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ABSTRACT: Mass concentration in blood is the amount of 

protein, glucose, and waste products present in a given blood 

volume, and the change in mass concentration can lead to 

several health challenges, such as cardiovascular problems. 

However, this research was focused on formulating a system of 

partial differential mathematical models that represent energy 

transfer in the blood and mass concentration. The models were 

further scaled to be dimensionless, reduced to ordinary 

differential equations using some perturbation conditions, and 

solved analytically using the Laplace method, where the 

temperature and mass concentration profiles were obtained. In 

addition, the numerical simulation was carried out using 

Wolfram Thematic, version 12, and the impact of the Prandtl and 

Soret numbers was investigated. The results indicate that the 

Prandtl number, Soret number, and many other numbers that 

appeared in the system were varied to understand the parameter 

changes on the profiles. Conclusion: We conclude that the 

oscillatory parameter and Prandtl number increased the 

temperature profiles, while other parameters increased the mass 

concentration as they increased.  

KEYWORDS: Mathematical Modelling, Thermosolutal, Blood, 

Flow, Magnetic, Field, Micro-channel. 
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 Nomenclature  

* *,w u Dimensional blood velocity in different directions  
* *,x r  Dimensional axial and radial distances  
*T  Dimensional blood temperature 

T  Far-field temperature of blood 

bpc  Blood specific heat capacity 

  Oscillatory frequency  
  Dimensionless Mass concentration profile 

0D  Diffusivity of the mass concentration  

TD  Diffusivity due to temperature 
*C  Dimensional mass concentration  

C  Far-field mass concentration  
t   Dimensionless time 
   Dimensionless temperature 

Tbk  Blood thermal conductivity  

0k  Chemical Reactant 
Pr  Prandtl number 
t  Dimensionless Time 
Rd  Chemical reaction parameter 
g  Acceleration due to gravity 
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INTRODUCTION 

Blood circulation is a continuous loop that delivers oxygen and nutrients to cells while 

removing waste Athani et al. (2022). The heart pumps oxygenated blood through arteries, 

which branch into tiny capillaries for exchange. Deoxygenated blood travels through veins 

back to the heart for re-oxygenation in the lungs Bunonyo & Ebiwareme (2022). Blood vessel 

narrowing, called stenosis makes it much harder for blood to flow properly. This disrupts 

blood circulation and heart function. Plaque buildup, a combination of cholesterol and cells, 

causes the narrowing.  The narrower the vessel, the less oxygen-rich blood can get through, 

raising the risk of heart failure Kubugha & Amos (2022).  This narrowing doesn't just affect 

the amount of blood flow; it also changes the pressure and speed of blood flow throughout 

the vessel Yusuf et al. (2016).  Bunonyo and Ebiwareme (2024) investigated the two-

dimensional magneto-hydrodynamics laminar flow of a Sisko nanofluid over a nonlinear 

stretching sheet in a porous medium, considering chemical reactions, the nonlinear Rosseland 

approximation, and an internal heat source-based on concentration. Yadav and Roshan (2024) 

investigated the electromagnet hydrodynamic peristaltic flow of blood through the annulus 

between two concentric circular tubes, aiming to advance peristaltic endoscope technology. 

Sharma et al. (2023) presented a Magneto-hydrodynamics haemodynamics hybrid nanofluid 

flow through an inclined stenotic artery. Kumawat et al. (2021) presented a mathematical 

analysis of two-phase blood flow through a stenosed curved artery with haematocrit and 

temperature-dependent viscosity. Shah et al. (2021) discussed the effects of pulsatile pressure 

gradient in the presence of a transverse magnetic field on unsteady blood flow through an 

inclined tapered cylindrical tube of porous medium. Selvi et al. (2021) proposed a theoretical 

model to investigate the coupled effects of thermal radiation and electromagnetic field on the 

blood flow in a stenosed tapered artery. Fahim et al. (2024) presented a computational 

analysis of a Pulsatile pressure-driven non-Newtonian blood flow through a porous stenotic 

artery using the Navier-Stokes equations and the Carreau fluid model to represent blood 

rheology. Mamun et al. (2020) looked into the influence of a magnetic field on blood flow via 

a stenotic artery. Ferro-fluids were employed for a variety of purposes, including magnetic 

separation, anticancer medication delivery, and micro-valves. The research conducted by 

Priyadharsini (2023) focuses on the mathematical modelling and analysis of the impact of 

thermoregulation on blood viscosity under magnetic and thermal radiation effects in a porous, 

stretching blood capillary. The investigation conducted by Hosseinzadeh et al. (2022) focused 

on the study of non-Newtonian blood fluid flow containing nanoparticles within a vessel with 

a porous wall, in the presence of a magnetic field. Verma & Parihar (2010) developed a 

mathematical model of blood flow through a tapered artery with mild stenosis and 

haematocrit. However, the Verma and Parihar research couldn’t go further in investigating the 

effect of the heat on the velocity profile and Bunonyo others didn’t study further on the effect 

of heat on mass concentration and the mass concentration on the blood flow profile, which 

this study aims to achieve. 
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Mathematical Formulation 

Before we begin developing a system of mathematical models representing the thermosolutal 

effect on blood flow through a microchannel, consider the following realistic assumptions: 

The flow is axial; the tangential velocity is assumed to be zero; the fluid is blood, 

incompressible, and viscous; the viscosity is constant throughout the fluid medium; the flow 

could be driven by the thermosolutal effect; there is no electrical conductivity in the system; 

we considered the effect of an external magnetic field; and the blood vessel is porous; the 

flow obeys the no-slip condition. The mathematical model system is presented based on the 

assumptions made above and previous research by Bunonyo et al. (2018), Bunonyo and 

Amos (2023), Hanvey & Bunonyo (2022), and Verma and Parihar (2010). 

Energy Equation  

Following Bunonyo et al. (2018), the energy equation is: 

* 2 * *

* *2 * *

1
b bp Tb

T T T
c k

t r r r


   
  

   

        (1) 

Mass Concentration Equation  

Following Bunonyo et al. (2021), the mass concentration equation is 

 
* 2 * * 2 * *

*

0 0* *2 * * *2 * *

1 1T Tb

m

D kC C C T T
D k C C

t r r r T r r r


       
        

       

    (2) 

The corresponding boundary conditions are: 

* * *

* * *

,   at 

,   at 0

w w

w w

T T C C r R

T T C C r

    
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


   

        (3) 

Dimensionless Quantities  
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 

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  (4) 

Simplifying equations (1)-(3), using equation (4), we have: 

2

2

1
Pr

t r r r

    
 

  

          (5) 
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2 2

2 2

1 1
Sc RdSc SrSc
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    

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       
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      (6) 

The corresponding boundary conditions are: 

1, 1,      at 

0, 0,     at 0

r h

r

 

 

    


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         (7) 

Perturbation Solution  

Since the fluid motion is a function of the pumping action of the heart, we consider the 

solution to be in the following form:  

0

0

t

t

e

e





 

 

 

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           (8) 

We can reduce equations (5), (6), and equation (7) using equation (8), which is: 

2
20 0
2 02

0
d d

r r
dr dr

 
   

         (9) 

2 2
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                (10) 
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where:
2 2

2 3=  and Pr Rd
Sc


  

 
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Method of Solution  

The Laplace transform for the energy and concentration functions can be stated as: 

      

      

0 0 0

0

0 0 0

0

sr

sr

L r s r e dr

L r s r e dr

  

  










  



 







                  (12) 

The equations (9) and (10) can be solved using the Laplace method in equation (12), the 

solutions is: 
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   2 0
0

d
s Pr s s

ds


   

        (13) 

where 2

2 Pr   

Further simplification of equation (13), we have: 

 
 

0
2 2

2

A
s

s







         (14) 

We know that:     1

0 0r L s  , therefore, solving equation (14) gives; 

   0 0 2r AI r           (15) 

where  0 2I r is the modified Bessel function of order zero.  

Solving equation (15) using the boundary conditions in equation (11), we have: 

 0 2

1
t

A
I h e


         (16) 

Putting equation (16) into equation (15) gives: 
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Substituting equation (17) into equation (8), we have: 

 
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     (18) 

Substituting equation (18) into the mass concentration equation (10), we get: 

 

2 2 2 2 4 4
20 0 2 2 2
3 02

0 2

1
1

4 64t

d d Sr r r

dr r dr I h e
    

 


 
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    (19) 

Presenting equation (19) with a particular term, we have:  

 

2 2 2 3 4 5
0 0 2 2 2 2
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d d Sr r r
r r r
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The particular solution of equation (20) can be presented as: 

2 3 4 5

0 0 1 2 3 4 5p A A r A r A r A r A r             (21) 

Solving equation (20), we have: 
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Substituting equation (22) into equation (21), we have: 

     

2 4 6 4 6 6
2 42 2 2 2 2 2

0 2 4 6 2 4 2

0 2 3 3 3 0 2 3 3 3 0 24 64
p t t t

Sr Sr Sr
r r
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    (23) 

The homogeneous solution of equation (20) is:  

 0 2 0 3h c I r           (24) 

The general solution of equation (20) is the sum of the homogeneous equation (24) and 

equation (23), which is:  

 
     

2 4 6 4 6 6
2 42 2 2 2 2 2

0 2 0 3 2 4 6 2 4 2

0 2 3 3 3 0 2 3 3 3 0 24 64t t t

Sr Sr Sr
c I r r r

I h e I h e I h e  

     
 

        

   
         

   

            

(25) 

Using the boundary conditions in equation (11), we get:  
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           (26) 

Therefore, equation (25) becomes: 

  2 4

0 2 0 3 0 1 2c I r A A r A r            (27) 
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where

       

2 4 6 4 6 6

2 2 2 2 2 2
0 1 22 4 6 2 4 2
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         

   
         

   

 

PRESENTATION OF RESULTS 

After proffering analytical solutions to the formulated problem, numerical simulation using 

Wolfram Mathematica version 12 was performed and in order to validate the analytical 

solution, the parameters data were obtained from previous research carried out by Bunonyo 

and Amos (2023), Bunonyo et al. (2021), and Hanvey and Bunonyo (2022), respectively. The 

results are presented as Figure1 to Figure 5,: 

 

 
Figure 1   The effect of oscillation on the fluid temperature 
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Figure 2   The effect of Prandtl number on the fluid temperature 

 

Figure 3   The effect of Soret number on mass concentration 
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Figure 4   The effect of Prandtl number on mass concentration 

 

Figure 5   The effect of oscillatory number on mass concentration 
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DISCUSSION OF RESULTS 

It’s observed in Figure 1 that the temperature profile increases along the boundary for the 

Prandtl number 21Pr   and the oscillatory frequency at 0.2  . However, the profile 

showed a decrease in temperature profile for the increasing values of the oscillatory 

frequency 0.2,0.4,0.6,0.8,1.0   before converging to 1 as the boundary layer attains its 

peak of 0.5. We can also observe in Figure 2 that the temperature profile increases along the 

boundary for the chemical reaction parameter 0.2Rd   and the Prandtl number at 21Pr  . 

However, the profile indicates a decrease in temperature profile though much slower than that 

of increasing oscillatory frequency, for the increasing values of the Prandtl number 

21,22,23,24,25Pr   before converging to 1 as the boundary layer attains its peak of 0.5. 

Figure 3 shows that the mass concentration profile decreases along the boundary layer where 

other pertinent parameters are considered as 0.2, 0.2, 0.5, , 21, 2Rd Sc Pr t      and the 

Soret number at 0.1Sr  . However, it can be seen in the figure that the mass concentration 

continuously decreased for different rates of increase of the Soret number 

0.2,0.4,0.6,0.8,1.0Sr   before converging to 0 as the boundary layer attained its maximum 

value of 0.5. Figure 4 shows that the mass concentration profile increases along the boundary 

layer thickness where other pertinent parameters are considered as 

0.2, 0.2, 0.5, 0.1, 2Rd Sc Sr t      and the Prandtl number at 21Pr  . The observation 

in the figure is of the view that the mass concentration slowly increases for different values of 

the Prandtl number 21,22,23,24,25Pr   before converging to 0 as the boundary layer 

attains its maximum value of 0.5. 

Figure 5 shows that the mass concentration profile increases along the boundary layer 

thickness where other pertinent parameters are considered as 

0.2, 0.2, 21, 0.5, 2Rd Sc Pr Sr t      and the oscillatory frequency of 0.5  . The 

observation indicates that the mass concentration slowly increases for different values of the 

oscillatory frequency 0.5,1.0,1.5,2.0,2.5   before converging to 0 as the boundary layer 

thickness grows to 0.5. 

 

CONCLUSION  

Following the modelling and analysis of the thermal impact on the mass concentration in 

blood in a blood vessel, we performed numerical simulation and the results were discussed 

extensively and we conclude as follows: 

1. The increase in oscillatory frequency decreases the temperature of the fluid in the 

vessel 

2. The Prandtl number impacted the fluid because the increase in the Prandtl number 

caused  a corresponding decrease in fluid temperature in the channel. 

3. The Soret number also affected the mass concentration of the fluid because an increase 

in the Soret number also increased the mass concentration in the channel. 

4. The increase in Prandtl number increases the mass concentration in the channel. 
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5. An increase in the oscillatory frequency also increases the mass concentration in the 

fluid. 
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