝛽
𝑐

𝑅°
(1 + 𝑥𝛽) 𝑒−𝛼𝑥𝑐

,   𝑥 > 0, 𝛼 > 0, 𝛽 > 0, 𝑐 > 0  (6) 

where                                     𝑅° = 𝛼
𝛽

𝑐   𝐺𝑎𝑚𝑚𝑎[1/𝑐] + 𝐺𝑎𝑚𝑚𝑎[(1 + 𝛽)/𝑐] 

 

       

Figure 2: Graph plot of the PDF as in equation (6) 

Lindley distribution is limited as it can only model left skewed and monotone increasing trend 

at 𝑎 < 1 and monotone decreasing trend at  𝑎 ≥ 1. As seen in Figure 2, we have modified 

unimodal (approximately bimodal) trend and skewed trends in addition to the aforementioned 

shapes. By nomenclature, we term the PDF Alpha Lindley Distribution (ALD). Note: 𝛼 =
𝑎 𝑎𝑛𝑑 𝛽 = 𝑏 as observed in the figure. 

Homogeneous and Nonhomogeneous Interaction Method 

Here, we treat various combinations of existing probability functions as kernels for new 

probability development. The combination across these functions might look alien, but 

provided there are matching variable supports, such that the kernels are integrable, we could 

use them as well. Let X be a random variable, we hence consider two PDFs 𝑔(𝑥, 𝑎) 𝑎𝑛𝑑 𝑡(𝑥, 𝑏) 

with their corresponding CDFs  𝐺(𝑥, 𝑎) 𝑎𝑛𝑑 𝑇(𝑥, 𝑏), then, we can both homogeneously and 

non-homogeneously combine them to realize new kernels, thus:  

                            𝛻(𝑥, 𝜑) = 𝑔(𝑥, 𝜗) 𝐺(𝑥, 𝜗),       
𝑔(𝑥,𝜗)

𝐺(𝑥,𝜗)
,        𝑔(𝑥, 𝜗) ± 𝐺(𝑥, 𝜗)                 

                             𝛻(𝑥, 𝜑) = 𝑔(𝑥, 𝜗) 𝑡(𝑥, 𝛽),      
𝑔(𝑥,𝜗)

𝑡(𝑥,𝛽)
 ,        𝑔(𝑥, 𝜗) ± 𝑡(𝑥, 𝛽)                          (7)                    
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                             𝛻(𝑥, 𝜑) = 𝐺(𝑥, 𝜗) 𝑇(𝑥, 𝛽),     
𝐺(𝑥,𝜗)

𝑇(𝑥,𝛽)
 ,      𝐺(𝑥, 𝜗) ± 𝑇(𝑥, 𝛽)                           

                             𝛻(𝑥, 𝜑) = 𝑔(𝑥, 𝜗) 𝑇(𝑥, 𝛽),     
𝑔(𝑥,𝜗)

𝑇(𝑥,𝛽)
 ,       𝑔(𝑥, 𝜗) ± 𝑇(𝑥, 𝛽)                          (8) 

where  𝜗 𝑎𝑛𝑑 𝛽 are the vectors of parameters for their respective distributions. It is worthy of 

mention that this combination 2𝑔(𝑥, 𝑎) 𝐺(𝑥, 𝑎) would yield a new PDF for distributions with 

the support range 𝑥 > 0 𝑎𝑛𝑑 − ∞ < 𝑥 < ∞; since ½ is the result of the integration 

of  𝑔(𝑥, 𝑎) 𝐺(𝑥, 𝑎). Now, the various arrangements are realizable when we further introduce 

the concept of censoring in cases where the original support(s) are not converging. By 

convergence, we mean the integrability of a function over a range of support. We note again 

that in combining  𝑔(𝑥, 𝜗) 𝑇(𝑥, 𝛽), where  𝑔(𝑥, 𝜗) has its range in the positive real line, 𝑥 > 0 

and 𝑇(𝑥, 𝛽) takes support such that  𝑥 ∈ 𝑅; the kernel converges by left censoring in view of 

the support of 𝑇(𝑥, 𝛽).    

Censored Distribution in this context implies the adjustment of either the lower or upper bound 

of a distribution. More so, in necessary cases, the upper and lower limits can be modified as 

well. These are referred to as left, right and double censoring  (𝑅𝑐𝑠, 𝑙𝑐𝑠  𝑎𝑛𝑑  𝐷𝑐𝑠) respectively; 

where for  ∫
∞

−∞
𝛻(𝑥, 𝜑)𝑑𝑥:  

● ∫
𝑥𝑚𝑎𝑥

−∞
𝛻(𝑥, 𝜑)𝑑𝑥 →   𝑅𝑐𝑠  

● ∫
∞

𝑥𝑚𝑖𝑛
𝛻(𝑥, 𝜑)𝑑𝑥  →    𝑙𝑐𝑠  

● ∫
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
𝛻(𝑥, 𝜑)𝑑𝑥  →    𝐷𝑐𝑠 

We therefore give some illustrative examples. Let 𝑔(𝑥, 𝜗) ~𝑁(0, 𝜎2) 

and  𝑡(𝑥, 𝛽) ~ 𝐴𝑟𝑐𝑆𝑖𝑛𝑒[𝑥, 𝜋]. It is well known that normal and arcsine distribution are 

symmetric; although the former is bell shaped and the latter has a U-shape. By combining them 

according to equation (7), given as  𝑔(𝑥, 𝜗)/𝑡(𝑥, 𝛽), we apply integration method over the 

support range  0 <  𝑥 <  1; and then normalizing the outcome we obtain a one parameter 

distribution thus:   

                                  𝛻(𝑥, 𝜑) =
𝑔(𝑥,   𝜎)

𝑡(𝑥,   𝜋)
=

{𝜋√(1−𝑥)𝑥}  𝑒
−

𝑥2

2𝜎2

𝜎√2𝜋
 

Note: Although 𝜋 is a number; however, in distribution theory, it is recognized as unadjustable 

parameter.  

                                   𝑝(𝑥, 𝜎) = 𝑍𝜑  (
𝑔(𝑥,   𝜎)

𝑡(𝑥,   𝜋)
) =

8 ⅇ
−

𝑥2

2𝜎2√(1−𝑥)𝑥

𝜋  ℵ𝑃𝐹𝑄
 ,   0 <  𝑥 <  1, 𝜎 > 0             

(9) 

where ℵ𝑃𝐹𝑄 = ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝐹𝑄 [{
3

4
,

5

4
},   {

3

2
, 2} , − 

1

2𝜎2] is a generalized hyper-

geometric function. It is to be noted that the choice of the support range between the two 

distributions was ultimately made due to convergence. Howbeit, we might view the example 

as double censoring 𝐷𝑐𝑠 with respect to the support range of normal distribution  𝑥 ∈ 𝑅. 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323  

Volume 7, Issue 2, 2024 (pp. 192-207)   

197  Article DOI: 10.52589/AJMSS-UJRR0EXY  

  DOI URL: https://doi.org/10.52589/AJMSS-UJRR0EXY 

www.abjournals.org 

 

             

Figure 3: Graph plots of the PDF as in equation (9) 

Remark 

The shapes realized from this combination as clearly shown in Figure 3 are alien to the original 

shapes of the two distributions. These have increased the modeling options of the combo; 

especially that perfect semi-circle symmetric distribution seems to be rare in literature. We 

hence call the new development Double Censored Normal-Arcsine Distribution (DCNAD). 

Note: 𝜎 = 𝑎 as observed in the figure. 

In the next illustration, we exemplify the case of left censoring 𝑙𝑐𝑠 using the product kernel in 

equation (8) 𝛻(𝑥, 𝜑) = 𝑔(𝑥, 𝜗) 𝑇(𝑥, 𝛽), which represents a combination of a PDF and CDF 

from different distributions. If 𝑔(𝑥, 𝜗)~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙[𝜃] and  𝑇(𝑥, 𝛽)~𝐺𝑢𝑚𝑏𝑒𝑙[0, 1]; then we 

realize a new PDF as:  

𝛻(𝑥, 𝜃) = 𝑔(𝑥, 𝜃) 𝑇(𝑥) = (𝜃𝑒−𝜃𝑥)(1 − 𝑒−𝑒𝑥
) 

                     →                  𝑝(𝑥, 𝜃) =
𝜃ⅇ−𝜃𝑥 (1−ⅇ−ⅇ𝑥

)

1−𝜃 Г[−𝜃,   1]
;    𝑥 > 0, 𝜃 > 0                                         (10) 

where Г[−𝜃,   1] is an incomplete gamma function. 

 

 

 

 

 

 

 

        

Figure 4: Graph plots of the PDF as in equation (10) 
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Remark 

The shapes obtained in Figure 4 are products of the combination of Gumbel and exponential 

distributions. The derived distribution is left censored, in view of the Gumbel distribution with 

the support range  𝑥 ∈ 𝑅 . These distributions are characterized by right skewed and monotone 

decreasing trend respectively. However, their combo resulted to triangular and half-bell-curve 

trend distribution, which is majorly not a kind in their individual trend. The half-bell-curve 

trend can co-model scenarios where truncated normal distribution fits. We would refer to this 

development as Left Censored Gumbel-Exponential Distribution (LCGED). 

Kernel Development Directly From Deterministic Functions  

The first section detailed the construction of kernels from existing probability functions. 

However, we briefly will give a more direct illustration using potential mathematical functions. 

Table 1:  Mathematical arbitrary functions for PDF developments 

 

S/N 

 

Kernels 

𝑓(𝑥, 𝜑) 

 

Function Type 

 

Variable 

Support 

 

  

∫
∞

−∞

𝑓(𝑥, 𝜑)𝑑𝑥 

 

Parameter 

Support 

 

𝑍𝜑𝑓(𝑥, 𝜑) 

1 𝑎𝑥𝑒−𝑏𝑥 Indicial / 

Exponential 

{0, ∞} 

 

 

 

1

𝑏 − 𝑙𝑜𝑔[𝑎]
 

 

𝑙𝑜𝑔[𝑎] < 0 

0 < 𝑎 < 1 

𝑏 > 0 

 
(𝑏−𝑙𝑜𝑔[𝑎]) 𝑎𝑥

ⅇ𝑏𝑥 
 

2      
1−𝑠𝑖𝑛 (𝑎𝑥)

2
 

Trigonometric {0, 𝑏}  
−1+𝑎𝑏+𝐶𝑜𝑠[𝑎𝑏]

2𝑎
 { … }  

𝑎(1−𝑠𝑖𝑛[𝑎𝑥])

𝑎𝑏−1+𝑐𝑜𝑠[𝑎𝑏]
 

 

 

3 

 

 

   𝑥𝑎 +
𝑐𝑜𝑠 (𝑏𝑥) 

 

 

Trigonometric 

 

 
{0, 𝑐} 

 

       
𝑐1+𝑎

1+𝑎
+

𝑆𝑖𝑛[𝑏𝑐]

𝑏
 

 

𝑎 > −1 

𝑏 > 0 

𝑐 > 0 

 

 
𝑥𝑎+𝑐𝑜𝑠[𝑏𝑥]

𝑐1+𝑎

1+𝑎
+

𝑠𝑖𝑛[𝑏𝑐]

𝑏

 

4  𝑙𝑜𝑔 [
𝑎𝑥

𝑏
] Logarithmic {0, 1}  −1 + 𝑙𝑜𝑔 [

𝑎

𝑏
] { … } 

 
𝑙𝑜𝑔[

𝑎𝑥

𝑏
]

−1+𝑙𝑜𝑔[
𝑎

𝑏
]
 

 

 

Figure 5: Graph plots of the PDFs from the kernels in Table 1, S/Ns 2. 
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Figure 5 presents a trend for the PDF of the kernel in S/N 2; which features bathtub trend. In 

addition, S/N 1 and 4 is characterized by conventional monotone decreasing trend.  

Vital Developmental Controls 

There are three major inevitable challenges one is very much likely to encounter in various 

attempts, to develop distributions through these mechanisms, and they include:  

● Zero realization of parametric support(s) over a given support range 𝑥 ∈ 𝑅.  

● Having special functions as component(s) of the new distribution. 

● Combining distributions with many parameters. 

As there has been technological advancement, parameter supports for ∫
∞

−∞
𝛻(𝑥, 𝜑)𝑑𝑥 are 

realized by default. However, in cases where the parameter(s) are not conditioned, we 

“manually” constrain them graphically. But, it is advisable to work with components that 

ensure-these supports are realized by default. This is because; it covers all the probability space 

for such distributions. Now, if we engage manual restrictions in a problem, we would realize 

some reasonable coverage, but may not outrightly cover the probability space for such 

distributions. Software like Wolfram Mathematica (WM) or Math Lab could be of great 

assistance here: 

 

Figure 6: Graph showing the plot likelihood in a case of zero parametric support as in S/N 4  

As seen in Figure 6, the adjustments can be made using the blue knots until the plot aligns 

within the probability space. Of course a probability space is the first or second quadrant in a 

graph {𝑥, 𝑦} 𝑎𝑛𝑑 {−𝑥, 𝑦}.   

In handling functions, it might be discouraging sometimes to work with special kinds like 

Bessel, Lommel, Erf, Hyper-geometric, Poly-gamma, Incomplete gamma (and in their various 

regularized or generalized forms), and many other functions alike (Andrew 1998). These 

functions notwithstanding, as observed in the study, can provide some relevant trends in 

probability modeling. So, to process the complexities that come with their computations, 
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simulations and inferential analysis, the use of advanced mathematical software is 

recommended. 

More so, combinatory preference is given to distributions with one or no parameters each, such 

that the total number of parameters is at most two. In cases where the supports are in the 

positive real line, as in equation (6), the combined model can house up to three parameters. 

These in essence, will reduce many complexities one is likely to encounter. 

Parameter Estimation and Simulation Study 

Here, we study the behavior of the parameters of the derived distributions, to ascertain whether 

they are consistent and asymptotically stable. The major goal of the maximum likelihood 

estimator is to obtain the parameter values of a probability function that maximizes the 

likelihood function in the parametric spatial dimension. This can be studied under different 

data conditions, which include uncensored data and or censoring (Fang et al. 2015; Kinaci et 

al. 2014). Censoring is a concept that describes the timing, in which data are recorded during a 

procedural observation; in the sense that truncated events are not treated like exhaustive 

investigations. In general, the likelihood functions for both data conditions are respectively 

given as: 

                                                𝐿(𝑥, 𝜃) = ∏𝑛
𝑖=1 [𝑔(𝑥𝑖)]  

                                                𝐿(𝑥, 𝜃) =
𝑛!

(𝑁−𝑛)!
{∏𝑛

𝑖=1 𝑔(𝑥𝑖)}{1 − 𝐺(𝑥𝑇)}𝑁−𝑛                      (11) 

where 𝑔(𝑥𝑖) 𝑎𝑛𝑑 𝐺(𝑥𝑖) are the PDF and CDF of a distribution with an independent random 

observations 𝑥𝑖 , 𝑖 = 1, 2, … , 𝑛; N is the number of specimens being investigated or number of 

trials. Now, if the fixed time or cycle or count to an event (say failure time) is  𝑥0, then for Type 

1 censoring according to equation (11), the time of termination  𝑥𝑇 =  𝑥0; and 𝑥𝑇 = 𝑥𝑛 for 

Type 2 case. However, for this study, we have our emphasis only on the complete or 

uncensored investigations.   

Now, let 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛 be a vector of observations from LSD, and then the log-likelihood 

for the complete data is defined by:   

                                       𝑙(𝑥, 𝛾) = 𝑙𝑜𝑔𝐿(𝑥, 𝛾) = ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 {𝑓(𝑥, 𝛾)}   

                                       𝑙(𝑥, 𝛾) =  ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 { 

2𝛾(1+𝛾2)

(3+2𝛾2)
 [1 + 𝑆𝑖𝑛2 (

𝑥

2
)] 𝑒−𝛾𝑥}    

                                                   =  𝑙𝑜𝑔 [
2𝛾(1+𝛾2)

(3+2𝛾2)
]

𝑛

+ ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 [1 + 𝑆𝑖𝑛2 (

𝑥𝑖

2
)]   −

𝛾 ∑𝑛
𝑖=1 𝑥𝑖    = 𝑛𝑙𝑜𝑔 (2𝛾) + 𝑛𝑙𝑜𝑔 (1 + 𝛾2) − 𝑛𝑙𝑜𝑔 (3 + 2𝛾2) + ∑𝑛

𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 [1 +

𝑆𝑖𝑛2 (
𝑥

2
)]   − 𝛾 ∑𝑚

𝑖=1 𝑥𝑖           (12) 

The score function for equation (12) is defined by 

                                               
𝜕𝑙

𝜕𝛾
=  

𝑛

𝛾
+

2𝛾𝑛

1+𝛾2 −
4𝛾𝑛

3+2𝛾2 − ∑𝑛
𝑖=1 𝑥𝑖  
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𝑛

𝛾
+

2𝛾𝑛

1+𝛾2 −
4𝛾𝑛

3+2𝛾2 − ∑𝑛
𝑖=1 𝑥𝑖 = 0 

                                                         
𝑛

𝛾
+

2𝛾𝑛

1+𝛾2 −
4𝛾𝑛

3+2𝛾2 − ∑𝑛
𝑖=1 𝑥𝑖 = 0   

                                                              
3+7𝛾2+2𝛾4

3𝛾+5𝛾3+2𝛾5 =
∑𝑛

𝑖=1 𝑥𝑖

𝑛
   

                                    (3 + 7𝛾2 + 2𝛾4) − 𝑥(3𝛾 + 5𝛾3 + 2𝛾5) = 0                                                

Let 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛 be a vector of observations from ALD; then the log-likelihood estimate is 

defined by  

                             𝑙(𝑥, 𝛼, 𝛽, 𝑐) =  ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 [

𝑐   𝛼
1+𝛽

𝑐  (1+𝑥𝛽) ⅇ−𝛼𝑥𝑐

𝛼
𝛽
𝑐   Г[

1

𝑐
]  +  Г[

1+𝛽

𝑐
]

]    

                                                =  𝑙𝑜𝑔 [
𝑐   𝛼

1+𝛽
𝑐  

𝛼
𝛽
𝑐   Г[

1

𝑐
]  +  Г[

1+𝛽

𝑐
]

]

𝑛

+ ∑𝑛
𝑖=1 𝑙𝑜𝑔(1 + 𝑥𝛽)  −

𝛼 ∑𝑛
𝑖=1 𝑥𝑖

𝑐   

                                                = 𝑛𝑙𝑜𝑔 𝑐 + 𝑛 (1 +
𝛽

𝑐
) 𝑙𝑜𝑔 𝑙𝑜𝑔  𝛼 − 𝑛 (

𝛽

𝑐
) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝛼 −

𝑙𝑜𝑔 𝑙𝑜𝑔 Г (
1

𝑐
)  

                                            − 𝑙𝑜𝑔 𝑙𝑜𝑔 Г (
1+𝛽

𝑐
)  + ∑𝑛

𝑖=1 𝑙𝑜𝑔(1 + 𝑥𝛽)  − 𝛼 ∑𝑛
𝑖=1 𝑥𝑖

𝑐     (13) 

The score function for (13) is defined by 

                                                
𝜕𝑙

𝜕𝛼
= 𝑛 (1 +

𝛽

𝑐
) ( 

1

𝛼
) − 𝑛 (

𝛽

𝑐
) ( 

1

𝛼
) − ∑𝑛

𝑖=1 𝑥𝑖
𝑐  

                                                                                                    
𝑛

𝛼
− ∑𝑛

𝑖=1 𝑥𝑖
𝑐 = 0 

                              
𝜕𝑙

𝜕𝛽
= 𝑛 (

1

𝑐
) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝛼 − 𝑛 (

1

𝑐
) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝛼 −

𝑃𝑔(0,   
1+𝛽

𝑐
)

𝑐
+ ∑𝑛

𝑖=1
𝑥𝛽𝑙𝑜𝑔𝑥

(1+𝑥𝛽)
     

                                                                                   ∑𝑛
𝑖=1

𝑥𝑖
𝛽

𝑙𝑜𝑔𝑥

(1+𝑥𝑖
𝑏)

 −
𝑃𝑔(0,

1+𝛽

𝑐
)

𝑐
= 0  

𝜕𝑙

𝜕𝑐
=  

𝑛

𝑐
− 𝑛 (

𝛽

𝑐2
) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝛼 +  𝑛 (

𝛽

𝑐2
) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝛼 +

𝑃𝑔(0,   
1

𝑐
)

𝑐2
+

(1+𝛽) 𝑃𝑔(0,   
1+𝛽

𝑐
)

𝑐2
− 𝛼 ∑𝑛

𝑖=1 𝑥𝑖
𝑐

𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑥𝑖)   

                                         
𝑛

𝑐
 +

𝑃𝑔(0,   
1

𝑐
)

𝑐2 +
(1+𝛽) 𝑃𝑔(0,   

1+𝛽

𝑐
)

𝑐2 − 𝛼 ∑𝑛
𝑖=1 𝑥𝑖

𝑐 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑥𝑖)  = 0  

where 𝑃𝑔(∗,∗) is poly-gamma. 
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Let 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛 be a vector of observations from DCNAD, and then the log-likelihood for 

the complete data is defined by:   

                                                𝑙(𝑥, 𝜎) = 𝑙𝑜𝑔𝐿(𝑥, 𝜎) = ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 {𝑓(𝑥, 𝜎)}   

                                                𝑙(𝑥, 𝜎) =  ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 {

8 ⅇ
−

𝑦2

2𝜎2√(1−𝑥)𝑥

𝜋  ℵ𝑃𝐹𝑄
 }    

                               =  𝑙𝑜𝑔 [
8

𝜋  ℵ𝑃𝐹𝑄
]

𝑛

+ ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 [((1 − 𝑥)𝑥)

1

2]   −
1

2𝜎2
∑𝑛

𝑖=1 𝑥𝑖
2 

                 = 𝑛𝑙𝑜𝑔 8 − 𝑛𝑙𝑜𝑔(𝜋) − 𝑛𝑙𝑜𝑔(ℵ𝑃𝐹𝑄)) + ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 [((1 − 𝑥)𝑥)

1

2] −

1

2𝜎2
∑𝑛

𝑖=1 𝑥𝑖
2          (14) 

The score function for equation (14) is defined by 

                                                     
𝜕𝑙

𝜕𝜎
=  

𝑛{ℶ𝑃𝐹𝑄}

ℵ𝑃𝐹𝑄)
+

1

𝜎3
∑𝑛

𝑖=1 𝑥𝑖
2 

                                                     
𝑛{ℶ𝑃𝐹𝑄}

ℵ𝑃𝐹𝑄)
+

1

𝜎3
∑𝑛

𝑖=1 𝑦𝑖
2 = 0  

Where     ℶ𝑃𝐹𝑄 =
5

16ⅇ3 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝐹𝑄 [{
7

4
,

9

4
} , {

5

2
, 3} , −

1

2ⅇ2]  

More so, if 𝑥𝑖, 𝑖 = 1,2, … , 𝑛 is a vector of observations from LCGED, then the log-likelihood 

for the complete data is defined by:   

                                             𝑙(𝑥, 𝜃) = 𝑙𝑜𝑔𝐿(𝑥, 𝜃) = ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 {𝑓(𝑥, 𝜃)}   

                                             𝑙(𝑥, 𝜃) =  ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 {

𝜃ⅇ−𝜃𝑥 (1−ⅇ−ⅇ𝑥
)

1−𝜃 Г[−𝜃,   1]
}    

                                 =  𝑙𝑜𝑔 [
𝜃

1−𝜃 Г[−𝜃,1]
]

𝑛

+ ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 [1 − 𝑒−ⅇ𝑥𝑖 ]   − 𝜃 ∑𝑛

𝑖=1 𝑥𝑖 

                            = 𝑛𝑙𝑜𝑔𝜃 − 𝑛𝑙𝑜𝑔(1 − 𝜃 Г[−𝜃, 1]) + ∑𝑛
𝑖=1 𝑙𝑜𝑔 𝑙𝑜𝑔 [1 − 𝑒−ⅇ𝑥𝑖 ]   −

𝜃 ∑𝑛
𝑖=1 𝑥𝑖         (15) 

The score function for equation (15) is defined by 

                                                  
𝜕𝑙

𝜕𝜃
=  

𝑛

𝜃
−

𝑛 ( 𝜃𝑀𝐺−Г(−𝜃,1))

1−𝜃 Г[−𝜃,1]
 − ∑𝑛

𝑖=1 𝑥𝑖   

                    (1 − 𝜃 Г[−𝜃, 1]) − 𝜃( 𝜃𝑀𝐺 − Г(−𝜃, 1)) − 𝜃(1 − 𝜃 Г[−𝜃, 1])�̂�  = 0   

Where 𝑀𝐺 = 𝑀𝑒𝑖𝑗𝑒𝑟𝐺[{{}, {1,1}}, {{0,0, −𝜃}, {}},1] 

A numerical analysis like Newton-Raphson iterative method, which is a root finding algorithm, 

can be used to obtain the MLEs of 𝛾, �̂�, �̂�, �̂�, �̂�, 𝜃 𝑎𝑛𝑑 . This scheme is given by 
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                                                 �̂� = 𝜑 −  𝐻−1(𝜑) 𝑆(𝜑)   

where 𝑆(𝜔) is the score function and 𝐻−1(𝜔) is the second derivatives of the log-likelihood 

function termed the Hessian matrix (Akram and Ann 2015; Bayal et al. 2022). Finally, it is 

expected that the different methods show efficiency with respect to the selected size of data 

samples under consideration.  

 

Furthermore, the asymptotic character of the maximum likelihood estimates of the parameters 

of Lindley-Sine, Alpha Lindley, Double Censored Normal-Arcsine, and Left Censored 

Gumbel-Exponential distributions is investigated, through Monte Carlo simulation study. For 

different sample sizes  𝑛 = 20, 50, 75, 100 & 250, a 10000 times trials is carried out; and 

the steps are given by the algorithm:  

i) Choose a value M (which represents the number of Monte Carlo trials). 

ii) Select the values 𝜑0 = (𝛾0, 𝛼0, 𝛽, 𝑐0, 𝜎0, 𝜃0) within the domain of their parameter 

supports. 

iii) Simulate a sample of size n from the derived distributions.  

iv) Compute the maximum likelihood estimates �̂�𝑘 𝑜𝑓 𝜑𝑘 

v) Redo steps 3-4 for 𝑁 number of times  

vi) The computations of the following measures are obtained:  

                                𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑖𝑎𝑠 = [  
1

𝑀
∑𝑀

𝑖=1 (�̂�𝑖 − 𝜑)]  𝑎𝑛𝑑                                           

                                                𝑀𝑆𝐸 = [  
1

𝑀
∑𝑀

𝑖=1 (�̂�𝑖 − 𝜑)2 ]   

See Table 2-7 for the Average Bias and MSE of the LSD, ALD, DCNAD and LCGED 

Table 2: Average Bias and MSE of the (LSD) Estimator �̂� 

Parameter n Average Bias (𝛾) MSE (𝛾) 

 20 0.31626 5.27540 

 50 0.19005 3.57610 
𝛾 = 0.1 75 0.10085 2.24623 

 100 0.09485 2.05691 

 250 0.05852 1.35571 

 20 0.06401 0.25472 

 50 0.03385 0.12843 
𝛾 = 0.5 75 0.01876 0.07529 

 100 0.01232 0.04211 

 250 0.01029 0.03573 

 20 -0.00161 0.03749 

 50 -0.00182 0.01141 
𝛾 = 1.5 75 -0.00250 0.00905 
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 100 -0.00414 0.00884 

 250 -0.00560 0.00546 

 20 -0.00279 0.15275 

 50 -0.00635 0.08667 
𝛾 = 2.5 75 -0.01125 0.03772 

 100 -0.01708 0.02354 

 250 -0.02033 0.02418 

 

Table 3: Average Bias and MSE of the (ALD) Estimator �̂� 

Parameter N Average Bias (𝛼) MSE (𝛼) 

 20 0.1207 0.02012 
𝛼 = 1.5 50 0.1162 0.00635 
𝛽 = 2.0 75 0.1038 0.00479 

𝑐 = 1.0 100 0.1001 0.00306 

 250 0.0967 0.00209 

 20 0.4851 0.03705 
𝛼 = 1.5 50 0.3300 0.02553 
𝛽 = 2.0 75 0.1941 0.01800 

𝑐 = 1.5 100 0.1792 0.01766 

 250 0.0620 0.01669 

 20 0.6190 0.00256 
𝛼 = 2.5 50 0.5606 0.00183 
𝛽 = 2.5 75 0.4970 0.00170 

𝑐 = 4.0 100 0.3792 0.00164 

 250 0.2781 0.00158 

Table 4: Average Bias and MSE of the (ALD) Estimator �̂� 

Parameter n Average Bias (𝛽) MSE (𝛽) 

 20 0.6945 0.09015 
𝛼 = 1.5 50 0.4514 0.08102 
𝛽 = 2.5 75 0.4003 0.07087 

𝑐 = 1.0 100 0.3908 0.05835 

 250 0.3100 0.03254 

 20 0.5321 0.12350 
𝛼 = 1.5 50 0.3143 0.05421 
𝛽 = 2.0 75 0.3018 0.03254 

𝑐 = 1.5 100 0.1011 0.01831 

 250 0.0258 0.00214 

 20 0.8354 0.21470 
𝛼 = 0.5 50 0.6358 0.12014 
𝛽 = 2.5 75 0.6014 0.08211 

𝑐 = 4.0 100 0.4532 0.05360 

 250 0.2145 0.00389 
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Table 5: Average Bias and MSE of the (ALD) Estimator �̂� 

Parameter N Average Bias (c) MSE (c) 

 20 0.8674 0.23512 
𝛼 = 1.5 50 0.7586 0.05386 
𝛽 = 2.5 75 0.5381 0.05123 

𝑐 = 1.0 100 0.3254 0.02519 

 250 0.3012 0.01534 

 20 0.5247 0.09241 
𝛼 = 1.5 50 0.5213 0.09008 
𝛽 = 2.0 75 0.3254 0.07235 

𝑐 = 1.5 100 0.1253 0.06247 

 250 0.1103 0.05321 

 20 0.7586 0.03125 
𝛼 = 0.5 50 0.4251 0.02141 
𝛽 = 2.5 75 0.4011 0.02012 

𝑐 = 4.0 100 0.2345 0.01785 

 250 0.1568 0.01239 

Table 6: Average Bias and MSE of the (DCNAD) Estimator �̂� 

Parameter n Average Bias (𝜎) MSE (𝜎) 

 20 -1.6e-16 0.00499 

 50 -0.3e-16 0.00576 
𝜎 = 0.1 75 -7.8e-16 0.00387 

 100 -8.0e-16 0.00312 

 250 -10.6e-16 0.00125 

 20 -2.6e-15 0.05451 

 50 -2.8e-15 0.04729 
𝜎 = 0.5 75 -3.2e-15 0.04154 

 100 -6.1e-15 0.03215 

 250 -8.2e-15 0.03012 

 20 -3.1e-15 0.06999 

 50 -3.7e-15 0.06865 
𝜎 = 1.5 75 -8.3e-15 0.04824 

 100 -7.9e-15 0.05234 

 250 -9.7e-15 0.01425 

 20 6.2e-15 0.06017 

 50 -2.2e-16 0.05934 
𝜎 = 2.5 75 -3.9e-15 0.05239 

 100 -4.5e-15 0.04236 

 250 -1.2e-15 0.06546 

Table 7: Average Bias and MSE of the (LCGED) Estimator �̂� 

Parameter n Average Bias (𝜃) MSE (𝜃) 

 20 3.5e-15 4.7921 

 50 3.1e-15 2.1045 
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𝜃 = 0.1 75 4.6e-15 5.2365 

 100 1.9e-14 0.2004 

 250 1.4e-14 0.0158 

 20 -1.1e-14 2.0365 

 50 -2.8e-14 1.5867 
𝜃 = 0.5 75 -4.8e-14 0.5876 

 100 -8.5e-14 0.2365 

 250 -3.1e-14 0.4986 

 20 3.8e-15 0.3437 

 50 3.3e-15 0.3014 
𝜃 = 1.5 75 2.5e-15 0.2358 

 100 1.2e-15 0.1356 

 250 -4.4e-16 0.0258 

 20 5.1e-15 0.2145 

 50 6.2e-15 0.3254 
𝜃 = 2.5 75 -9.7e-15 0.0214 

 100 -7.7e-14 0.0145 

 250 -5.5e-13 0.0015 

The estimates for the average bias and mean square error are presented in Tables 2-7, and at 

different selected values of parameters. Apparently, from the Tables, we deduce that the 

estimates of the average bias and mean square error decrease as the sample size 𝑛 increases, 

apart from DCNAD and LCGED that showed slight relativity. These simply indicate that the 

estimators of the derived distributions are consistent and asymptotically stable.  

 

CONCLUSION 

In the course of study, we developed different probability distributions through various means; 

by engaging the construction of kernels from either already existing probability functions or 

directly using mathematical deterministic functions. These approaches entail directly 

substituting parametric functions appropriately in to a variable component of existing 

functions, suitable combinations of PDFs and CDFs given that there is convergence over its 

censored or uncensored variable support range. The remarkable trends obtained are horizontal, 

increasing and decreasing sinusoidal trends, bathtub, triangular and circular trends. The 

modeling possibilities as revealed by the trends validate the adoption of the approaches of 

constructing kernels for the development of probability distributions. More so, a simulation 

study was carried out to ascertain the stability of the different parameters in the variety of the 

derived distributions. The investigation showed that they are consistent and asymptotically 

normal. It is uniquely recommended that extreme events including economic data, sine-wave 

data, flood data and many others can be modelled by adopting the sinusoidal distributions as 

captured in Figures 1 and 5. More so, other forms of kernel development that are not treated 

here can be explored; as they might sustain the propensities for more novel developments.    
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