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ABSTRACT: In statistical literature, various methods exist for 

developing new distributions. This paper introduces a new 

distribution derived using the GAYUF transformation. We explore 

several structural properties of this distribution, including 

moments, moment generating function, mean, variance, hazard 

rate and its shape, survival function, and more. The parameters of 

the newly developed distribution are estimated using the maximum 

likelihood estimation (MLE) method and validated through 

simulation studies. Additionally, we apply the distribution to two 

real-world datasets to demonstrate its practical applications. The 

findings suggest that the new distribution is a robust tool for 

modelling and analysing data in engineering and other fields, 

providing enhanced fit and reliability for parameter estimation. 

KEYWORDS: Exponential Distribution, hazard function, 

statistical properties, maximum likelihood estimation (MLE). 

ON GAYUF TRANSFORMED EXPONENTIAL DISTRIBUTION AND ITS 

PROPERTIES 

Yusuf T. O.1, Ajiboye A. S.2, and Akomolafe A. A.3 

1Training and Research Department, National Institute for Educational Planning and 

Administration Ondo, Nigeria. 

Email:  seunyusuf2015@gmail.com 

2Department of Statistics, Federal University of Technology Akure, Nigeria. 

Email: asajiboye@futa.edu.ng 

3Department of Statistics, Federal University of Technology Akure, Nigeria. 

Email: aaakomolafe@futa.edu.ng 

*Corresponding Author’s Email:  seunyusuf2015@gmail.com 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cite this article: 

Yusuf, T. O., Ajiboye, A. S., 

Akomolafe, A. A. (2024), On 

GAYUF Transformed 

Exponential Distribution and 

its Properties. African Journal 

of Mathematics and Statistics 

Studies 7(3), 211-232. DOI: 

10.52589/AJMSS-

4EXHWPRU 

 

Manuscript History 

Received: 12 Jun 2024 

Accepted: 14 Aug 2024 

Published: 16 Sep 2024 

 

Copyright © 2024 The Author(s). 

This is an Open Access article 

distributed under the terms of 

Creative Commons Attribution-

NonCommercial-NoDerivatives 

4.0 International (CC BY-NC-ND 
4.0), which permits anyone to 

share, use, reproduce and 

redistribute in any medium, 
provided the original author and 

source are credited.  

 

 

mailto:seunyusuf2015@gmail.com
mailto:asajiboye@futa.edu.ng
mailto:aaakomolafe@futa.edu.ng
mailto:seunyusuf2015@gmail.com


African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323  

Volume 7, Issue 3, 2024 (pp. 211-232) 

 

212  Article DOI: 10.52589/AJLPRA-VYMPQTQU 

  DOI URL: https://doi.org/10.52589/AJLPRA-VYMPQTQU 

www.abjournals.org 

INTRODUCTION 

The exponential distribution is widely employed in reliability engineering and survival analysis 

due to its simplicity and memory-less property (Abbas et al., 2021). However, its inability to 

accommodate varying event rates over time has led to the development of modified versions, 

such as the exponentiated Exponential (Gupta and Kundu, 1999; 2001), beta generalised 

Exponential (Barreto-Souza et al., 2010), transmuted exponentiated Exponential (Merovci, 

2013), modified Exponential (Rasekhi et al., 2017), Kumaraswamy extension Exponential 

(Elbatal et al., 2018), Marshall-Olkin logistic-exponential alpha power Exponential (Nassar et 

al., 2019), and Weibull Exponential (Afify and Mohamed, 2020) distributions among others. 

Various methodologies have been employed to derive these modified distributions. Gupta et 

al. (1998) proposed a method leveraging the cumulative distribution function (cdf) of a baseline 

distribution, incorporating a shape parameter for flexibility. Shaw and Buckley (2009) 

introduced the quadratic rank transmutation map (QRTM), incorporating a parameter into 

existing distributions to create versatile families. Cordeiro et al., (2013) introduced 

distributions with additional shape factors, albeit at the expense of increased complexity in 

parameter estimation. 

To address these challenges, Kumar et al., (2015) introduced the DUS transformation, 

modifying the cumulative distribution function. Building upon this, Maurya et al., (2016) 

suggested the Generalised DUS (GDUS) transformation, specifically applied to the 

exponentiated cumulative distribution function, allowing for more diverse hazard rate shapes, 

including the bathtub shape. 

Recently, Yusuf et al., (2024) proposed the GAYUF transformation, offering a family of 

distributions with both monotonic and bathtub-shaped hazard rates, contingent upon parameter 

values. This transformation employs a shape parameter and a scale parameter to enhance 

modelling flexibility. 

Our motivation stems from the hazard rate function, crucial for lifetime modelling. Most 

lifetime distributions, including the exponential distribution, typically exhibit monotonically 

increasing, decreasing, or constant hazard rates (Lemonte, 2013). However, these features are 

often unrealistic, as many real-life systems experience varying hazard rates over time. Thus, 

the limitations of the standard exponential distribution necessitate the development of 

alternative lifetime distributions. 

In this article, our objective is to propose a new exponential distribution capable of 

accommodating all types of hazard rates through an appropriate choice of shape parameter. We 

propose utilising the GAYUF transformation on the exponential cumulative distribution 

function (cdf), hereafter referred to as the GAYUFE- distribution. This distribution is expected 

to exhibit both monotone and bathtub-shaped hazard rates, depending on parameter values. We 

choose the exponential distribution as the base distribution due to its simplicity and popularity 

in life testing problems although its use is typically restricted to phenomena with constant 

hazard rates. 
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GAYUF Transformation of Exponential  

In this section, we have proposed a probability density function of a newly formed distribution 

obtained using the GAYUF transformation technique for Exponential distribution as a baseline 

distribution. 

Let X be a random variable with cumulative distribution function ( )xG  and ( )xg be the 

corresponding probability distribution function taken as the baseline distribution. And if ( )xF

and ( )xf are the CDF and  Probability density function of the proposed distribution, the 

GAYUF-generated family of distribution is given by;  

( ) ( )( )
00,0,01,,, −=

+−





andforxxF
xGx

        

(1) Where  the shape parameter and λ is typically represents a scale parameter 

Using equation (1) the probability density function of GAYUFE -distribution is given by ( )xG  

is the cumulative distribution function (CDF) of the exponential distribution. 

Given that the cumulative distribution function (CDF)  ( )xG  of the exponential distribution is:  

( ) xexG −−=1              

(2) Substituting this into ( ) ,,,xF  in eq(1), we get 

( ) ( )( )





 −=

−−+−


xexexF 11,,,
         

(3) Equation (3) is the CDF of GAYUFE -distribution 

where 0,0,0,0  x , 
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Figure 1: Cumulative density function of GAYUFE -distribution at different values of the 

parameters 

The cumulative distribution graph in Figure 1 indicates that the GAYUFE -distribution has a 

proper PDF since it converges into one 

and the corresponding pdf is, 

( ) ( )( ) ( )xx eexxf   −−− +−+= 11,,,
1

       

(4) Equation (4) is the PDF of GAYUFE -distribution 

 

Figure 2: Probability density function of GAYUFE –distribution at different values of the 

parameters 

The density graph in Figure 2 reveals the GAYUFE distribution's versatility, showcasing 

moderate positive and negative skewness across different parameter values. This suggests its 

suitability for modelling non-negative variables like component and system lifespans. The 

distribution's adaptable shape, displaying approximate symmetry, underscores its potential 

applicability across various scenario 

Survival Function 

The survival function ( )xS is the complement of the cumulative distribution function the given 

distribution is: 

( ) ( )( )
xexexF

−−+−−= 11,,,  

Therefore, the survival function ( )xS  is  

( ) ( ) ,,,1 xFxS −=  
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( ) ( )( )





 −−=

−−+−
 xexexS 111

 

( ) ( )( ) xexexS
−−+−= 1

           

(5) 

 

Figure 3: Survival function of GAYUFE –distribution at different values of the 

parameters 

As depicted in Figure 3, the decreasing trend in the survival probability distribution with 

increasing survival time implies a higher likelihood of failure or event occurrence over time. 

This has significant implications for reliability and risk assessment, particularly in fields such 

as engineering, healthcare, and finance, where understanding survival probabilities is crucial 

for decision-making and resource allocation. 

Hazard Function 

( ) ( )( )xSIn
x

xh



−=

 

( )( ) ( )( )











=



 −−+−


 xexeIn
x

xSIn
x

1

 

( )( )  xex
x

−−+−



= 1

 

( )( ) ( )xx eex   −−− +−+−=
1

1  

( ) ( )( ) ( )xx eexxh   −−− +−+=
1

1         
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(6) The expression in equation 6 represents the hazard function for the specified parameters 

,, and . 

 

Figure 4:  Hazard rate of GAYUFE –distribution at different values of the parameters 

Statistical Properties of GAYUFE –Distribution  

Moment Generating Function 

( ) ( ) xxfetM tx

X = 


0

,,, 

 

( )( ) ( ) xeexe xxtx +−+= −

−

−






  11

1

0  

( ) ( )( ) ( )xx eexxf   −−− +−+= 11,,,
1

 

( ) ( )( ) ( )xx eexx 
 −−−−

+−+= 11
11

 

( ) ( )( )( )xx eexx 
 −−−

+−+= 11
1

 

Now, let’s rewrite the integral: 

( ) ( )( )( ) xeexxe xxtx +−+


−−−

0

1
11 


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( ) ( )( )( ) xeexxe xxtx +−+= 


−−−

0

1
11 



 

( ) ( ) xeexxe xxtx +−+= 


−−−

0

1 


 

( ) ( ) ( )( ) ( ) xeexxe xxtx +−+= 


−−−−−−

0

1111 


 

( ) ( ) ( ) ( )














+−+=    

   

−−−−−

0 0 0 0

111
xeexeexxexxe xtxxtxtxtx 



 

( ) ( ) ( ) ( ) ( )( ) ( )( )( )111
111111

−−−−−
−+−+−+−−−+−= 


tttttM X  

( ) ( ) ( )( )1
11

−−−
−+−=


 tt          

(7) Equation 7 is the moment generating function (MGF) of the given function GAYUFE –

Distribution 

rth Moment 

To simplify the computation of the rth moment, we can use the Gamma function and the 

relationship between the Gamma function and moments. 

The Gamma function ( )x  is defined as: 

( ) 


−− =
0

1 tetx tx

 

It is well-known that for a random variable X  with a PDF ( )xf  and 1−r , the rth   moment 

can be expressed in terms of the Gamma function as: 

  ( )
( )

( ) xxfx
r

xxfxXE rrr 
+

== 


+



− 0

1

1

1

 

Given the PDF ( ) ,,,xf  of the GAYUFE –Distribution in equation 2

( ) ( )( ) ( )xx eexxf   −−− +−+= 11,,,
1

 

 rYE  = 

where ( )xexY  −−+= 1   
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 
( )

( )


+ 
+

=
0

1

1

1
yyfy

r
YE rr

 

Substituting ( )xexy  −−+= 1  and ( )yf  from the PDF, we get: 

 
( )

( )( ) ( )( ) ( )


−−−+− +−+−+
+

=
0

11
111

1

1
xeexex

r
YE xxrxr  

 

( )
( )( ) ( )



−−++− +−+
+

=
0

11
11

1
xeex

r

xrx  


 

( )
( )( )


+− −+

+
=

0

1
1

xex
r

rx 


 

 
( )

( )( )


+− −+
+

=
0

1
1

xex
r

YE
rxr 



 

Now, this integral can be related to the Gamma function,  

Specifically, we have: 

( )


−− =
0

1 sueu us

 

Comparing this with our integral, we see that: 

( )xexu  −−+= 1  

1++= rs  

 
( )

( )1
1

++
+

= 


r
r

YE r

 

( )
( )1

1

+

++
=

r

r 


 

( )
!

!

r

r 


+
=

 

So, the rth moment of the GAYUFE –Distribution,  rYE  is given by: 

  ( )
!

!

r

r
YE r 


+

=
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(8) This expression provides a simplified form for calculating the rth moment of the GAYUFE 

–Distribution using the Gamma function. 

The mean 

To calculate the mean of the GAYUFE –Distribution, we need to find the first moment, which 

is the expected value  YE , where ( )xexY  −−+= 1 . 

Using the expression we derived previously for the rth moment in equation 8: 

  ( )
!

!

r

r
YE r 


+

=
 

We can substitute 1=r  to find the first moment  rYE  

  ( )
!

!

r

r
YE r 


+

=
 

( ) += 1  

So, the mean   of the GAYUFE –Distribution is: 

  ( ) +== 1YE            

Variance of GAYUFE –Distribution 

(9) To calculate the variance of the GAYUFE –Distribution, we need to find the second central 

moment, which is the expected value ( ) 2
−YE  where ( )xexY  −−+= 1 and   is the mean 

we calculated earlier. 

The variance 
2  is defined as the second central moment: 

( ) 22  −= YE  

Using the expression we derived previously for the rth moment: 

  ( )
!

!

r

r
YE r 


+

=
 

and knowing that the second central moment can be expressed as: 

( )     ( )222
YEYEYE −=−   

We can find  2YE using 2=r : 

  ( )
!2

!22 


+
=YE
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( )( )
!2

!212 


+++
=

 

( )( )( )
!2

!2212 


++++
=

 

( )( )( )
!2

!232 


+++
=

 

Substituting into the expression for the variance: 

   ( )222 YEYE −=  

( )( )( )
( )( )21

!2

!232



 +−

+++
=

 

( )( )( )
( ) ( )22

1
!2

!232



 +−

+++
=

 

( )( )( )
( )( ) 








+−

+++
=

2
1

!2

!232





         

Renyi Entropy of the GAYUFE –Distribution 

( ) 








−
= 

=

n

i

ipXH
1

log
1

1 


  

Where are the probabilities of the outcomes ixX = . 

Given the function ( ) ,,,xf , let’s denote ( ) ( ) ,,,xfxp = as the probability distribution 

function (pdf) over x . 

The normalisation constant is typically denoted as Z , and it’s computed as the integral of 

( ) ,,,xf  over the entire domain of x : 

( ) xxfZ = 


−

 ,,,

 

Then, the normalised probability distribution is 
( )

( )
Z

xf
xp

 ,,,
=

 

With this normalised probability distribution, we can compute the Renyi entropy as: 

( ) ( )( ) 








−
= 

=

n

i

ixpXH
1

log
1

1 


  
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( )( ) ( ) xeexZ xx +−+= 


−

−−−   11
1

 

Given the function: 

( ) ( )( ) ( )xx eexxf   −−− +−+= 11,,,
1

 

Let’s denote ( )xexu  −−+= 1 . Then we have xexxexu xx −=−= −−    

Rearranging, we get: 

xe

u
x

 −−


=

1

1

 

Now, substituting this into integral for Z , we have: 

( ) xeuZ x += 


−

−−   11

 

u
e

u
x


−
= 



−

−

−









1

1

 

Now, this integral is of the form: 

u
e

u
x


− −

−





1

1

 

This resembles the form of the Beta function, given by: 

( ) ( ) +=
+−

1

0

11 1, tttyx
yx

 

We can rewrite the integral in terms of the Beta function by setting 0=x  and 1=y , and making 

the substitution 


1

tu = . Then, 
ttu =

−1
1

1


  

The integral becomes: 

u

u

u
Z 

−

= 
−1

0

1

1

1 








 

( )1,



=
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( ) ( )
( )1

1

+


=









 

( )











=

 



1
=

 

The Renyi entropy is given by the formula: 

( ) ( )( ) 








−
= 

=

n

i

ixpXH
1

log
1

1 


  

Where ( )ixp  is the probability of outcome ix , and in our case, it’s 
( )

( )
Z

xf
xp i

 ,,,
=

 

Substituting into 

1
=Z

 ( )ixp , we get: 

( ) ( ) ,,,. xfxp i =  

Now, we need to compute the sum: 

( ) ( )( ) ( )( )













+−+

−
= 



−

−−− xeexXH xx



 


11.log

1

1 1

 

By introducing a suitable substitution and recognising the pattern, we simplified the integral 

to: 

( ) ( )( ) ( )( )













+−+

−
= 



−

−−− xeexXH xx



 


1log

1

1 1

 

We further simplified it by recognising it as the Beta function. 

( ) ( )( ) ( )( )













+−+

−
= 

−−−

1

0

1
1log

1

1
xeexXH xx




 


 

( )1,log
1

1


−
=

 

( ) ( )
( ) 










+



−
=

1

1
log

1

1





  



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323  

Volume 7, Issue 3, 2024 (pp. 211-232) 

 

223  Article DOI: 10.52589/AJLPRA-VYMPQTQU 

  DOI URL: https://doi.org/10.52589/AJLPRA-VYMPQTQU 

www.abjournals.org 

( )













−
=






log

1

1

 










−
=



1
log

1

1

 

( )


log
1

1

−
=

            

Order Statistics of GAYUFE –Distribution 

(11) The CDF of the thk −  order statistics kY is: 

( )
( ) ( ) ( )( )yYPyYPyF kkY k

−== 1
 

The probability that all kn − remaining values are greater than is: 

( )( ) ( )  kn

k yFyYP
−

−= 1
 

( )
( ) ( )( )






 −−=

−−+−
 y

k

ey

Y eyF 111
 

( )( ) ( )( )( )  kn
ey

k

y

eyYP
−

−+− −

−−=
 111

 

( )
( )yf

kY  = 

To find the PDF ( )
( )yf

kY , we need to differentiate the expression for ( )( )yYP k 
 with respect of 

y . 

Let ( )( ) ,1  yeyu −−+−= then 

( )ye
y

u y   −−−=


 − 1
 

Using the chain rule: 

( )
y

u
e

u
yG

y

u








=




.

 

( )( )( ) ( )( )yee yey y

  

−−−−−= −−+− −

11  

( ) ( )( ) 


yeyy eye

−−+−− −+= 11  

( )( )( )  ( ) ( )( )( ) kn
eyy

kn
ey yy

eyee
−

−+−−
−

−+− −−

−+−−  

 11 111  

Now, let’s distribute the exponent kn − to each term: 
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( )( )( )  ( )
( ) ( )( )

kn

eyknkn
ey yy

e
y

e

−

−+−−−
−+−








 −
+−−

−−  




 11 1

111  

( ) ( )( ) ( ) kn

kn

ey y

e
y −

−

−+−







 −
+

−




  11
1  

( ) ( )( )
( )

( )












 −
−−

−+−














 −−+−

−








 −
+

yey

y
e

y
knkn

ey ee
y



 








11

11
1  

Substituting this approximation back into the main expression, we get 

( )
( )

( )












 −
−

−














 −−+− yey

e
y

kn
kn
e









11

         

(12) This expression represents the PDF of the thk − order statistic ( )kY
of the GAYUFE –

Distribution 

 

Estimation of the Parameters of GAYUFE –Distribution 

In order to assess the real-life application of the GAYUFE –Distribution, the parameters of the 

distribution are estimated. We estimate the parameters  ,,  of GAYUFE –distribution using 

the maximum likelihood estimation method. By definition 

( ) ( )
=

=
n

i

ixfxL
1

,,,|,, 
         

(13) Where ( ) ,,,ixf is the given probability density function. 

( ) ( )
=

=
n

i

ixfxL
1

,,,ln|,, 
 

( ) ( )( ) ( )( )
=

−−−
+−+=

n

i

xx

i
ii eexxL

1

1

11ln|,,
 

 

( ) ( ) ( )( ) ( ) 
=

−−
++−+−++=

n

i

xx

i
ii eexnnxL

1

1ln1ln1lnln|,,
 

 

For  : 

( )
( ) ( )( )

0
11

1ln
1

2

222

=













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−

−+
−+=




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=

−

−
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−n

i
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x

x

i

x

i

i

i

i

i
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e

ex
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L



















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Let’s denote the function inside the summation as ( )g  

( ) ( ) ( )( ) iii xx

i

x

i eexexg
  2222 11

−−−
−+−−=  

Then, the derivative of Lln with respect to   becomes: 

( ) 0ln
1

=+=




=

m

i

gnL 
  

The equation we need to solve is: 

( ) 0
1

=+
=

n

i

gn 
 

Using the lemma, we rewrite this equation as: 

( ) 0
1

=+
=

n

i

gn 
 

( )
=

−=
n

i

g
n 1

1


         

(14) This gives us an iterative method to solve for  . 

For  : 

( )
=

−

−

−

−

=








+
−

+

−
−+=



 n

i
x

x

x

x

i

i

i

i

e

e

e

en
L

1

0
11

1
1ln













 

Let’s denote the function inside the summation as ( )h : 

( ) ( )( )
i

i

i

i

x

x

x

x

e

e

e
eh












−

−

−

−

+
+

+
−−=

11

1
11

 

Then, the derivative of Lln with respect to   becomes: 

( ) 0ln
1

=+=




=

n

i

hnL 
  

We need to solve this equation for  . 

The equation we need to solve is? 

( ) 0
1

=+
=

n

i

hn 
 

Using the lemma, we rewrite this equation as: 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323  

Volume 7, Issue 3, 2024 (pp. 211-232) 

 

226  Article DOI: 10.52589/AJLPRA-VYMPQTQU 

  DOI URL: https://doi.org/10.52589/AJLPRA-VYMPQTQU 

www.abjournals.org 

( ) 0
1

=+
=

n

i

hn 
 

( )
=

−=
n

i

h
n 1

1


           
(15) This gives us an iterative method to solve for  . 

For  : 

( )( ) ( ) 
=

−−
=++−++=



 n

i

xx

i
ii eex

n
L

1

01ln1lnln
 

  

Let’s denote the function inside the summation as ( )f : 

( ) ( )( ) ( )ii xx

i eexf
  −−

++−+= 1ln1ln  

Then, the derivative of Lln with respect to   becomes: 

( ) 0ln
1

=+=




=

n

i

fnL 
  

The equation we need to solve is: 

( ) 0
1

=+
=

n

i

fn 
 

Using the lemma, we rewrite this equation as: 

( ) 0
1

=+
=

n

i

fn 
 

( )
=

−=
n

i

f
n 1

1


           

(16) This gives us an iteration method to solve for  . 

It may be noted here that equations ,   and   cannot be solved analytically, therefore 

numerical methods may be used to estimate the parameters. Hence, we estimate the parameter 

using the R package. 

Random Number Generation 

Let’s denote the random variable U as uniformly distributed on the interval ( )1,0 , and let X  be 

the random variable we want to generate from the GAYUFE –Distribution. According to the 

inverse transform method: 

( )UFX 1−=  
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We need to solve for X  in terms ofU . In other words, we need to find such that 

( )( ) XeXeU
−−+−−= 11  

For simplicity, let’s denote: 

( )XeXY  −−+= 1  

( )
YeYF −−=1  

Now, we set this equal to U : 

YeU −−= 1  

Where U a random variable is uniformly distributed on the interval ( )1,0  

Ue Y −=− 1


 

( )UY −=− 1ln

 

( )UY −−= 1ln

 

( )( ) 
1

1ln UY −−=  

Now, recall: 

( )XeXY  −−+= 1  

We can solve this equation for X : 

( )XeYX  −−−= 1  

( )Xe
Y

X 







−−−= 1
           

(17) This equation represents how to generate random numbers from the GAYUFE –

Distribution using the inverse transform method and the given lemma.  Hence the above 

expression is used to generate random samples from the GAYUFE –Distribution for the given 

values of the parameters. A computer program is developed to obtain the mean values of the 

GAYUFE –Distribution using R language. For each pair of values ( , λ), various values of the 

mean of means are obtained. For a given data, the mean will be calculated and the parameters 

will be estimated for the given mean using the Tables generated for GAYUFE –Distribution. 

The values of the mean of transformed data of the GAYUFE –Distribution are presented in 

Table 12 in the Appendix. The table presents moments calculated for a distribution 

characterised by parameters (λ and θ) across different moment orders (r). These moments offer 

insights into the distribution's behaviour, with changes in parameter values impacting moment 

values. For instance, as both λ and θ increase, moment values tend to rise, indicating greater 
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variability or heavier tails in the distribution. Comparing moment values across different 

moment orders provides a further understanding of the distribution's characteristics, such as its 

kurtosis or tail behaviour.  

Table 1: Simulation Result at Parameters 1 0 1 

n lambda alpha theta sd_Lambda sd_Alpha sd_Theta mse_l mse_a mse_t bias_l bias_a bias_t 

20 0.772 0.254 4.150 0.577 0.599 5.152 0.352 0.388 33.812 -0.228 0.254 3.150 

30 0.938 0.078 2.078 0.385 0.346 3.523 0.137 0.114 12.331 -0.062 0.078 1.078 

50 1.036 -0.041 0.997 0.132 0.037 0.138 0.017 0.003 0.017 0.036 -0.041 -0.003 

100 1.036 -0.027 0.991 0.104 0.026 0.084 0.011 0.001 0.006 0.036 -0.027 -0.009 

500 0.989 -0.002 0.987 0.040 0.003 0.038 0.002 0.000 0.001 -0.011 -0.002 -0.013 

The simulation study in Table 1 demonstrates a clear relationship between sample size and the 

accuracy and precision of parameter estimates for the GAYUFE distribution. As the sample size 

increases, the estimates for the parameters λ, α, and θ become more accurate and precise. 

Specifically, the mean squared error (MSE) and standard deviations of the estimates decrease 

significantly with larger sample sizes, indicating improved reliability. Additionally, the biases 

in the estimates also diminish as the sample size grows, approaching zero, which suggests that 

the estimates are becoming closer to the true parameter values. For smaller sample sizes, such 

as n=20 and n=30, the estimates exhibit higher variability and greater biases, reflecting less 

reliability and precision. In contrast, with larger samples, like n=100 and n=500, the estimates 

for λ, α, and θ are notably accurate, with minimal biases and lower standard deviations, closely 

aligning with the true values. This indicates that larger sample sizes significantly enhance the 

robustness of parameter estimation in the GAYUFE distribution 

Table 2: Simulation Result at Parameters 1 1 1 

n lambda alpha theta sd_Lambda sd_Alpha sd_Theta mse_l mse_a mse_t bias_l bias_a bias_t 

20 1.748 -0.083 0.889 0.319 0.090 0.125 0.651 1.180 0.026 0.748 -1.083 -0.111 

30 1.749 -0.066 0.836 0.313 0.069 0.085 0.648 1.141 0.033 0.749 -1.066 -0.164 

50 1.682 -0.033 0.885 0.301 0.021 0.065 0.547 1.067 0.017 0.682 -1.033 -0.115 

100 1.702 -0.016 0.882 0.138 0.013 0.048 0.510 1.032 0.016 0.702 -1.016 -0.118 

500 1.677 -0.003 0.885 0.086 0.004 0.037 0.465 1.007 0.014 0.677 -1.003 -0.115 

The table illustrates the results of a simulation study for estimating the parameters λ, α, and θ 

of the GAYUFE distribution across different sample sizes. As the sample size increases from 

20 to 500, the estimates for λ and α become more accurate and precise. Specifically, the 

standard deviations (sd_Lambda, sd_Alpha, sd_Theta) and mean squared errors (mse_l, mse_a, 

mse_t) for all parameters decrease, indicating enhanced reliability and reduced variability in 

the estimates. However, the biases for α remain significant and negative across all sample sizes, 

suggesting a consistent underestimation. The bias for λ decreases slightly with larger sample 
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sizes, showing improved alignment with the true value. For θ, the bias is relatively small and 

negative, indicating a minor underestimation. Overall, larger sample sizes lead to more stable 

and accurate parameter estimates, with reduced standard deviations and mean squared errors, 

although some biases, particularly for α, persist. 

Real Life Application 

In this section, we present the fittings of GAYUFE distribution and exponential distributions to 

two real lifetime data- sets to show the applicability and superiority of GAYUFE over 

exponential distributions. 

Data set 1:  The data represents the tensile strength data of glass fiber (1.5 cm) initially 

collected by employees at the UK National Physical Laboratory and used by Smith and Naylor 

(1987). The data are as follows: 

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00 0.74 

1.04 1.27 1.39 1.49 1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11 

1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69 1.76 1.84 2.24 0.81 1.13 1.29 

1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84 1.24 1.30 1.48 1.51 

1.55 1.61 1.63 1.67 1.70 1.78 1.89        

 

Figure 5: Density of the Fitted Distributions for Tensile Strength Data of Glass Fiber 
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Data set 2: The second data - set represents the waiting times (in minutes) before service of 

100 Bank customers and examined and analyzed by Ghitany et al., (2008) for fitting the Lindley 

(1958) distribution. The data are as follows: 

0.8,0.8,1.3,1.5,1.8,1.9,1.9,2.1,2.6,2.7,2.9,3.1,3.2,3.3, 3.5,3.6,4.0,4.1,4.2,4.2,4.3,4.3, 

4.4,4.4,4.6,4.7,4.7,4.8,4.9,4.9,5.0,5.3,5.5,5.7,5.7,6.1,6.2,6.2,6.2,6.3,6.7,6.9,7.1,7.1, 

7.1,7.1,7.4,7.6,7.7,8.0,8.2,8.6,8.6,8.6,8.8,8.8,8.9,8.9,9.5,9.6,9.7,9.8,10.7, 10.9, 11.0, 11.0, 

11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 

17.3, 17.3,  

18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5. 

 

Figure 6: Density of the Fitted Distributions for Waiting Times (in minutes) Before 

Service of 100 Bank Customers 

In order to compare exponential and GAYUFE distribution, AIC (Akaike Information 

Criterion), and K-S Statistics (Kolmogorov-Smirnov Statistics) for the two  real lifetime data 

sets have been computed and presented in table 3:  

 

Table 3: MLE’s, - 2ln L, AIC and K-S Statistics of the fitted distributions of data -sets 1 

and 2 

Data Sets  Model Parameter estimate -2log L AIC Kolmogorov 

1 GAYUFE λ (0.7372) 30.32 36.32 0.1358 

α (-0.2493)    

θ (5.1704)    

Exponential λ (0.6636) 30.32 179.66 0.4021 

2 GAYUFE λ (0.1095) 633.83 639.83 0.0380 

 α (0.1433)    

 θ (1.1995)    

Exponential λ (0.1012) 633.83 660.04 0.1630 

The table shows the goodness of fit tests for the GAYUFE distribution for data set 1 yield an 

AIC of 36.32, a Kolmogorov-Smirnov statistic of 0.1358, and a -2logL value of 30.32, 

indicating a good fit. In contrast, the exponential distribution, with a single parameter estimate 
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λ=0.6636 shows a significantly higher AIC of 179.66 and a Kolmogorov-Smirnov statistic of 

0.4021, suggesting a poorer fit compared to the GAYUFE distribution. Both distributions share 

the same -2logL value of 30.32. Overall, the GAYUFE distribution demonstrates a superior fit 

to the tensile strength data, as indicated by the lower AIC and Kolmogorov-Smirnov values, 

highlighting its suitability for modeling this dataset 

Similarly, for data set 2, the GAYUFE distribution showed AIC of 639.83 and Kolmogorov-

Smirnov statistic of 0.0380. In comparison, the exponential distribution had λ=0.1012, AIC of 

660.04, and Kolmogorov-Smirnov statistic of 0.1630. Despite both distributions having the 

same -2log L value (633.83), the GAYUFE distribution exhibited lower AIC and Kolmogorov-

Smirnov statistic, suggesting a better fit for the waiting time data. 

Hence, it can be easily verified from above table that the GAYUFE distribution gives better 

fitting than the exponential distributions for modeling real lifetime data-sets and thus GAYUFE 

distribution should be preferred to the conventional exponential distributions 

 

CONCLUSION 

The newly developed distribution using the GAYUF transformation exhibits substantial 

potential for statistical modelling and data analysis. This distribution's structural properties, 

including moments, moment generating function, mean, variance, hazard rate, and survival 

function, have been rigorously derived, establishing a robust theoretical basis. Parameter 

estimation via the maximum likelihood estimation (MLE) method, complemented by 

simulation studies, confirms the distribution's high accuracy and reliability. Applied to real-

world datasets such as tensile strength measurements of glass fibres and waiting times for bank 

customers, the GAYUFE distribution outperforms traditional exponential distributions, 

evidenced by lower AIC and Kolmogorov-Smirnov statistics. These findings validate the 

GAYUFE distribution as an advanced tool for precise data modelling, enhanced parameter 

estimation, and reliable analysis of complex datasets, marking a significant improvement over 

existing methods. 
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