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ABSTRACT: Communities are concerned about controlling, 

preventing, and handling infectious diseases due to recent 

epidemic outbreaks. Meningitis, an inflammation of the 

membranes surrounding the brain and spinal cord, is a significant 

risk in Nigeria. It can cause death within hours of infection, with 

an average case fatality rate of 10%. To prevent meningitis 

outbreaks, this paper focuses on using an Artificial Neural 

Network (ANN) to predict outbreaks based on climatological 

factors. Previous research has shown that climate plays a major 

role in these outbreaks. The study found that the Levenberg-

Marquaralt ANN algorithm was the best model, with the lowest 

prediction error and fewer iterations. High temperature and low 

humidity were identified as major triggers for meningitis 

outbreaks. It is crucial to address these factors to prevent future 

outbreaks and protect communities. 

KEYWORDS: Artificial Neural Network, Meningitis, Prediction, 

Machine learning, Time steps. 
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INTRODUCTION 

Meningitis is a condition where the membranes surrounding the brain and spinal cord become 

inflamed. These membranes, known as the meninges, are responsible for protecting the central 

nervous system in conjunction with the cerebrospinal fluid. Meningitis can be caused by 

various types of organisms, with bacteria and viruses being the most common culprits. When 

these organisms are present in the cerebrospinal fluid, inflammation occurs in the surrounding 

area. Bacterial meningitis is more prevalent than viral meningitis. [13], meningococcal disease 

is a contagious bacterial illness caused by the Neisseria meningitidis bacterium, which is a 

Gram-negative diplococcus bacterium. 

There are three primary clinical forms of meningococcal disease. The most prevalent type is 

Meningococcal Meningitis (MM), particularly during epidemics. MM, also known as 

cerebrospinal meningitis, is the sole form of meningitis that leads to epidemics with high 

fatality rates. It spreads through respiratory droplets (throat secretions) of an infected person 

via person-to-person contact [12]. 

Epidemics can happen anywhere in the world, but the largest ones tend to occur in the semi-

arid regions of sub-Saharan Africa, which is known as the African 'Meningitis belt' [8]. This 

belt includes countries such as Benin, Burkina Faso, Northern Cameroon, Chad, Gambia, 

Ghana, Mali, Niger, Northern Nigeria, and Sudan. Every year, these countries are heavily 

impacted by major MM disease outbreaks that occur in seasonal cycles between the end of 

December and the end of June, depending on the location and climate of the country. 

Meningitis outbreaks have been linked to climatic and environmental factors [15]. It is believed 

that low absolute humidity and high dust concentration can make it easier for meningococcal 

bacteria to invade by damaging the mucosa barrier directly, penetrating the epithelial lining of 

the upper respiratory tract or inhibiting mucosal immune defense [13]. 

[5] Published the first research that attempted to relate MM outbreaks with environmental 

conditions in Africa. Later on, other studies aimed to model the spatial distribution of MM risk 

based on various environmental factors such as rainfall, absolute humidity, aerosols, 

temperature, and dust concentrations [10]. Although the precise mechanism by which these 

climatic factors impact meningitis is still not fully understood, it is believed that when there 

are increased concentrations of dust, high winds, elevated temperature, and low humidity, there 

may be damage to the nasopharyngeal mucosa, which may increase the risk of meningitis [14]. 

Research has shown that the highest mean temperature is significantly correlated with the 

annual peak incidence of meningitis, while absolute humidity has an inverse correlation [3]. 

The Department of Invasive Disease supports the theory that prolonged dry seasons, which 

occur during the "cold dry" months (November to January), may increase the risk of precursory 

diseases that can lead to meningitis during the subsequent "hot dry" months [2]. 

Previous studies have shown a potential correlation between climatic conditions and the 

incidence of meningitis, indicating the possibility of using environmental information to 

predict outbreaks. For accurate simulation and prediction of climate-related epidemics, it is 

essential to utilize climatic variables as explanatory factors collectively [9]. 

Research conducted in the fields of epidemiology and climatology since the mid-20th century 

has shown a correlation between meningitis epidemics and the dry season in terms of both 

location and timing [6]. The typical climate during the winter in subtropical areas creates an 
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environment conducive to meningitis development, while drought and strong winds can 

increase the risk of meningococcal invasion by damaging the mucous barrier or hindering the 

surface. 

In Nigeria, the majority of meningitis cases and deaths occur in the Northern region due to the 

more severe dry season compared to the South [4]. It is widely known that climate greatly 

influences the spread of many infectious diseases, some of which are leading causes of death 

and illness in developing nations. These illnesses sometimes result in epidemics that can be 

sparked by changes in weather patterns that heighten transmission rates [14]. 

Meningitis has been a problem in Africa, especially in Nigeria, for the last 30 years. It has 

appeared in isolated cases, outbreaks, and even large epidemics. Until recently, the only way 

to control the disease was to conduct mass vaccination campaigns once a certain number of 

cases had been reported. 

A model called the Artificial Neural Network (ANN) can predict the outbreak of meningitis 

before an epidemic happens. This can help improve surveillance and response monitoring to 

prevent the outbreak of meningitis, which can save lives and reduce costs while minimizing 

the negative impact on the economy. Machine learning (ML) is an artificial intelligence 

technique that teaches computers to learn from experience. It works by training with vast data 

sets and creating algorithms that can predict outcomes. These algorithms use mathematical 

methods, often derived from calculus and linear algebra, to identify trends and patterns in the 

data set and make accurate predictions. 

In this paper, the analysis of meningitis climatology is conducted based on environmental 

parameters such as temperature, humidity, surface dust concentration, aerosol optical depth, 

and meridional wind. The Machine Learning approach is used specifically to establish 

predictive models for meningitis outbreaks. While many studies have shown a relationship 

between climatic factors and the occurrence of meningitis, few have focused on predicting the 

outbreaks of meningitis before an epidemic outbreak occurs. However, various predictive 

methods have been utilized by researchers to predict the outbreak of meningitis. There are 

several techniques used for disease prediction. 

[1] Conducted a thorough study that highlighted the impact of certain weather conditions on 

the monthly occurrence of meningitis in Northwest Nigeria. The study also emphasized the 

significance of other risk factors that are not yet fully comprehended but could potentially be 

connected to societal and behavioral practices. The researchers concluded that by identifying 

and measuring both seasonal climate-related and non-climate-related risk factors through 

methods like improving disease surveillance, our understanding and prediction abilities can be 

significantly improved. 

[11] Demonstrated a correlation (r = 0.92) between the onset of meningitis epidemics and the 

peak of winter in Mail, which occurs in the middle of February. This season is marked by the 

strongest harmattan winds and the lowest humidity levels. 

[16] Investigated the "Comparative Study of Four Time Series Methods in Forecasting Typhoid 

Fever Incidence in China,” A thorough analysis of various forecasting techniques based on 

monthly typhoid fever incidence rates was observed. They also compared three different 

models inspired by neural networks: backpropagation neural networks, radial basis function 

neural networks (RBFNN), and Elman recurrent neural networks. The study also examined the 
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theoretical and practical aspects of these models. The authors used data from 2005 to 2010 

collected by the Centre for Disease Control and Prevention as the basis for their forecasting 

samples. The results showed that the neural network-based models were more effective than 

traditional statistical models. 

Based on a study, it has been found that certain types of neural networks perform better than 

others. The focus of the research paper is on the Artificial Neural Network (ANN), which is 

widely used in Machine Learning (ML). In particular, the Multilayer Perceptron Artificial 

Neural Network (MLPANN) is being employed to comprehend the connection between MM 

outbreaks and various environmental factors. The ultimate goal is to create a warning system 

for MM outbreaks that integrates climatology forecasts. 

 

METHODOLOGY 

ANN is used to predict the future values of Meningitis outbreak given the past values. This 

model is developed using the following training algorithms: Levenberg-Marquardt, Bayesian 

Regularization and the Scaled Conjugate Gradient algorithm. 

Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt algorithm combines the steepest descent method with the Gauss-

Newton method and operates correctly in search for parameters both far from and close to the 

optimum one. In the former case the algorithm of the linear model of steepest descent is used, 

and in the latter one - squared convergence. Fast convergence is an additional advantage of the 

algorithm. 

The Levenberg-Marquardt algorithm is an iterative method, in which the vector of unknown 

parameters are determined during step k +1 by the equation: 

𝑎𝑘+1 = 𝑎𝑘
𝑇 − [𝐽𝑇(𝑎𝑘, 𝑡)𝐽(𝑎𝑘, 𝑡) + 𝜇𝑘𝐼]

−1𝐽𝑇(𝑎𝑘, 𝑡)𝑦(𝑎𝑘, 𝑡)          (2)  

With the error: 

𝐼2 = ∫𝑦2

𝑇

0

(𝑎𝑘, 𝑡) 𝑑𝑡,                 (3) 

Where: 

𝑦(𝑎𝑘, 𝑡) = ∫𝑘(𝑡 − 𝜏)𝑢(𝑡)𝑑𝑡,

𝑡

0

            (4) 
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𝐽(𝑎𝑘, 𝑡) =

[
 
 
 
 
 
 
 
𝛿𝑦(𝑎𝑘, 𝑡1)

𝛿𝑎1

𝛿𝑦(𝑎𝑘, 𝑡1)

𝛿𝑎2
⋯

𝛿𝑦(𝑎𝑘, 𝑡1)

𝛿𝑎𝑚

𝛿𝑦(𝑎𝑘, 𝑡2)

𝛿𝑎1

𝛿𝑦(𝑎𝑘, 𝑡2)

𝛿𝑎2
…

𝛿𝑦(𝑎𝑘, 𝑡2)

𝛿𝑎𝑚

⋮ ⋮ ⋱ ⋮
𝛿𝑦(𝑎𝑘, 𝑡𝑛)

𝛿𝑎1

𝛿𝑦(𝑎𝑘, 𝑡𝑛)

𝛿𝑎2
⋯

𝛿𝑦(𝑎𝑘, 𝑡𝑛)

𝛿𝑎𝑚 ]
 
 
 
 
 
 
 

           (5) 

The notations are as follows: 

𝑘 = 1,2, … , 𝑝, 𝑝 −  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑜𝑝𝑠; 

𝐽(𝑛×𝑚)(𝑎𝑘, 𝑡) −  𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑥; 

𝐼(𝑚×𝑚) −  𝑢𝑛𝑖𝑡 𝑚𝑎𝑡𝑟𝑖𝑥; 

𝜇𝑘 −  𝑠𝑐𝑎𝑙𝑎𝑟, 𝑖𝑡𝑠 𝑣𝑎𝑙𝑢𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛; 

𝑎 = [𝑎1, 𝑎2, … , 𝑎𝑚] −  𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑠𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟. 

The Levenberg-Marquardt algorithm is used for computation in the following stages:  

Stage 1, for k=1 

Assume the initial values of the parameters of vector 𝑎𝑘; 

Assume the initial value of the coefficient 𝜇𝑘 (e.g. 𝜇𝑘 = 0.1); 

Solve the matrix equation (5) and calculate (4); 

Calculate the value of error (3); 

Determine the parameters of vector 𝑎𝑘+1, a following (2). 

Stage 2 and further steps, for 𝑘 = 2, 3, … , 𝑝 

Update the values of the parameters of vector 𝑎𝑘; 

Solve the matrix equations (5), calculate (4) and (2); 

Calculate the value of error (3); 

Compare the values of error (3) for the step k and the step k - 1 If the result is 𝐽(𝑎𝑘, 𝑡) ≥
𝐽(𝑎𝑘−1, 𝑡), multiply  𝜇𝑘 by the specific value 𝜆 ∈ ℜ (e.g. λ =10) and return to step 2 of stage  

If the result is 𝐽(𝑎𝑘, 𝑡) < 𝐽(𝑎𝑘−1, 𝑡) divide 𝜇𝑘 by the value of 𝜆 and return to step of stage  

The initial parameters of vector 𝑎 are assumed in an arbitrary way, e.g 𝑎 = [1, 1, … , 1]. 

If in a consecutive stage the decrease in the value of error (3) is very small and insignificant, 

we then finish the iteration process. We fix 𝜇𝑘 = 0 and determine the final result for the 

parameters of vector 𝑎 If the value of coefficient 𝜇𝑘 is high, it means that the solution is not 
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satisfactory𝐼2 = 𝑚𝑎𝑥 ∫ 𝑦2𝑇

0
(𝑎𝑘, 𝑡) 𝑑𝑡. The values of parameters of the vector are not optimum 

ones, and the value of error (3) is not at the minimum level. At this point:  

𝐽𝑇(𝑎𝑘, 𝑡)𝐽(𝑎𝑘, 𝑡) ≪ 𝜇𝑘𝐼,                                 (6) 

Can be assumed and this leads to the steepest descent method, for which we have: 

𝑎𝑘+1 = 𝑎𝑘
𝑇−

1

𝜇𝑘
 𝐽𝑇(𝑎𝑘, 𝑡)𝐽(𝑎𝑘, 𝑡)                (7) 

If the value of coefficient 𝜇𝑘 is small, it means that the values of the parameters of vector  

𝑎 Are close to the optimum solution. Then:  

 

𝐽𝑇(𝑎𝑘, 𝑡)𝐽(𝑎𝑘, 𝑡) ≫ 𝜇𝑘𝐼,                                 (8) 

Which means that the Levenberg-Marquardt algorithm is reduced to the Gauss-Newton 

method:  

 

𝑎𝑘+1 = 𝑎𝑘
𝑇 − [𝐽𝑇(𝑎𝑘, 𝑡)𝐽(𝑎𝑘, 𝑡) + 𝜇𝑘𝐼]

−1𝐽𝑇(𝑎𝑘, 𝑡)𝑦(𝑎𝑘, 𝑡)          (9) 

The selection of coefficient values µ and λ assumed as: µ = 1.0 and λ =10. 

Bayesian Regularization Backpropagation Neural Network 

Bayesian regularization is an artificial neural network training algorithm which corrects the 

weight and refraction values based on the Levenberg-Marquardt optimization. This algorithm 

minimizes the combination of error squares and weights, then determine the correct 

combination so as to produce a good network. This process is called Bayesian regularization. 

Bayesian regularization neural network introduce network weights into the objective function 

of training. The objective function of the training is notated as follows 

𝐹(𝜔) = 𝛼𝐸𝜔 + 𝛽𝐸𝐷                         (10) 

Where 𝐸𝜔 is the sum of squares of the network weight, and 𝐸𝐷 the sum of squares of network 

errors. The values 𝛼 and 𝛽 are parameters of the objective function. In the Bayesian process 

flow, network weights are seen as random variables, then the previous distribution of network 

weights and training is considered a Gaussian distribution follows. The following applies the 

Bayesian rule to optimize the objective function parameters 𝛼 and 𝛽. 

𝑃(𝛼, 𝛽|𝐷,𝑀) =
𝑃(𝐷|𝛼, 𝛽,𝑀)𝑃(𝛼, 𝛽| 𝑀)

𝑃(𝐷| 𝑀)
                 (11) 

Consider a neural network with training dataset 𝐷 having 𝑛𝑡 input and target vector pairs in the 

network model, i.e 

 𝐷 = {(𝑢1, 𝑡𝑜1), (𝑢2, 𝑡𝑜2),… , (𝑢𝑛𝑡
, 𝑡𝑜𝑛𝑡

)}                                    (12) 

For each input (𝑢) to the network, the difference between target output (𝑡𝑜) and predicted output 

(𝑎0) is computed as error 𝑒. In order to evaluate the performance of the network, i.e. how well 

the neural network is fitting the test data, a quantitative measure is needed. 
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This measure is called performance index of the network and is used to optimize the network 

parameters. The standard performance index 𝐹(𝜔̅) is governed by the sum of the squared errors 

(SSE). 

𝐹(𝜔̅) = 𝐸𝐷 = ∑(𝑒𝑖)
2

𝑛𝑡

𝑖=1

= ∑(𝑡𝑜𝑖 − 𝑎0𝑖)
𝑇(𝑡𝑜𝑖 − 𝑎0𝑖),                  (13)

𝑛𝑡

𝑖=1

 

Where 𝜔̅ denotes the vector of size  𝐾 containing all the weights and biases of the network. In 

order to generalize the neural network, the performance index of Eq. (13) is modified using a 

regularization method. A penalty term (
𝜇

⩗⁄ )𝐸𝜔 is added to the performance index 𝐹(𝜔̅). 

𝐹(𝜔̅) = 𝜇𝜔̅𝑇𝜔̅ + ⩗ 𝐸𝐷 = 𝜇𝐸𝜔 +⩗ 𝐸𝐷 ,                                           (14) 

Where 𝜇 and ⩗ are the regularization parameters and 𝐸𝜔 represents the sum of the squared 

network weights (SSW). 

Finding the optimum values for 𝜇 and ⩗ is a challenging task, as their comparative values set 

up the basis for the training error. If 𝜇 << ⩗, smaller errors are generated, while 𝜇 >> ⩗, there 

should be reduced weight size at the cost of network errors. For the purpose of finding the 

optimum regularization parameters, a Bayesian regularization method is employed. 

Considering the network weights 𝜔̅ as random variables, the aim is to choose the weights that 

maximize the posterior probability distribution of the weights 𝑃(𝜔̅|𝐷, 𝜇,⩗,𝑀𝑁) given a certain 

data 𝐷. According to Bayes’ rule the posterior distribution of the weights depends on the 

likelihood function 𝑃(𝐷|𝜔̅, ⩗,𝑀𝑁), the prior density𝑃(𝜔̅|𝜇,𝑀𝑁), and the normalization factor 

𝑃(𝐷|𝜇, ⩗,𝑀𝑁) for a particular neural network model 𝑀𝑁 and can be evaluated from 

𝑃(𝜔̅|𝐷, 𝜇,⩗,𝑀𝑁) =
𝑃(𝐷|𝜔̅, ⩗,𝑀𝑁)𝑃(𝜔̅|𝜇,𝑀𝑁)

𝑃(𝐷|𝜇, ⩗,𝑀𝑁)
                          (15) 

Considering that the noise in the training set has a Gaussian distribution, the likelihood 

function is given by 

𝑃(𝐷|𝜔̅,⩗,𝑀𝑁) =
exp (− ⩗ 𝐸𝐷)

𝑍𝐷(⩗)
,                               (16) 

Where 𝑍𝐷 = (𝜋 ⩗⁄ )
𝑄

2⁄  and 𝑄 =  𝑛𝑡 × 𝑁𝑛𝑙. 

Similarly, assuming a Gaussian distribution for the network weights, the prior probability  

Density 𝑃(𝜔̅|𝜇,𝑀𝑁) is given as  

𝑃(𝜔̅|𝜇,𝑀𝑁) =  
exp (−𝜇𝐸𝑊)

𝑍𝑊(𝜇)
                                (17) 

Where 𝑍𝑊 = (𝜋 𝛼⁄ )
𝐾

2⁄ . 

The posterior probability with the network weights 𝜔̅ can then be expressed as 
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𝑃(𝜔̅|𝐷, 𝜇,⩗,𝑀𝑁) =  
exp (−𝜇𝐸𝑊 −⩗ 𝐸𝐷)

𝑍𝐹(𝜇,⩗)
=

exp (−𝐹(𝜔̅))

𝑍𝐹(𝜇,⩗)
,           (18) 

Where 𝑍𝐹(𝜇,⩗) = 𝑍𝐷(⩗)𝑍𝑊(𝜇) is the normalization factor. 

The complexity of the model 𝑀𝑁 is governed by regularization parameters 𝜇 and ⩗, which need 

to be estimated from the data. Therefore, Bayes’ rule is again applied to optimize them 

From  

 𝑃(𝜇,⩗ |𝐷,𝑀𝑁) =  
𝑃(𝐷|𝜇, ⩗,𝑀𝑁)𝑃(𝜇, ⩗| 𝑀𝑁)

𝑃(𝐷|𝑀𝑁)
,                             (19) 

Where 𝑃(𝜇,⩗ |𝑀𝑁) denotes the assumed uniform prior density for the parameters 𝜇 and ⩗. 

From Eq. (19), it is evident that maximizing the likelihood function 𝑃(𝐷|𝜇, ⩗,𝑀𝑁) eventually 

maximizes the posterior probability𝑃(𝜇, ⩗ |𝐷,𝑀𝑁). Moreover, it can be noted 

that the likelihood function in Eq. (19) is the normalization factor of Eq. (15). Therefore, 

solving for the likelihood function 𝑃(𝐷|𝜇, ⩗,𝑀𝑁) and expanding the objective function in Eq. 

(14) around the minimal point 𝜔̅∗ via a Taylor series expansion, the optimum values of 

regularization parameters can be evaluated as follows  

𝜇∗ = 
𝛾

2𝐸𝑊(𝜔̅∗)
                 and        ⩗∗=

𝑄− 𝛾

2𝐸𝐷(𝜔̅∗)
                                     (20) 

Where 𝛾 signifies the “number” of effective parameters exhausted in minimizing the error 

Function 𝛾 = 𝐾 − 𝜇∗𝑡𝑟(𝐻∗)−1, 𝑓𝑜𝑟 0 ≤ 𝛾 ≤ 𝐾,                                  (21) 

At the end of the training, a few checks regarding the number of effective parameters 

are required for better performance of the network. The problem of computing the Hessian 

matrix at the minimal point 𝜔̅∗ is implicitly solved in the Levenberg-Marquardt (LM) training 

algorithm while finding the minimum of 𝐹(𝜔̅). In the LM algorithm, the network weights and 

biases at the 𝑘𝑡ℎ iteration are adjusted according to   

𝜔̅𝑘+1 = 𝜔̅𝑘 − [𝐽𝑇𝐽 + 𝜆𝐼]−1𝐽𝑇𝑒,                                

and 𝐻∗ is the Hessian matrix of the objective function evaluated at 𝜔̅∗, which is calculated 

using the Gauss-Newton approximation as  

𝐻∗ ≈ 𝐽𝑇𝐽,                                                                 (22) 

Where 𝐽 is the Jacobian matrix formed by the first derivatives of the network errors e with 

respect to network weights 𝑤𝑖𝑗. In (21), tr(.) denotes the trace operator. The normalization 

factor 𝑍𝐹(𝜇,⩗) can then be approximated as    

𝑍𝐹(𝜇,⩗) ≈ (2𝜋)
𝐾

2⁄ (det (𝐻∗))−1
2⁄ exp(−𝐹(𝜔̅∗)).               (23) 
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Scaled Conjugate Gradient Algorithm 

Conjugate gradient methods applied to the non-linear unconstrained minimization problem: 

min 𝑓(𝑥),  𝑥 ∈ 𝑅𝑛.                                   (25) 

Where 𝑓: 𝑅𝑛 → 𝑅 is continuously differentiable function and bounded below. A conjugate 

gradient method generates a sequence 𝑥𝑘, 𝑘 ≥ 1 starting from an initial guess 𝑥1 ∈ 𝑅𝑛, using 

the recurrence 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘                                                     (26) 

Where the positive step size 𝛼𝑘 is obtained by a line search, and the directions 𝑑𝑘 are generated 

by the rule:  

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘,   𝑑1 = −𝑔1                                                 (27) 

Where 𝑔𝑘 = ∇𝑓(𝑥𝑘), and let 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 and 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘  , here 𝛽𝑘 is the CG update 

parameter. Different CG methods corresponding to different choice for the parameter 𝛽𝑘. The 

first CG algorithm for non-convex problems was proposed by Fletcher and Revees (FR) in 

1964, which defined as  

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

                                         (28) 

We know that the other equivalents forms for 𝛽𝑘 are Polack-Ribeir (PR) and Hestenes- Stiefel 

(HS) for example 

𝛽𝑘
𝑃𝑅 =

𝑔𝑘+1
𝑇 𝑦𝑘+1

𝑔𝑘
𝑇𝑔𝑘

,       𝑎𝑛𝑑      𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘+1

𝑑𝑘
𝑇𝑔𝑘

                                         (29) 

Although all the above formulas are equivalent for convex quadratic functions, but they have 

different performance for non-quadratic functions, the performance of a non-linear CG 

algorithm strongly depends on coefficient 𝛽𝑘. Dai and Yuan (DY) in proposed a non-linear CG 

method (28) and (29) with 𝛽𝑘 defined as 

𝛽𝑘
𝐷𝑌 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑑𝑘
𝑇𝑦𝑘

                                            (30) 

Which generates a descent search directions  

𝑑𝑘
𝑇𝑔𝑘 < 0                                                      (31) 

At every iteration k and convergence globally to the solution if the following Wolfe conditions 

are used to accept the step-size 𝛼𝑘:  

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘𝑔𝑘
𝑇𝑑𝑘                  (32) 

𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘 ≥ 𝑐2𝑔𝑘

𝑇𝑑𝑘                  (33) 

Where 0 < 𝑐1 < 𝑐2 < 0. Condition (32) stipulates a decrease of 𝑓 and 𝑑𝑘 if (33) satisfied. 

Condition (33) is called the curvature condition and it's role is to force 𝛼𝑘 to be sufficiently far 
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away from zero. Which could happen if only condition (32) were to be used. Conditions (32) 

and (33) are called standard Wolfe conditions (SDWC). Notice that if equation (32) is satisfied 

then always there exists 𝛼̅ > 0 such that for any 𝛼𝑘 ∈ [0, 𝛼̅] the conditions (32) and (33) will 

be satisfied according to the theorem (1) given later. If we wish to find a point 𝛼𝑘, which is 

closer to a solution of the one dimensional problem  

min
𝛼>0

∅(𝛼) =min
𝛼>0

𝑓(𝑋𝑘 + 𝛼𝑑𝑘)                         (34) 

Than a point satisfying (32) and (33) we can impose on 𝛼𝑘 the strong Wolfe conditions 

(STWC):  

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘𝑔𝑘
𝑇𝑑𝑘                  (35) 

|𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘| ≤ 𝑐2|𝑔𝑘

𝑇𝑑𝑘|                    (36) 

Where 0 < 𝑐1 < 𝑐2 < 0. In contrast to (SDWC) 𝑔𝑘+1
𝑇 𝑑𝑘 cannot be arbitrarily large. The 

(STWC) with the sufficient descent property  

𝑑𝑘
𝑇𝑔𝑘 < 𝑐‖𝑔𝑘‖. , 𝑐 ∈ (0,1)                                   (37) 

Widely used in the convergence analysis for the CG methods. 

 

DATA PRESENTATION 

The following data consists of a sample of 500 elements that shows the number of meningitis 

cases based on various environmental factors. The input data is in the form of a 500x5 matrix, 

representing dynamic data for 500 timesteps of 5 elements. The target data, on the other hand, 

is a 500x1 matrix, representing dynamic data for 500 timesteps of 1 element.  

The environmental factors used to train the algorithms for ANN were acquired from the 

Meteorological State Agency of Spain (AEMET) and various collaborating bodies. These 

factors were obtained from the Journal of International Research Institute for Climate and 

Society at Columbia University (IRI) for meningitis cases. Additionally, data from the 

Banizoumbou AERONET station, dust reanalysis from two different sources, and satellite-

based information from the World Data Centre for Remote Sensing of the Atmosphere, WDC-

RSAT, and the Giovanni web-based application from NASA were also used. Furthermore, 

additional simulations were performed using the MINITAB application package.  

The model inputs consist of 5 variables for 500 weeks, which is approximately 10 years. These 

variables include temperature ranging from 16 to 36 degrees Celsius, absolute humidity ranging 

from 3.0 to 20.0gm-3, dust concentration ranging from 150 to 650ugm-3, aerosol optical depth 

ranging from 0.3 to 1.5nm, and meridional wind ranging from -2.0 to 2.5ms-1. The model 

output includes 1 sample of 500 elements, which represents the weekly number of meningitis 

cases. To train the ANN, the final data used was a matrix of 500 timesteps or weeks multiplied 

by 5 and a vector of 500 timesteps or weeks multiplied by 1 response variable as output. 

MATLAB was used on the Neural Network fitting to compare the performance of the 

MLPANN using Bayesian Regularization, Levenberg-Marquardt Algorithm, and Scaled 
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Conjugate Gradient Algorithm (SCG). The goal was to minimize the prediction error by 

considering the error terms in the training of the data. 

Validation and Test Data 

There are three (3) divisions of the dataset 

1) Training: These are presented to the network during training and the network is adjusted 

according to its error. 70% of the data is used for training i.e. 350 target timesteps. 

2) Validation: These are used to measure network generalization, and to halt training when 

generalization stops improving. 15% of the data is used for validation i.e. 75 target 

timesteps. 

3) Testing: These have no effect on training and so provide an independent measure of 

network performance during and after training. 15% of the data is used for testing i.e. 75 

target timesteps. 

Network Architecture This network is created and trained in open loop form. Open loop 

(single-step) is more efficient than closed loop (multi-step) training. Open loop allows to 

supply the network with correct past outputs as the model is trained to produce the correct 

current outputs. 

Several numbers of Hidden Neurons and Number of neurons or delays d is used to evaluate the 

performances of the Neural Network using the Levenberg-Marquardt algorithm, Bayesian 

Regularization algorithm and the Scaled Conjugate Gradient algorithm. Note, training 

automatically stops when generalization stops improving, as indicated by an increase in the 

mean square error of the validation. 

The Mean Squared Error is the average squared difference between outputs and targets. Lower 

values are better. Zero means no error. This is used to evaluate the performance of the Neural 

Network. 

The Regression R values measure the correlation between outputs and targets. An R value 1 

means a close relationship, 0 a random relationship. 

Multilayer Perceptron 

Network Information 
Input Layer Factors 1 Temperature 

2 Humidity 

3 Dust_ 

Concentration 

Covariates 1 Aerosol_Optica

l_Depth 

2 Meridional 

Wind 

Number of Unitsa 416 

Rescaling Method for Covariates Standardized 

Hidden Layer(s) Number of Hidden Layers 2 
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Number of Units in Hidden Layer 1a 10 

Activation Function Hyperbolic 

tangent 

Output Layer Dependent Variables 1 Number of 

Cases 

Number of Units 1 

Rescaling Method for Scale Dependents Standardized 

Activation Function Identity 

Error Function Sum of Squares 

FIGURE 1 

Model Summary 
Training Sum of Squares Error 344.158 

Relative Error .983 

Stopping Rule Used 1 consecutive 

step(s) with no 

decrease in 

errora 

Training Time 0:00:01.42 

Testing Sum of Squares Error 106.190 

Relative Error .987 

 

FIGURE 2 

Dependent Variable: Number of Cases 

Multilayer Perceptron Algorithms for LM, BR and SCG Model Summary 

Algorithms Number 

of 

Hidden 

Neurons 

Number of  

Epoch 

(Iterations) 

TIME MSE R 

Levenberg-

Marquardt 

10 8 01.42secs Training 0.999529  0.0971883 

Validation 1.00351   0.0403117 

Testing 1.07120   -0.12291 

Bayesian 

Regularization  

10 41 03secs Training 1.01129  0.0620949 

Validation 0.00000 0.00000 

Testing 0.922408  0.0169559 

Scaled 

Conjugate 

Gradient 

10 23 02secs Training 0.998475  0.106632 

Validation 0.955837   -0.02630 

Testing 1.05843   -0.09360 

Levenberg-

Marquardt 

5 9 01secs Training 0.983776  00.159546 

Testing 1.00237  0.0643188 

Validation 1.04327   -0.11750 
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Bayesian 

Regularization  

5 1000 70secs Training 1.00411  0.0547818 

Validation 0.00000 0.00000 

Testing 0.922408  00.0169559 

Scaled 

Conjugate 

Gradient 

5 12 02 secs Training 1.04684   -

0.00642879 

Validation 0.963054  00.122583 

Testing 1.04196   -0.0879877 

i. In Levenberg-Marquardt algorithm, training automatically stops when generalization 

stops improving, as indicated by an increase in the mean square error of the validation 

sample. 

ii. In Bayesian Regularization algorithm, this algorithm typically takes more time, but can 

result in good generalization for difficult, small or noisy datasets. Training stops 

according to adaptive weight minimization (regularization). 

iii. In Scaled Conjugate Gradient algorithm, this algorithm takes less memory. Training 

automatically stops when generalization stops improving, as indicated by an increase in 

the mean square error of the validation samples. 

 

DISCUSSION OF RESULTS 

In order to minimize prediction error, the Multilayer Perceptron is utilized with five 

independent variables. Each variable is trained using 500 observations to generate a predicted 

number of meningitis cases. Figure 1 displays the model information, while Figure 2 shows the 

model summary of the Multilayer Perceptron algorithm. The Levenberg-Merquardt (LM) 

algorithm with 5 hidden neurons and 9 iterations of 0.01 seconds has a 99% correct prediction 

rate for training, testing, and validation. The Bayesian Regularization algorithm (BR) with 5 

hidden neurons is also reliable, but requires a larger number of iterations (1000) and takes 70 

seconds to run. However, it has a 99% correct prediction rate for training and testing and a 

100% correct prediction rate for validation. The Scaled Conjugate Gradient algorithm with 5 

hidden neurons and 12 iterations of 0.02 seconds has an approximate 99% correct prediction 

rate for training, testing, and validation. Increasing the number of hidden neurons to 10 results 

in a small mean square error of approximately 1%. Levenberg-Marquardt offers the fastest 

convergence rate. Figures 3, 4, and 5 display the histogram of errors for the three methods used 

in training, testing, and validation. 

 

CONCLUSION 

This article presents an Artificial Neural Network Model that predicts meningitis outbreaks 

based on environmental factors. The model uses multilayer perceptron to minimize prediction 

errors. The study found that temperature is the most significant factor that affects the 

occurrence of meningitis epidemics, along with low absolute humidity and high dust 

concentration. When the atmospheric dust concentration exceeds 320ugm, the humidity drops 

below 5m\s, and the temperature remains below 20°C in December, January, and February, a 
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sudden increase in temperature can trigger a meningitis outbreak. This finding is a strong signal 

for the surveillance and response monitoring team to create an alert and be watchful. The model 

also considers categorical variables, denoted by C. 
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