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ABSTRACT: Magic squares have long been used in divination 

and art, due to their magic and wonder. Among them, perfect 

magic squares are considered valuable as magic squares with 

special properties, and mathematicians have been interested in 

them and studied them. However, the achievements that are 

currently known are how to make a certain perfect magic square, 

and nothing is known about the number of all perfect magic 

squares, the unified formula, or the structure. This paper focused 

on symmetry and clarified the unified formula and structure. 

KEYWORDS: Magic square, Perfect magic square, Latin square, 

Point symmetry, Group theory. 
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INTRODUCTION 

Since ancient times, magic squares have been popular not only in Mathematics but also in 

fortune-telling and art. Of course, mathematicians have also done a lot of research. Among 

them, Euler's Latin square and the problem of 36 officers are too famous. Euler conjectured 

that it is impossible to find two orthogonal Latin squares of order n when n is half even. 

However, in practice only the sixth-order case proved impossible. Regarding this Latin square, 

unlike the magic square and perfect magic square, many studies and papers have been 

published. However, as a result, it is only showing the lower bound. The equation (1) is shown 

below (ref. [1]). Here, l(n) is the number of Latin squares of order n. 

𝑙(𝑛) ≥
(𝑛!)2𝑛−2

𝑛𝑛
2    (1) 

Also, as a real-life application, it was applied to agricultural planning to treat farmland with 

various conditions more fairly (ref. [2]). By the way, when it comes to the magic square of the 

sixth order, it is said that it will take about 30 million years to count and calculate the total 

number. In addition, although this paper deals with perfect magic squares, the total number is 

only known up to the fifth order. And it is proved that quadratic, cubic, and half-even numbers 

do not exist. Therefore, the total number of seven or more orders is not required. A perfect 

magic square is also called a magic square on a torus. Glue the upper and lower sides of a 

perfect magic square together to form a cylinder, stretch the cylinder further, and connect the 

two ends to form a doughnut. The surface of the torus is a perfect magic square in which all 

rows, columns and diagonals cannot be distinguished. Therefore, the pan diagonals of a perfect 

magic square can also be considered as rows and columns. 

Description of a Perfect Magic Square 

First of all, a perfect magic square means that in addition to the properties of a magic square, 

the sum of the numbers on the pandiagonal line is also the same. As already mentioned, it has 

been proved that a perfect magic square of half-even order (n=4m+2, where m is a natural 

number) does not exist. This proof is not only found in magic squares, but also in textbooks 

related to group theory, so I won't go out of my way to include it here. 

And the other numbers are (1) n is an odd number that is a multiple of 3, (2) n is an odd number 

that is not a multiple of 3, (3) all even numbers (4m) and m is an odd number, (4) all even 

numbers (4m) and m is an even number. In the four cases, a method for making a perfect magic 

square is considered. As for (1), it is a method using Keima jump in Japanese shogi or Knight 

jump in chess. Since it can also jump sideways, it is called Knight jump. This creation method 

is described in a Japanese book called “Magic square world (ref [3])”. 

In addition, the other (2) to (4) are created using perfect magic square of n-1 or less or auxiliary 

square* with such properties. However, it is known that there are overwhelmingly more 

irregular perfect magic squares that cannot be represented by these than regular perfect magic 

squares. Almost nothing is known about the latter irregular perfect magic square today. In this 

paper, I report that I found a certain rule about this irregular perfect magic square. 
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*Auxiliary Square 

If it is an n-order square, it is expressed in n-adic numbers, and the second digit (upper digit) 

and the first digit (lower digit) are considered separately. 

Relation between Perfect Magic Square and Symmetry  

Regularity 

First, I would like to clarify the definition of regularity in this paper. The regularity shown in 

other papers and related books mainly refers to those that can jump at Knight. 

a) The arrangement of the same number represented by the auxiliary square is symmetrical 

about the number with the center. Please note that this is not limited to Knight jump.  

Example: Knight jump case when not a multiple of 3 (see Fig.1). Arrows indicate Knight 

jumps about number 0. 

 

 

 

 

 
 

first digit                              second digit 

Figure 1: Fifth order perfect magic square 

b) Each group distinguished by a modulus of n has point symmetry. 

  Example: A case where even and odd numbers are point symmetric (see Fig.2). Even 

numbers are gray, odd numbers are white. 

 

 

 

 

 

 

 

Figure 2: Perfect magic square of order 8 
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Example: Multiples of 3, 3m and 3m+2 groups (m is a natural number) are point symmetric, 

and 3m+1 itself is point symmetric. (see Fig.3). Here, for the sake of clarity, it is written in 

decimal not n-ary. Dark gray is 3m+2, Light gray is 3m+1, White is 3m. 

 

 

 

 

 

 

 

 

Figure 3: Perfect magic square of order 9 

By the way, if regularity is defined as such, the above-mentioned introduction (1) to (4) will 

be arranged with regularity. For example, the Knight jump in (1) always has symmetry as 

shown in figure 1. 

First, consider case a). Here we show a regular perfect magic square of order 5 (fig. 1). In 

addition, it is represented here by a quinary number -1. It is well known that it is convenient to 

think of an n-th order square as n-adic number -1 from the Latin square concept. Henceforth, 

all numbers are represented by n-adic numbers -1. The left figure is a normal perfect magic 

square in the middle, and the right figure is an auxiliary square in the first and second digits. 

For example, if you pay attention to all the 1s in the middle figure, you can see that they are 

points symmetrical about the central 1. Please make sure that the other numbers are similarly 

symmetrical about a certain point. In addition, I presume that the perfect square that satisfies 

the above is the meaning of the orthogonal Latin square plus the oblique direction. A Latin 

square means that n rows and n columns are arranged with n numbers from 1 to n, and there is 

one number from 1 to n in each row and column. After, add the diagonal and pandiagonal. 

Then, make two of them, and make two pieces with different pairs of cell numbers in the same 

position. It is a so-called orthogonal Latin square with an oblique direction added. 
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Moreover, when the relational expression is expressed, it is as follows. Let X be the subgroup 

of the same numbers in each digit (see equation (2) and (3). Also, i and j are natural numbers 

less than or equal to n. If the image modeled by the subgroup represented by X is G, it can be 

expressed as follows (see (4). The letters r, π mean point symmetry. It is expressed in n-adic 

notation. 

<Odd number not multiple of 3> 

 

 

 

 

 

 

(4) 

     

 

 

 
(2) 

 
(3) 

  𝐺(𝑋𝑖0): 𝑟, 𝜋  
𝐺(𝑋𝑖1): 𝑟, 𝜋 
… 

𝐺(𝑋𝑖(𝑛−2)): 𝑟, 𝜋 

𝐺(𝑋𝑖(𝑛−1)): 𝑟, 𝜋 

 

𝐺(𝑋0𝑗): 𝑟, 𝜋 

𝐺(𝑋1𝑗): 𝑟, 𝜋 

… 

𝐺(𝑋(𝑛−2)𝑗): 𝑟, 𝜋 

𝐺(𝑋(𝑛−1)𝑗): 𝑟, 𝜋 
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Next, consider case b). In the case of multiples of 3 or even numbers, this Knight jump is not 

possible. (See Fig. 2, Fig. 3). Instead, it is represented by the product of n-1 or less, and can be 

composed with them. For example, in the case of even numbers, if we consider the relationship 

between even and odd numbers to have a definite difference of 1, then the even and odd groups 

have a symmetrical relationship. Also, if you think that the average of 3m and 3m+2 is 3m+1 

when it is a multiple of 3, you can see that 3m and 3m+2 are symmetrical, and 3m+1 itself is 

symmetrical, which makes it even. The relational expression is as follows. Let H be the image 

modeled by the subgroup also denoted by Y. And it can be expressed as follows (see (5) ~ (8)). 

(5) and (6) are even cases, and (7) and (8) are non-prime odd cases. For the sake of clarity, the 

formulas here are expressed in decimal numbers instead of n-ary numbers. This will naturally 

become like this when you make a pair and make a definite difference or take an average value. 

<Even number> 

 

 

 

 

 

<Non-prime odd> ex. If the divisor of n is l 

 

 

 

 
𝑌0 = {0(𝑚𝑜𝑑 𝑙)}   
𝑌1 = {1(𝑚𝑜𝑑 𝑙)} 
𝑌2 = {2(𝑚𝑜𝑑 𝑙)} 
… 
𝑌(𝑙−2) = {(𝑙 − 2)(𝑚𝑜𝑑 𝑙)}  

𝑌(𝑙−1) = {(𝑙 − 1)(𝑚𝑜𝑑 𝑙)}   

𝑌 ∈ 𝑁 
(7) 

𝐺(𝑋0)
𝑟,𝜋
↔  𝐺(𝑋1)                                                                        (6) 

𝑌0 = {2,4,6, … 2𝑘 − 2, 2𝑘}   
     = {0(𝑚𝑜𝑑2)}  
𝑌1 = {1, 3,5, … 2𝑘 − 3, 2𝑘 − 1}   
     = {1(𝑚𝑜𝑑2)} 
𝑛 = 2𝑘 
𝑌0, 𝑌1 ∈ 𝑁 

(5) 
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(8) 

 

In the case of a) as well, if we think in terms of the definite difference, we distinguish the group 

with the definite difference of 0 as an auxiliary square. Each has point symmetry. Including 

this definite difference of 0 would cover all the definite differences and would represent the 

necessary condition for a regular perfect magic square.Then, with this, if either a) or b) holds 

true, the perfect magic square is defined as having regularity. 

 

Irregularities and Symmetric Permutation 

Then, I would like to think about how to create an irregular perfect magic square that does not 

belong to a regular perfect magic square. I will give the answer first, but it can be done by 

exchanging two groups with point symmetry in a perfect magic square with regularity. In this 

paper, it is named partial symmetric permutation because there is no suitable one in current 

mathematical terminology. I will call it that from now on. As shown in figure 4, when 

distinguishing between the positive and negative (large and small) of the difference between 

the exchanged numbers, the so-called two groups become symmetrically transformed. And 

they are always point-symmetrical, symbolically expressed as r, π. In addition, since the perfect 

magic square as a whole has the same condition even if it is vertically and horizontally shifted, 

the above regularity and partial symmetric permutation are considered including it. An example 

of an irregular perfect magic square of degree 7 is shown in the figure 4. 

0⇔1、4⇔5、22⇔23、34⇔35、44⇔45、52⇔53 

As above, there are six pairs of transformations with a definite difference of 1(7), and if we 

exchange these, we get a regular Knight jump (see Fig. 4,5). If we distinguish between the 

positive and negative (large and small) of the exchanged numbers, we can see that they are 

point symmetrical. Here, positive values are colored in light gray and negative values in dark 

gray. 

 

𝐺(𝑌0)
𝑟,𝜋
↔  𝐺(𝑌𝑙−1) 

𝐺(𝑌1)
𝑟,𝜋
↔  𝐺(𝑌𝑙−2) 

𝐺(𝑌2)
𝑟,𝜋
↔  𝐺(𝑌𝑙−3) 

… 

𝐺 (𝑌𝑙−1
2
−2
)
𝑟,𝜋
↔  𝐺 (𝑌𝑙−1

2
+2
) 

𝐺 (𝑌𝑙−1
2
−1
)
𝑟,𝜋
↔  𝐺 (𝑌𝑙−1

2
+1
) 

𝐺 (𝑌𝑙−1
2

) : 𝑟, 𝜋 
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Before transformation              After transformation  

Figure 4: Irregular perfect magic square of degree 7 

 

 

 

 

 

 

Figure 5: Auxiliary square after transformation of Fig 4 

Now let me explain why this happens. First, at a certain point, the number of transforms in the 

vertical, horizontal, and diagonal directions is always an even number. This corresponds to 

even permutation in group theory. Next, if the number of transformations is seven or less, all 

points do not satisfy the even permutation in the vertical, horizontal, and diagonal directions, 

so it is clear that eight points are always necessary as shown in the figure 6. For example, if 

one point is replaced and the difference is positive, there are four points in the vertical, 

horizontal, and diagonal directions with respect to that point, and the difference is negative. So, 

correspondingly, at least three positive points are required. Therefore, six points cannot be 

replaced. And 8 points is the minimum. 

It is a simple conversion diagram of a perfect magic square assuming that numbers are placed 

in the crossing parts and the circle parts (Fig.6). Again, it would be nice if you could understand 

that the shading of the black circles is the positive or negative difference. If one point is a dark 

black circle, the vertical, horizontal, and diagonal lines connected to it naturally become light 

black circles. Then you can easily see that it will be placed below. If each distance of the circle 

is the same, there is no problem. 

 

 

 
First digit                     Second digit 
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Figure 6: Octagonal transformation diagram of perfect magic square 

If even one of the above symmetrical states is asymmetrical, it cannot be evenly replaced in 

the so-called vertical, horizontal, and diagonal directions, and new permutations are required. 

And it will require more than 8 transformations (4-tuple octagonal transformations).  

This is illustrated by an example of a perfect magic square of order 7. Perfect magic square on 

the left side of Fig. 7 is a transformation diagram with a definite difference of 10(7), which is a 

6-tuple transformation. And the central figure is a transformation diagram with a definite 

difference of 3(7), which is a 6-tuple transformation. It can be seen that each is point-

symmetrically transformed around the black circle. The figure after transformation is shown 

on the right. You can see that the second and first digits are Knight jumps. In Fig. 7, for the 

sake of clarity, I chose the case of Knight jump as a regular perfect magic square, but of course 

there are other cases as well. Figure 5 is the same. 

Figure 7: Irregular perfect magic square of order 7 (permutation twice) 

These are represented by the following formulas (see (9) ~ (12). The letter G indicates the 

image before partial symmetry permutation, and the letter H indicates the image after partial 

symmetry permutation. And, α indicates a partially symmetric permutation operation. The 

characters + and - indicate whether the definite difference has increased (+) or decreased (-) 

before and after partial symmetric permutation. (9) and (10) are the equations of a single partial 

symmetric permutation. Then, (11) and (12) become general expressions. Characteristics of α 

 

 
Before transformation            Before transformation           After transformation 

(Permutation 1)                       (Permutation 2) 
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and G are also shown in (13), and a simple proof for them is given in (14). G' represents the 

transposed matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<Characteristics of α and G> 

 

    

Because  

 

 

 

 

 

 

This contradicts the first setting. Therefore, the expression (13) holds. 

                          𝛼+
𝑟,𝜋
↔ 𝛼−                                                                               (9) 

                    𝐻 = 𝛼+,−𝐺                                                           (10) 

 

𝑡𝑜 𝑏𝑒 𝛼𝑥 ≠ 𝛼𝑦, 

𝛼1+
𝑟,𝜋
↔ 𝛼1− 

 𝛼2+
𝑟,𝜋
↔ 𝛼2− 

 𝛼3+
𝑟,𝜋
↔ 𝛼3− 

… 
                                                                                                  (11) 
 
𝐻 = 𝛼1+,−  ∙ 𝛼2+,− ∙ 𝛼3+,− ∙ … ∙ 𝐺                                       (12) 
 

                                                𝛼𝑥𝐺 ≠ 𝛼𝑦𝐺                                                                     (13) 

 

𝑖𝑓 𝛼𝑥𝐺 = 𝛼𝑦𝐺, 

𝛼𝑥𝐺𝐺
′ = 𝛼𝑦𝐺𝐺

′ 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 
𝛼𝑥 = 𝛼𝑦 

(14) 
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And this idea also applies to the regularity of the archetypes mentioned above. For example, in 

the case of pair permutation such as 2-1(b), if there is even one asymmetrical number, it 

requires at least 8 even numbers to be permuted vertically, horizontally, and diagonally. And 

finally, having symmetry in everything is the condition for becoming a perfect magic square. 

Let F(n) be the total number of perfect magic squares, A(n) be the total number of original 

regular perfect magic squares, and B(n) be an irregular perfect magic square after partial 

symmetric permutation. As I mentioned earlier, the perfect magic square has the same 

conditions even if it is vertically or horizontally shifted as a whole, so it will be the product of 

the squares of n. Then the following formula will be derived. 

 

                                                𝐹(𝑛)
= 𝑛2 × 𝐴(𝑛) + 𝑛2 × 𝐵(𝑛)                                                             (15) 

 

CONCLUSION AND FUTURE OUTLOOK 

In this paper, I clarified that an irregular perfect magic square can always be formed by 

applying partial symmetric permutation from a regular perfect magic square. It was discovered 

that all perfect magic squares consist of irregular perfect magic squares and regular perfect 

magic squares.  

And this means that perfect magic squares are always associated with symmetry. And this 

hidden symmetry is probably the reason why people have been fascinated by perfect magic 

squares for a long time. 

In the natural world, only things with high symmetry and regular movements have attracted 

attention and been elucidated. However, there are overwhelmingly more asymmetrical and 

irregular ones like this time. Perhaps, like this time, there may be many things that are 

asymmetric and irregular at first glance, but are constructed by symmetrical permutation. In 

particular, there may be applications in the world of chemistry and physics, where the rule of 

conservation of energy holds true in all directions.  

 

REFERENCES 

H. J. Ryser, Permanents and systems of distinct representatives, Combinatorial Mathematics 

and Its Applications, University of Carolina Press (1969), 55-70  

Kiyomi Oomori, Magic square world, Chapter 7 

W. U. Behrens, Feldversuchsanordnungen mit verbessertem Ausgleich der Bodenunterschiede, 

Z. Landwirtschaftliches Versuchs- und Untersuchungswesen 2 (1956), 176-93. See also 

R.A.Bailey, P. J. Cameron, and R. Connelly, Sudokou, gerechte Designs, resolutions, 

affine space, spreads, reguli, and Hamming codes, Amer. Math. Monthly 115 (2008), 383-

404. 

https://en.wikipedia.org/wiki/Jacques_Touchard
https://en.wikipedia.org/wiki/Jacques_Touchard
https://en.wikipedia.org/wiki/Jacques_Touchard
https://en.wikipedia.org/wiki/Jacques_Touchard

