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ABSTRACT: This paper presents the theoretical study of forced
Van der Pol oscillator equation. Oscillatory systems are studied
to know measures that can reduce the amplitude of oscillation of
the oscillatory system. Here, multiple two-timing regular
parameter perturbation is applied since it is a kind of
perturbation among other perturbation techniques that enables
the study of the behaviour of a system under certain conditions.
Asymptotic expansion technique was also applied. Excel
Microsoft was used to analyse the uniformly valid asymptotic
solution of the Van der Pol oscillator equation obtained. The
uniformly valid asymptotic solution in the independent variable
obtained, showed that damping alters the amplitude of the
oscillatory system thereby affecting its motion. Increase in
damping decreases the amplitude of oscillation of the system.
With damping incorporated in the system though very small
damping, the amplitude of oscillation reduces with time.

KEYWORDS: Oscillatory system, Regular parameter
perturbation, asymptotic expansion, damping, amplitude,
oscillation.
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INTRODUCTION

Investigations on Van der Pol oscillator equation have gained much patronage in recent
research due to its vast applications in engineering, physical and biological sciences. Van der
Pol oscillator equation is valuable for design investigation, simulation and presentation of
real life oscillatory systems. The Van der Pol oscillator equation is a nonlinear model that
has been solved and analysed using different techniques. Chen and Liu [4] applied Liao’s
homotopy analysis method to obtain a uniformly valid solution of limit cycle of the Duffing-
Van der Pol oscillator equation. Sandile and Precious [17] solved forced-free VVan der Pol
and Duffing equations using successive linearisation method to obtain the limit cycle and
bifurcation diagrams of the two equations, and they concluded that the method is accurate
and effective in finding solutions of nonlinear equations with oscillatory solutions. Chen and
Liu [3] studied the limit cycle of forced-free VVan der Pol equation using homotopy analysis
method to reduce the computational efforts. Li et al. [13], found series solutions of coupled
Van der Pol oscillator equation by means of homotopy analysis method and showed that there
exists either in-plane or out-phase periodic solutions. Kimiaeifer et al. [11], investigated the
analysis of modified Van der Pol oscillator equation using He’s parameter-expanding method
in which they concluded that one term in the series expansions is sufficient to obtain a highly
accurate solution which is valid for the whole solution. Cordshooli and Vahidi [5] solved
Duffing-Van der Pol equation using Adomian’s decomposition method. Their result showed
that converting the differential equation to a system of equations in Adomian’s
transformation method gives more accurate answers in a short time of computations.
Parameter expansion method was used by Darvish and Kheybari [6] to find the solution of
the classical Van der Pol oscillator equation and its approximate frequencies. Lucero and
Schoentegen [14], studied the Van der Pol equation as a model of right and left vocal fold
oscillators. Jifeng et al. [8], investigated the stability of the periodic solution of Van der Pol’s
equation using homotopy perturbation method and they analysed the periodic solution they
obtained using Floquet theory. Onuoha and Vincent [16], studied the free forced Van der
equation to investigate theoretically the influence of nonlinear damping and geometric
imperfections on oscillatory systems. Mohammadi et al. [15], solved Duffing Van der Pol
equations numerically using the basis of hybrid functions. Their work showed that Duffing
Van der Pol equation can be converted to a nonlinear volterra integral equation of the second
kind. Khan [10], applied Homotopy perturbation method to obtain an analytic solution of
forced-free VVan der Pol differential equation. Serge [18] obtained various solutions in his
research where he solved Van der Pol equation using numerical solution methods. The
solution of Van der Pol equation can also be obtained in a complex domain. Victor and
Alexander [19] found the analytic approximation solution of the Van der Pol equation in a
complex domain. Comparison studies on different solution methods of solving Van der Pol
equation were still carried out. Joel and Adedire [9] compared two solution methods;
modified Adomian decomposition method and truncated Taylor series method of solving Van
der Pol equation. Asma and Ahmed [2] applied active control approach with Laplace
transform method to coupled generalized Van der Pol oscillator equation and presented
different behaviours of the oscillator equation with distributed order. Alvaro et al [1]
presented different analytical techniques and numerical method forced Van der Pol oscillator
equation can be solved and analysed. Kuptsova [12], used Van der Pol oscillator equation to
study dispersion resonance Fonkou et al [7], investigated the dynamic behaviour and real
time control to a target trajectory using Van der Pol equation with sine nonlinearity.
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Forced Van der Pol Oscillator Equation

Van der Pol oscillator equation has been used to study many dynamical and oscillatory
systems. Forced Van der Pol oscillator equation represents systems that external force is
applied to. Here, regular parameter perturbation and asymptotic expansions are applied to
forced Van der Pol oscillator equation to know the significance effect of the damping
parameter, 77

. 2\ o _
R+7(2-%")X+x = ucos 2t (13)

X(O):X(O):O (lb)
For O<np<<] 0<pu<<l
Where 7 is the damping parameter and # is the imperfection sensitivity parameter.

Multiple two-timing regular parameter perturbation and asymptotic expansion

Introducing the multiple two-time scale, we let

X(0)=¢(te(1) @
where t and 7 are time scales.

We also let

r =t @)

Substituting for X(t) in equation (1a), we have

d? 2\ d
deH](z_g )d—f+§:yc052t (4a)
£(0.0)=£(0,0)=0 (40)

We let

0

E(te)= ¢ Loy’
(5)

Using equations (3) and (5), equation (4a) becomes
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1(Gio + M + 17 g + o)+t 277{;1(510‘” N+ +...)+...}+

0 11(Eig e+ 1Eus e+ S+ ) o+ 20 11 (S0 + M 417G )+ +
201G, + 16 + 1P+ ) o (G0 + s 4 ) ]|
[,u(fm by 1 )bt p(Go 0, +...)+...ﬂ+

/J(éo +1S, +772512 +'--)+ e (6520 +1185 +772§22 + ) = pcos2t

(6)

Solving equation (6), we equate the coefficients of powers of " and #’ : 1=1,23:)=012

( 0’ ):gm +&, =cos2t 7)

(40 )by + 280, +28, +£, =0 (8)

(4 7% )i + 28000+ G0 + 26000+ 2650, 62 =0 )

(42 :7°) & +6 =0 (10)
(4211 ): & + 2801 + 20, + £ =0 (11)
(4277 )i+ 2601y + e + 260+ 20 + 6 =0 (12)
(47" )2 + 60 =0 (13)
(4227 )& + 28010 + 20, —(60) G0 + &0 =0 (14)
(80 )i + 2y, + g + 2+ 26, ~(&0 ) G~ (60) G +85 =0 (15)

Next, we solve the resulting differential equations (7) to (15) using their respective initial
conditions.

The initial conditions are obtained from equation (4b) using equation (5)

Solution to equation (7)
Sio + &0 = COS 2 (16a)
$10(0,0) =&, (0,0)=0 (16b)

Solving equation (16), we get

&o(tr)= Aw(r)cost+Blo(r)sint—%cosm an
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Applying the initial conditions, equation (16b) on equation (17), we obtain

Ao (0)=3. By (0)=0

(18)
Solution to equation (8)
&g +&u =—2(—Aysint+ By cost) - 2(—A10 sint+B,, cost +gsin 2tj
3 (19a)
&.(0)=¢&,,(0)=0 (19b)

To ensure a uniformly valid asymptotic solution in t, we equate to zero the coefficients of
sintand cost respectively

For sint
Ao (7)=ke™ (209)

From equation (18)

== Ag(r) =3¢

(20b)
For cost
Pio (T) =k,e™" (213_)
From equation (21a)
k,=0= By, (T):O (Zlb)
Solving the remaining part of equation (19a), we get
. 2 .
&, (tr)=A,(r)cost+ B, (7)sint+—=sin 2t
()= A ()cost + B, ()sint -
Applying the initial conditions, equation (19b) on equation (22), we get
4
A.(0)=0. B, (0)=—5 (23)
Solution to equation (9)
Eon +&, =—2(Asint+B/, cos)—( Ay +2A; )cost — 2[—Ausint +B,, cost +ﬂcos 2tj
9 (24a)
512 (O) = 512,1 =0 (24b)
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To ensure a uniformly valid asymptotic solution in t, we equate to zero the coefficients of
sintand cost respectively

For Sint

A7) =ke™ (25a)
From equation (23),

k,=0=A,(7)=0 (25b)

For cost

B, (r)=¢" {jHl(f)ede BM(O)}

° (26)

Solving the remaining part of equation (24a), we get
. 8

&, (t,7) = A,(r)cost+B, (7)sint + o008 2t @7
Applying the initial conditions, equation (24b) on equation (27), we get
Ao (0) == By (0)=0 28)
Solution to equation (10)
oot +S20 =0 (29a)
$20(0) = &0, (0)=0 (29b)
Solving equation (29a), we get
& (t,7) = A, (7)cost + By, (z)sint (30)
Applying the initial conditions, equation (29b) on equation (30), we get
A (0)=0, By (0)=0 (31)
Solution to equation (11)
Epg + & = —2(—Ay sint + By, cost) —2(—A,, sint + B,, cost) (32a)
$:1(0)=£2,(0)=0 (32b)

To ensure a uniformly valid asymptotic solution in t, we equate to zero the coefficients of
sint and cost respectively.
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For sint
Ay (Z—) =k,e” (338.)

From equation (31)

k,=0=A,(7)=0 (33b)
For cost
By (7)=kse™ (34a)

From equation (31)

ks =0=B,(7)=0 (34b)

Solving the remaining part of equation (32a), we get

& (t7)= Ay (7)cost+ B, (7)sint (35)

Applying the initial conditions, equation (32b) on equation (35), we get

Au(0)=0, B,(0)=0 (36)

Solution to equation (12)

Epp + & = —2( Ay sint+B), cost)—2( A, sint+ B,, cost)—( Ay cost+ By sint)—2( Ay, cost + By sint)
(37a)

Sno (O) = éZO,t =0 (37b)

To ensure a uniformly valid solution in t, we equate to zero the coefficients of Sintand cost
respectively

For sint
Ay () =kee " (38a)

From equation (36)

k =0=> Ay (7)=0 (38h)
For cost
B, (7)=k,e™ (39a)

From equation (36)
k; =0=>B,(r)=0 (39b)
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Solving the remaining part of equation (37a), we get
&, (t7) = A, (7)cost+B,, (7)sint (40)
Applying the initial conditions, equation (37b) on equation (40), we get
A, (0)=0, B, (0)=0 (41)
Solution to equation (13)
St * & =0 (42a)
& (0)=&,,(0)=0 (42b)
Solving equation (42a), we get
£ (1,7) = Ay (z)cost + By (7)sint (43)
Applying the initial conditions, equation (42b) on equation (43), we get
A, (0)=0, By(0)=0 (44)
Solution to equation (14)
Eg + & = —2(— Ay sint+ By cost)— 2(—Ay, sint+ By, cost)—% A (sint+sin3t)+

gAfO (%sin 2t +%sin 4tj+% AZ sin 4t —% A, (sin5t+sin3t)+ (45a)

i(sin 2t +sin 6’[)—1 A, (lsint+£sin 5t + i 3tj
54 9 2 4 4

S (O) = Sa (0) =0 (45b)

To ensure a uniformly valid asymptotic solution in t, we equate to zero the coefficients of
sintand cost respectively

For sint
A, (r)=e {IH (r)edr+ A, (o)} e

where

1., 1
H,(r)=-A) =—
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For cost
Bso (T) =kse™" (47)

From equation (44)

k, =0= B, ()=0

(48)
Solving the remaining part of equation (45a), we get
&y (tr)= Ay (7)cost+ By, (r)sint—%Gl(r)sin 2t+%G2 (7)sin 3t—4i5G3 (7)sin4t+
iG‘l(r)sinSt—LsinGt
864 3510
(49)
where
1 1
G, (r)==A +—
()=3At (508)
1.
— Rt 0
(7)=7A+5A (50b)
1.
()=34 50
5
G,(7)=—
(7)=35 A (50d)
Applying the initial conditions, equation (45b) on equation (49), we get
Au(0)=0. B,(0)=26,(0)~2G:(0)+ -G (0)~ 5 6. (0) (51)

Solution to equation (15)

Epu +& ——2£—A3’ sint+ B, cost—EG'0052t+§G’cos3t—iG’cos4t+£G'cosStJ—As" cost —

32,tt 32 1 31 3 1 8 2 45 3 864 4 i}

2A,, cost—2| —A, sint+B cost—gG cosZt+§G coth—iG cos4t+éG COS5I—LCOSGI +
° ' . ! 8 * 457 864 * 3510

%A@Bn(cos?aui’acost) Am( cosZt+icos4t 4] =A, M( cosZt+icos4t+ij

EB11 lcost+£c055tlcos?>t +i §c032t+£c036t A10 cost+10035t+1c053t
9 2 4 4 81\ 4 4 4 4

1, 2 1 1 1 1
— ' (cos3t+3cost)—— CoS 2t + —cos4t + — cost +—cos5t + —cos 3t
7 AoA ( ) 3A1(2 2 ] Am( n 7 j
(52a)
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S (0) = Caan (O) =0 (52b)

To ensure a uniformly valid solution in t, we equate to zero the coefficients of Sintand cost
respectively

For sint

A (7) =kee™ (53)
From equation (51)

ke =0= A, (7)=0 (54)

For cost

B, (r)—e~ {! Hg(r)erT+B3l(O)} (55)

Solving the remaining part of equation (52a), we get

&, (t,7)= A, (7)cost+ By, (7)sint+ G, (7)cos 2t + G (7) cos3t +G, (7)cos 4t + G, () cos 5t + F, cos 6t +%

(56)
where
1(4 ., 4 2 1 1., 3
6 ()= -3[ 36130 A AR A (572)
1( 3., 3. .1 1 2 VY
GG(T):_g[_ZGz_ZGZ+ZAIZOBM+£BM+EAN+ZA120A10+£A10] (57b)
1(8 4 1
G, (r)=-—2| =G;+—G,+Z A
1(7) 15(45 "5 3+3A1°J (57¢)
1( 25 25 1
Gy(7) = ~ oGl oGyt o By o A+ A
o(7) 24( 132t 432 36 ll+27A1°+36A&°j (57d)
1( 6 1)
1= "% 2min T
353510 81 (57¢)
Applying the initial conditions, equation (52b) on equation (56), we get
1
Az (0)=-G;(0)~G;(0)~G, (0)~G; (0)~F ~7. B;(0)=0 (58)
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The Amplitude (The maximum displacement)

The approximate solution of equations (4a) and (4b) serves as solution to equation (1a) and
(1b) respectively. From equation (5), the displacement taking to be the maximum
displacement is

f(t, T) = /J(glo +1Sn +772§12)+,u3 (égao +1Sy +772532) (59)
For simplicity, we take the first two terms of ¢(t7)  Hence equation (59) becomes

E(tr)= #HAK) (7)cost —écos 2t}+7y{Bll (r)sint+§sin ZtH (60)

Substituting for A0 (7)and Bx (%) in equation (60), we get
L (e cost— Lo dem - sint+ 2si
§(t,r)_§y(e cost cosZt)+3my{e [nt 3jsmt+35m2t} (61)

Analysis

Equation (61) is the solution to equation (6) and by equation (4a), it is an approximate

solution to equation (1). Graphs of ¢ (t.7) against tat various values 77 and fixed value of the
imperfection sensitive parameter # are plotted to know the effect of damping on the amplitude
of a forced oscillatory system.

Tablel: Computed values of ¢(t7) at various values of tand 7at fixed values of
,u,(,uZO.Ol)

)
t n=0 n=0.01 n=0.02 n=0.03 n=0.04 n=0.05
0.5 0.575028 0.574672 0.574319 0.573972 0.573628 0.573289
1.0 0.641111 0.640565 0.640034 0.639517 0.639014 0.638525
15 0.129908 0.129442 0.328999 0.128579 0.128180 0.127802
2.0 -0.499140 | -0.499260 |-0.499350 |-0.499420 | -0.499470 | -0.499510
2.5 -0.678640 -0.678230 -0.677820 -0.677410 -0.676990 -0.676560
3.0 -0.252210 | -.0251300 |-0.250400 | -0.249530 | -0.248680 | -0.247860
3.5 0.383836 0.385056 0.386221 0.387334 0.388398 0.389414
4.0 0.645932 0.647099 0.648189 0.649208 0.650159 0.651048
4.5 0.299464 0.300173 0.300807 0.301379 0.301873 0.302317
5.0 -0.327070 -0.327140 -0.327260 -0.327410 -0.327600 -0.327820
55 -0.646520 | -0.647500 |-0.648470 |-0.649410 | -0.650350 | -0.651260
6.0 -0.355630 -0.357380 -0.359050 -0.36063 -0.362140 -0.363570
6.5 0.283817 0.281683 0.279697 0.277848 0.276127 0.274524
7.0 0.684279 0.682323 0.680543 0.678923 0.677447 0.676102
7.5 0.472570 0.471371 0.470326 0.469415 0.468621 0.467931
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Fig 1. Variation of the displacement &(t,z) with time t at fixed value of damping » =0.01
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Fig 2. Variation of the displacement, &(t,z)with time t at fixed value of damping » =0.02
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Fig 3. Variation of the displacement, &(t,z)with time t at fixed value of damping 7 =0.03
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Fig 4. Variation of the displacement, &(t,z)with time t at fixed value of damping 7 = 0.04
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Fig 5. Variation of the displacement, &(t,z)with time t at fixed value of damping 7 =0.05
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Fig 6. Variation of the displacement, &(t,z)with time t at fixed value of damping 7 =0
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CONCLUSION

This theoretical study of a forced Van der Pol oscillator equation can be a generalization of
forced oscillatory systems. Multiple two-timing regular parameter perturbation method and
asymptotic expansion were applied to analyse the forced Van der Pol oscillator equation to
obtain a uniformly valid asymptotic approximate solution. The asymptotic expansion was

used to obtain good estimate for the amplitude, ¢ (t.7) as ttends to infinity. The oscillator
equation is damped though the damping is sufficiently small. The result obtained is a
uniformly valid asymptotic approximate solution in t. We observed that the amplitude of
oscillation of the forced Van der Pol oscillator decreases in the absence of damping in a
particular time. From Table 1, it is seen that damping alters the amplitude of oscillation of the
Van der Pol oscillator. Increase in damping reduces the amplitude of oscillation of any
oscillatory system.
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