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ABSTRACT: The nilpotentcy class for the Frobenius was 

determined based on the structure theorem. The socle of the 

groups were observed to be regular normal and elementary 

abelian such features were the conditions for the nilpotency 

classes, as they were the basis on which the socle of these groups 

constructed were nilpotent of some classes or order. The socle of 

the nilpotent groups whose structures is in conformity with D were 

classified based on the classification scheme for the finite 

primitive groups in relation to socle type. 

KEYWORDS: Frobenius, groups. Socle, nilpotency, finite, 

abelian, regular. 
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INTRODUCTION  

The structure of a finite Frobenius group was as a result of the work carried out on primitive 

groups by [11] and was further investigated by Burnside [2]. He showed that a finite Frobenius 

group has proper nontrivial characteristic subgroups. Therefore, this idea played a key role in 

the study of finite 2-transitivee permutation groups. The proof of the work of [11] was geared 

toward the use of character theory. The major work on this group was carried out by [2]. He 

gave the outline of the structure for finite Frobenius but in the real sense, the structure of the 

Frobenius group was described by Frobenius in paper [11], Zassenhaus and Thompson as stated 

in [10].  

Let  𝐺 be a finite Frobenius group and with point stabilizer such that;   

(D)      𝐾 = { 𝑥𝜖𝐺| 𝑥 = 1 or  𝑓𝑖𝑥(𝑥) = ∅ } 

Then  𝐷 is a subgroup of 𝐺 and is nilpotent, also for any prime, 𝑝,  for which the Sylow p- 

subgroup of 𝐺 has a  point stabilizer which is cyclic. Throughout we denote 𝐷 as the Frobenius 

subgroup. 

The statement for the structure of finite Frobenius groups as given in D was due to work of the 

work of Frobenius in [11] which was later generalised in the work of [18]. It follows that a 

permutation group which is a Frobenius group based on the above conditions has a regular 

abelian subgroup and the point stabilizer has only one element of order 2. He further state that 

if H is a primitive group but not regular and, also 
3

2
-transitive, then  𝐻 is normal in  𝐺, 

Therefore, every finite primitive group has a unique minimal normal subgroup which is regular 

abelian and simple and also isomorphic to each other. Also [13] worked on finite p- groups 

with a Frobenius group of automorphism, whose kernel is a cyclic p- group.  In his work, he 

defined a Frobenius group as a finite normal subgroup which is non-trivial. We intend in this 

paper to determine the socle of primitive with a subgroup satisfying the condition defined in 

D, with a view to determine subgroup generated by minimal normal subgroups with a structure 

satisfying 𝐷 that is the socle of the group. The classification scheme for finite primitive based 

on the  O'Nan-Scott theorem rest basically  on the socle type of the finite primitive groups. 

Preliminary result  

 Theorem 2.1: Let 𝐺 be a finite group which is not regular and 𝐻 a subgroup with 𝐺𝛼 a point 

stabilizer of 𝐺.Therefore 𝐺 can be written as  𝐺 = 𝐻𝐺𝛼 . 

 Theorem 2.2: Let 𝐺 be a finite Frobenius group and 𝐺𝛼 be a point stabilizer and let D be 

defined, then the following hold 

1. 𝐷 is a subgroup of 𝐺 which is normal and regular in 𝐺 

2. For each odd prime, 𝑝, the Sylow p-subgroup of 𝐺𝛼 is cyclic. 

3. 𝐷 is nilpotent 

The structure theorem for the Frobenius group is the necessary and sufficient condition for a 

subgroup to have a structure of 𝐷 of a Frobenius group. The subgroup are fix point free. 
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Suppose 𝐺  is transitive then 𝐷 is a derangement except for the identity subgroup. With these 

we take the following. 

Remark 2.3: 

In the case that 𝐺𝛼 is not soluble, then 𝐺 has only one abelian composition factor which is 𝐴5 

We now state a theorem which gives us a condition for the existence of a Frobenius group with 

a point stabilizer having only one element of even order. This assertion only satisfy the 

condition in which 𝑝 = 2  exactly, since it is the only prime number which is also even. 

The next result is given in the relation to the concept of reugular abelean groups defined in [14] 

Theorem 2.4: Let 𝐺 be a finite Frobenius group of degree n, and  𝐷 a subgroup. If  𝐺𝛼  has even 

order then 𝐷 is a regular normal abelian subgroup of 𝐺 and 𝐺𝛼 has exactly one element of order 

2. 

Proof: 

 For 𝐺𝛼 to have even order it imply that it have elements of order of two. Let 𝑇 be the 

𝐺 −conjugacy class containing these elements. Since the point stabilizers are disjoint, each of 

the point stabilizer contains at least one element from 𝑇and |𝑇| ≥ 𝑛. Consider the cycle 

decomposition of an element 𝑡 ∈ 𝑇suth tht 𝑡 has one cycle of length 1 and 
𝑛−2

2
−cycle of length 

2.since no nontrivial elment of 𝐺 has more than one fixe point, no two elements from 𝐺 can 

contain the same 2 −cycle. There are exactly 
𝑛(𝑛−1)

2
 , 2 −cycles in  𝑠𝑦𝑚(Ω), and so we coclude 

that 
|𝑇|(𝑛−1)

2
≤

𝑛(𝑛−1)

2
 and hence |𝑇| ≤ 𝑛. But |𝑇| ≥ 𝑛, therefore |𝑇| = 𝑛, 𝑎𝑛𝑑 𝑒𝑣𝑒𝑟𝑦  2 −cycle 

occurs inone of the element of 𝑇. In particular, each point stabilizer contains exactly one 

element from   𝑇, and 𝑇 contains all elements of order 2 in 𝐺. 

We suppose that 𝑠𝑡 ∈ 𝐷 for any 𝑠, 𝑡 ∈ 𝑇 then we assume that 𝑓𝑖𝑥(𝑠𝑡) = Φ for if not then any 

𝛽𝜖Ω we  have 𝑓𝑖𝑥(𝑠𝑡) = 𝛽 which contrry to the definition in 𝐷 and we may have𝛽𝑡 = 𝛽(𝑠𝑡)𝑡 =
𝛽for any distinct 𝑠 and 𝑡,and so eithr (𝛽 𝛽𝑠) = (𝛽𝛽𝑡) is a 2 −cycle in both 𝑠 and 𝑡. But the 

case is not possible. Therefore 𝑠𝑡𝜖𝐷 as asserted. 

𝑓𝑖𝑥(𝑡)𝜖𝑇 𝑡ℎ𝑒𝑛 𝑡𝑇 ⊆ 𝐷 , and since both have size 𝑛 we onclude that 𝑡𝑇 = 𝐷 in particular 

1𝜖𝐷 and therefore, 𝐷𝐷−1  ⊆ 𝑇𝑇 ⊆ 𝐷, and so 𝐷isa subgroup and further 𝐷 𝑖𝑠 abelian . 

The next result is due to the idea  of a statement of  result in  [10].  

Theorem 2.5: Let 𝐺  be a 2 −transitive Frobenius group, and 𝐷  a subgroup. Then suppose that 

either 𝐺 is finite or the point stabilizer 𝐺𝛼 is abelian, then 𝐷 is regular normal abelian subgroup 

of 𝐺 in which each nontrivial element has same order. 

Proof: 

 Suppose |Ω| = 𝑛 then |𝐷| = 𝑛 for if 𝐺 is 2 −transitive then |𝐺𝛼| divides 𝑛 −1 therefore 𝐺 is 

a Frobenius group if for any 𝑢 ≠ 1 and 𝑢 ∈ 𝐷 then 𝐶𝐺(𝑢) ⊆ 𝐷 then |𝐺: 𝐶𝐺(𝑢)| ≥ 𝑛 − 1. 

Therefore 𝑢  has atleast  one conjugate  element in 𝐺. On the other hand each conjugate element 

of 𝑢 is cearly a nontrivial element from 𝐷 then we conclude that 𝐶𝐺(𝑢) = 𝐷.thus we have 
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shown that 𝐷 is a subgroup and ach element of 𝐷 lies in the centre of 𝐷. Hence 𝐷 is elementary 

abelian  𝑝 −group and so 𝐷 is regular and normal.further based on Theorem 2.4  𝐷 is abelian 

also since 𝐺  is Frobenius then for any 𝑠, 𝑡 ∈ 𝐷 and 𝛼, 𝛽𝜖Ω then (𝛼𝛽)𝑡 = (𝛽𝛼), therefore, for 

any (𝑡 ≠ 1),it imply 𝑡2 = 1, and so 𝑡 fixes both 𝛼 and 𝛽.Conversely, if 𝐺 is Frobenius then 

every element x𝑥, 𝑦 ∈ 𝐺 imply 𝑥, 𝑦−1 ∈ 𝐷 and so 𝐺 is of prime degree, and so by Theorem 2.4, 

𝐷 is nilpotent. The statement also follows from Theorem 2.2, as such 𝐷 is cyclic which by 

implication 𝐷 is abelian.further for any 𝑢, 𝑣 ∈ 𝐷 there is 𝛼, 𝛽𝜖Ω such that 𝛼𝑢 = 𝛽𝑣=1 and so 

𝑢 = 𝑣. Hence the theorem. 

Theorem 2.6 [10]: Let 𝐺 be a finite primitive group with abelain point stabilizer, then 𝐺 is 

either, 

 regular or of prime degree or a Frobenius group. 

Proof: Since 𝐺 is a primitive group and not regular, then 𝐺 is a Frobenus group and has a 

subgroup which is a Sylow 𝑝 − subgroup ,which is regular and abelian. Therefore 𝐺𝛼 is of the 

type 𝐷, and so 𝐷 is nilpotent which also by Theorem 2.2, it shows condition 1 imply condition 

3 thus  𝐺 is Frobenius 

Conversely, suppose 𝐺  is  Frobenius, it follows from Theorem 2.1 that, 𝐺 has a subgroup 

which is regular and abelian of prime degree, therefore the subgroup may be of type 𝐷. Hence 

𝐺 has  𝐺𝛼  asc the only proper subgroup and so 𝐺 is primitive. 

Next we define nilpotency of a finite primitive group as it is a requirement in the attainment of 

a Frobenius structure. 

 Definition 2.7: A finite primitive group 𝐺 is nilpotent if and only if 𝐺 has an upper central and 

a lower central series.that is there is an integer 𝑘 ≥ 0 such that  𝛾𝑘(𝐺) = 1. 

Therefore we state categorically that if 𝐺 is nilpotent and  𝑁 is normal then 𝐺/𝑁 is nilpotent. 

Also if 𝐺 is nilpotent then it imply 𝐺 is soluble.The  next result clearly gives condition for the 

existencet of nilpotency classes 

 Theorem 2.8: Let 𝐺 be a finite primate group with a nilpotent point stabilizer. Then 𝐺 is soluble 

if the Sylow 2 −subgroup of the point stabilizer is also nilpotent of class at most 2. 

Proof:  Suppose 𝐺 has a nilpotent point stabilizer, then 𝐺𝛼 is cyclic and so the point stabilizer 

is an elementary 𝑝 abelain group .Therefore by Definition 2.6  and the condition that 𝐺𝛼 is a 

normal subgroup of 𝐺 it imply that 𝐺 is soluble which follows immediately from Theorem 2.2. 

Conversely if  𝐺 is of order say, 𝑛𝑝𝑎 for 𝑎 ≥ 1 then 𝐺 contain a normal subgroup which a 

Sylow  𝑝 −subgroup.therefore if can be deduce from Theorem 2.1 that 𝐺𝛼 is nilpotent, and so 

by Theorem 2.2(2)  𝐺𝛼 is  nilpotent of class at most 2. 

Theorem 2.9: Let 𝐺 be a finite primitive group with a maximal subgroup 𝑀 which is abelian, 

then 𝐺 is solvable. 

Proof: If 𝐺 is primitive then for any normal subgroup of 𝐺, say , 𝐷 is maximal implying 𝑀 ≤
𝐷, so we assume 𝐷 = 𝑀 Therefore the composition series for 𝐺 is of the form 𝐺 ⊳ 𝐷 ⊳ 1 and 
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so 𝐷 is a normal subgroup of 𝐺. Moreover since 𝐺 is primitive it imply that 𝐷 is abelian and 

so it is of order a power of 𝑝. 

Remark 2.10: the necessary and sufficient condition that a finite primitive group is nilpotent is  

𝐺 is a finite 𝑝 −group and abelian. 

Theorem 2.11: Let 𝐺 is 𝑝 −group then 𝐺 is nilpotent 

Proof:  Suppose   |𝐺| = 1, the result is trivialy true. We assume that  |𝐺| ≥ 2. Also assume 

inductively that the theorem holds for all 𝑝 −groups of order less than |𝐺| hence it iply 𝐺/𝑍(𝐺) 

is nilpotent. Thus 𝐺 is nilpotent if and only if 𝐺/𝑍(𝐺) is cyclic. 

Therefore we take the statement of the following theorem whose proof will not be given here, 

it is based on the work carried out in [1] 

 Theorem 2.12 [1]: Let 𝐺 be a primitive group. The following are equivalent 

i. 𝐺 is nilpotent 

ii. Every subgroup of 𝐺 is subnormal in 𝐺 

iii. Whenever 𝐻 a proper subgroup of is 𝐺 then 𝐻 is a proper subgroup of its normalizer in   

𝐺. 

iv. Every maximal subgroup of 𝐺 is normal in 𝐺 

v. 𝐺′ ≤ 𝜗(𝐺) 

vi. Every Sylow  𝑝 −subgroup of 𝐺 is normal in 𝐺 

vii. 𝐺 is a direct product of groups of prime power order. 

The next theorem is as a result of the work of [17]  in relation  to the structure of 𝐷which ill 

help  in determining the socle for 𝐺 having a subgroup in the form of 𝐷. 

 Theorem 2.13 {10]: Let G be a group which acts primitively and on Ω with  |Ω| = 𝑛. Let 𝐻 =
𝑠𝑜𝑐(𝐺) and 𝛼 ∈ Ω. Then H is of type T then 𝐺 is affine and T is abelian of order p and 𝑛 =
𝑝𝑛 𝑎𝑛𝑑 𝐺𝛼 is a complement to which acts on H and is simple. 

We can say therefore, if 𝐺 has a minimal normal subgroup 𝐾 say, then 

 for some prime 𝑝 and some integer  (𝑑, 𝑘) , 𝐺 is a regular elementary abelian group of order 

𝑝𝑑 and 𝑠𝑜𝑐(𝐺) = 𝐾 = 𝐶𝐺(𝐾).we observe further, if 𝐾 has the structure of 𝐷 the 𝑠𝑜𝑐(𝐺) =
𝐷 = 𝐶𝐺(𝐷) which is also an elementary abelian group of prime power  𝑝𝑑 and also isomorphic 

to an affine group. This suffices to say 𝐷 is a subgroup and is nilpotent. Thus we can clearly 

state that socle are subgroups of normalizers subgroups 

Theorem 2.1 [10] 4: Let G be a finite group, then  𝑠𝑜𝑐(𝐺) ≤ 𝑁𝐺(𝐻) for each subnormal group 

𝐻 of 𝐺. 
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Proof: 

The result is certainly true if 𝐺 = 𝐻. Therefore induction on |𝐺: 𝐻|  with 𝐻 < 𝐺 

show that each minimal normal subgroup K of G is contained in the normalizer of 𝑁𝐺(𝐻). 

Since it is subnormal, there exist 𝐿 ⊲ 𝐺  𝑤𝑖𝑡ℎ 𝐻 ≤ 𝐿 ⊲ 𝐺. Then either 𝐾 ≤ 𝐿, (𝐾, 𝐿) = 𝐾𝐿. 

Hence 𝐾 ≤ 𝐶𝐺(𝐻) ≤ 𝑁𝐺(𝐻) and the result is true. So suppose that   𝐾 ≤ 𝐿. Then there exists 

a minimal normal subgroup of  𝑥−1𝐿 = 𝐿, and induction shows that  

K= { 𝑥−1𝐻𝑥} ≤ 𝑁𝐿(𝐻) ≤ 𝑁𝐺(𝐻). 

 Since K is a minimal normal subgroup of G we have that  

 𝐾 = {𝑥−1𝐻𝑥| 𝑥 ∈ 𝐺}.   Implying  𝐾 ≤ 𝑁𝐺(𝐻). 

 

MAIN RESULTS  

Theorem 3.1 : Let 𝐺  be a finite group of order n and 𝐻 a subgroup of order 𝑝𝑎 for 𝑎 ≥ 1 then 

𝑠𝑜𝑐(𝐺) is a regular abelian group of order a power of 𝑝. 

Proof: 

For 𝐺 to regular imply 𝐺  then by Theorem 2.6 show that 𝐺 is either a Frobenius group or 

reguar if and only  if 𝐺  has an abelian  stabilizer so let 𝐻 be a subgroup of 𝐺 with the structure 

as defined in 𝐷. If 𝐻 = 𝐺𝛼 then 𝐻 is regular and abelian, also suppose 𝐻 and maximal with 

 𝐻 = 𝑠𝑜𝑐(𝐺) imply 𝐻 is nilpotent. 

Conversely suppose 𝐺 is nilpotent and 𝐻 is normal in 𝐺 then every Sylow 2 −subgroup of 𝐺 

is an elementary 𝑝 −abelian group of order a power of 𝑝.Therefore if  𝐻 is maximal Theorem 

2.13 imply 𝑠𝑜𝑐(𝐺) is regular and abelian of order 𝑝. 

Theorem 3.2: Let 𝐺 be a finite nilpotent group with a regular normal subgroup 𝐻 of prime 

order. Then 𝑠𝑜𝑐(𝐺) is nilpotent. 

Proof: Since 𝐺 is niplotent  it shows that the normal subgroups of 𝐺 is abelian and there let 

𝐻 be a normal of 𝐺 with the structure as defined in 𝐷 then 𝐻 is regular and abelian  and is also 

maximal , otherwise there may be a chain of subgroup with another proper subgroup say, 𝑀 

such that 𝐺 ⊃ 𝐻 ⊃ 𝑀 ⊃ {𝑒} for 𝑀 ≤ 𝐻,this shows that 𝐺 is nilpotent of class 3. But 𝐻 is a 

maximal subgroup  of 𝐺 therefore it is nilpotent of class at most 2 by Theorem 2.7, and so, 

suppose 𝐻 = 𝐺𝛼 and that 𝑠𝑜𝑐(𝐺) = 𝐻 then  by theorem 2.12 𝐺 is an elementary 𝑝 −abelian 

group swhich imply 𝑠𝑜𝑐(𝐺) is nilpotent. 

Theorem 3.3: Let 𝐺 be a finite nilpotent group and 𝐻 a subnormal group of 𝐺, therefore 𝑠𝑜𝑐(𝐺) 

is  an elementary abelian 𝑝 −.group 

Proof:  suppose 𝐺 is primitive of degree  𝑛, imply that |𝐺| = 𝑛 = 𝑝𝑎𝑚, and 𝐺 has Sylow 

subgroup by first sylows theorem. Let 𝐻 be the subgroup of 𝐺, since 𝐺 is primitive show that 

𝐻 is maximal and so by Theorem 3.3,𝐻 is of type  𝐷 above consequently 𝐻 = 𝑠𝑜𝑐(𝐺) which 

is also elementary 𝑝 − abelian 
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Conversely if 𝐺 is an abelian 𝑝 −group, it imply that any chain of subgroup of 𝐺 has a maximal 

subgroup 𝐻  say, therefore by Theorem 2.7 it imply that 𝐻 = 𝑠𝑜𝑐(𝐺) and so 𝐻 is nilpotent of 

class 2 and so by Theorem 3.3, the chain 𝐺 ⊃ 𝐻 ⊃ 𝑀 ⊃ {𝑒} has a subnormal group 𝑀  in line 

with Theorem 2.14 and so  𝑀 = 𝐻, hence 𝐺 is nilpotent 

 

CONCLUSION  

The regular subgroup of the type as defined in 𝐷  and their nilpotency classes were obtained 

for Frobenius groups with regular normal abelian subgroups. These groups were of order a 

power of  𝑝 in which most of the subgroups had the structure of  𝐷. The socle of 𝐺 had a direct 

relation with the classification scheme foe finite simple groups based on the socle type as is  in 

the work of [17]. The case for which 𝑝 was of order 2 was determined for groups of even order. 

It showed that the socle of the groups having the structure of 𝐷  were transitive and nilpotent. 

Abbreviations 

soc(G)- Socle of the group G 

fix(x)- Fix of an element x in G 

Supp(x)- Support of the element x in G 
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