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ABSTRACT: We study the Poisson structures associated with 

deformation quantisation and its non-degradable factor on the 

Casimir function. We also describe a filtered associative algebra 

in a quotient space as a Poisson algebra and the automorphism of 

the Poisson bracket is discussed. 
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INTRODUCTION 

Deformation quantisation concerns the central physical concept of quantum theory; which 

comprises the algebra of observables and their dynamical evolution [7]. In other words, it is an 

alternative approach that prevents the issues of canonical quantisation (the replacement of 

classical observables with the corresponding operators) and its ordering ambiguity problem. 

The goal of deformation quantisation is to find a transformation that assigns quantum operators 

to classical observables in such a way that they respect the Poisson brackets and also, reproduce 

the appropriate quantum commutation relations. Whereas, the Poisson brackets are a 

foundational concept in classical mechanics, which is used to describe the dynamical evolution 

of classical systems. To this end, a general theory of formal deformation quantisation of 

associative algebras has been developed in the early works of [1] and [2], where quantisation 

is introduced as a deformation (star product) of the structure of the classical observables and 

they proffer solutions to differentiable deformation of the Lie algebra associated with the phase 

space, by defining the Poisson brackets on the deformation of the Lie algebra of smooth 

functions which generalizes the Moyal brackets. Also, in their works, ordinary multiplication 

to the Lie algebra is introduced, which gives rise to noncommutative associative algebras which 

are isomorphic to the operator algebras of quantum theory. 

The works of Gerstenhaber [5] and [6], where the Hochschild 2- cocycles play the role of 

infinitesimal objects of such deformation and the definition of a skew bilinear form A × A → 
A as a Hochschild cocycle if and only if it defines a bi-derivation with respect to (Leibniz) rule 

and this bilinear form also satisfies the Jacobi identity and extends the deformation up to order 

two and the physical motivator for the deformation of this commutative algebra A is the 

Poisson bracket {. , .}. 

Also, the works of De Wilde et al. [3], Fedosov [4] and Omori et al. [9] show that any non-

degenerating Poisson bracket {. , .} on a smooth manifold of arbitrary dimension can be 

quantised. Since, the Poisson bracket is the first - order parameter as acknowledged by [7] in 

deformation quantisation. In this paper, we introduce Poisson Structures on deformation 

quantisation and its non-degradable factor on the Casimir function. Also, we show the 

relationship between the Poisson algebra with its morphism on a category. This paper has five 

sections. Section 1 is the introduction and Review of related Literature. In section 2, we discuss 

the Poisson brackets and its algebra. In section 3, we present Poisson brackets, its manifold and 

morphism. The Poisson bracket, deformation quantisation and the Casimir function is 

examined in section 4. 

In section 5, we present the Poisson brackets and its automorphism. 

Poisson Brackets and Poisson Algebra 

There are some physical motivations that triggered the emergence of deformation quantisation. 

Some of them are: The Poisson brackets introduced by Joseph - Louis Lagrange and Simon - 

Denis de Poisson in the beginning of the 19th century, defined 

as: 

 ) (2.1) 
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where {a , b} : R∞ × R∞ − → R,  are smooth functions and (q , p) are Lagrange’s 

canonical coordinates. Equation (2.1) is an algorithm used to solve the equation of motion in 

Hamiltonian systems. 

In the thirties, Jacobi discovered a very simple proof of Poisson result, where he remarked that 

if a is a function, then the map; g : → {a , b} is a vector field because of the Leibniz identity 

for Poisson brackets and the Jacobi identity, given respectively as 

 {a , bc} = b{c , a} + c{a , b} (2.2) 

and 

 {a, {b , c}} + {b, {c , a}} + {c, {a , b}} = 0 (2.3) 

However, in the seventies, Marius Sophus Lie did a detailed research on the geometry of Partial 

Differential Equations. In his work, he brought to limelight a more systematic study of Poisson 

brackets, where he studied new examples of Poisson brackets, whose nature is different from 

those in Poisson’s and Lagrange’s works, which he named the Lie-Poisson brackets. According 

to [8], the unifying model for both Poisson and Lie brackets is the Poisson algebra. 

Definition 2.1 (Poisson Algebra).  A Poisson Algebra is an associative algebra A 

(over a field K) with a linear bracket  {. , .}: A × A → A , such that 

(i) {a , b} = − {b , a} (Anti-symmetry)  

(ii)  {ab , c} = a{b , c} + {a , c}b  (Leibniz) 

(iii) {a, {b , c}} + {c, {a , b}} + {b, {c , a}} = 0 (Jacobi Identity) 

For  all  a, b, c, ∈ A. 

1.1 Examples of Poisson Algebras 

Example 2.2. 1. An associative algebra A is a Poisson algebra, if we say; 

                                         {a , b} = ab −  ba 

This implies that 

{ab , c} = (ab)c −  c(ab) 

                                                    = a(bc) −  a(cb) + (ac)b −  (ca)b 

                                                    = a{(bc) −  (cb)} + {(ac) −  (ca)}b 

                                                    = a{b , c} + {a , c}b 

The example above shows that the second property (Leibniz) of a Poisson 
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algebra holds. 

2. Every Lie algebra is a Poisson algebra with respect to its null associative product a . b = 0 

and every associative algebra is a Poisson algebra with respect to null Poisson brackets {a , b} 

= 0. Such an algebra is a null Poisson algebra. 

There are many more examples of Poisson algebras. (See [10]) 

Proposition 2.3. If G is a filtered associative algebra in a quotient space 

G0 ⊆ G1 ⊆ ... , Gi · Gj  ⊆  Gi+j  such that  is commutative, and 

[x] ∈ G be the class of x ∈ Gi and we define {[x] , [y]} = [xy −  yx] ∈ G. Then G is 

a Poisson algebra. 

Proof. The filtered associative algebra must satisfy the properties of the Poisson algebra. 

By linearity of the Poisson brackets,  we have,  ∀a , b ∈ R and x , y ∈ G. 

{[x] , [y]} = [xy −  yx] 

                                                       = a[xy −  yx] −  b[xy −  yx] 

= a[x][y] −  b[x][y] 

                = a{[x] , [y]} −  b{[x] , [y]} 

Next, we test for anti-symmetry 

{[x] , [y]} = [xy −  yx] 

                            = [− yx + xy] 

                            = −  {[y] , [x]} 

For the Leibniz rule and Jacobi identity,  let  x, y, z ∈ G such that 

{[x] ,{ [y],[z]}} + {[y],{[z][x]}} + {[z],{[x][y]}} = [x{[y][z]} −  {[y][z]}x] + [y{[z,[x]} −  [{z[x]}y] 

                                       + [z{[x],[y]} −  {[x][y]}z] 

= [x[yz −  zy] −  [yz −  zy]x] + [y[zx −  xz] 

−  [zx −  xz]y] + [z[xy −  yx] −  [xy −  yx]z] 
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= xyz −  xzy −  yzx + zyx + yzx −  yxz −  zxy 

+ xzy + zxy −  zyx −  xyz + yxz 

                                         = 0. 

G having satisfied the properties of a Poisson algebra, G is a Poisson algebra.  

Poisson Brackets and Poisson Manifolds 

Definition 3.1. Poisson Manifolds 

Let M be a manifold. Then M is a Poisson manifold if M is a smooth manifold equipped with 

a Poisson bracket, which is a skew symmetric bilinear operation 

 {. , .}  on C∞(M),  such that 

{. , .}: C∞(M) × C∞(M) → C∞(M), 

with the Leibniz property: {ab , c} = a{b , c} + {a , c}b and the Jacobi identity: {a, {b, c}} + 

{c, {a , b}} + {b, {c , a}} = 0.  ∀a, b, c ∈ C∞(M). 

Poisson Morphism 

Definition 3.2.  Poisson Morphism 

Let τ : (A, {. , .}) → (B, {. , .}) be a morphism of algebras such that τ{{a , b}A} = {τ(a) , τ(b)}B,  

∀a, b, ∈ A. 

Definition 3.3. Category 

Category is the collections of objects and morphisms between these objects which are subject 

to; 

1. Identity of morphism:  idA :  A → A. 

2. Composition of morphism:  ρ = σ o τ 

3. Associative of morphism:  (ρ o σ) o τ = ρ o (σ o τ) 

Proposition 3.4. Let (A, {. , .}) be a Poisson algebra with its Morphism. Then, the Poisson 

algebras with its morphism form a category. 

Proof. Here, we test for identity, composition and associativity of morphisms. Let A be the 

Poisson algebra.  Then, the identity map; idA :  A  →  A , is such that it 

preserves the Poisson brackets; 

{[idA(a) , idA  (b)]} = {[a,b]}. ∀a , b ∈ A. 
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For the composition.  Let A1, A2 and A3 be any Poisson algebra. Then, 

τ : A1  →  A2 

and 

σ : A2  →  A3 

be Poisson morphisms such that σ o τ is a Poisson morphism,  we have; 

{[τ(a) , τ(b)]} = τ{[a , b]}.  ∀ a , b  ∈ A1 

and 

{[σ(b) , σ(c)]} = σ{[b , c]}. ∀ b , c  ∈ A2. 

Let ρ = σ o τ. Then, we consider ρ (a) and ρ (b) for any a , b ∈ A1 such that; 

{[ρ(a) , ρ(b)]} = {[σ(τ(a)) , σ(τ(b))]} 

= σ{τ(a) , τ(b)]}  

= σ{τ{[a , b]}} 

                                                             = {σ(τ{[a,b]})} 

                                                             = {ρ{[a , b]}}. 

The Poisson brackets are preserved. Also, these compositions of the morphisms must be 

associative. Let A1, A2, A3 and A4 be Poisson algebras and τ : A1 → A2,  σ : A2 → A3 and  ρ : A3 

→ A4 be the Poisson morphisms. Then, 

                                    (ρ o σ) o τ = ρ o (σ o τ) 

ρ(a) ρ(b) = [ρ(σ(a) , ρ(σ(b)] o τ 

                                    (ρ o σ). τ(a) = ρ (σ(τ(a))) 

               = ρ(σ(b)) 

               = ρ(c) 

                                                    = d 

and 

ρ o (σ o τ) = ρ (σ(τ(a))) 

                = ρ(c) 

                                                     = d 
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∀ a, b, c, d ∈ A1,  A2, A3, A4  ⊂ A.  

 ⇒   (ρ o σ) o τ(a) =  ρ o (σ o τ) a  = d.  

Thus,  the Poisson algebra with its morphisms form a category.  

 

Poisson Brackets and Deformation Quantisation 

Let  C∞(M) be a Poisson manifold. Then we denote: 

A{[ϵ]} to be the set of all formal power series with coefficients in A.  

R{[ϵ]} as the set of all formal power series on R. 

We  define the differential operators that is globally bounded as, 

Definition 4.1. Let Tk: A × A → A, be differential operators with respect to each 

argument of globally bounded order,  then 

Tk (fg) ≤ A ∥ f ∥∥ g ∥,  ∀ f , g ∈ A  satisfying the following properties, such that 

(1) ∑ 𝑗 + 𝑘 = 𝑛 Tj  (Tk  (f , g) h) = ∑ 𝑗 + 𝑘 = 𝑛  Tj (f, Tk (g , h))  (Associativity) 

(2) T0(f , h) = f g  (Classical limit) 

(3) T1(f , g) − T1(g , h) = {f , g} (Semi-classical limit) 

The idea of star product depends on the basic definitions of formal deformation of 

an algebra. 

Definition 4.2. Let A be an associative and unital algebra over a commutative ring 

K.  Then a formal deformation of the algebra A is a formal power series 

𝑓 ∗ 𝑔 = 𝑓. 𝑔 +  ∑ 𝜖𝑘  𝑇𝑘 

∞

𝑘=1

(𝑓 , 𝑔) 

where,  f , g ∈ A ⊂ A{[ϵ]} and Tk : A × A → A are bilinear maps such that 

the product (∗) is associative. 

However, the deformation quantisation of C∞(M) is the formal deformation of A = C∞(M) such 

that the unit of the algebra is preserved. 
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Definition 4.3. Star Product 

A star product of M is an R{[ϵ]} bilinear map, 

on C∞(M){[ϵ]} × C∞(M){[ϵ]}  → C∞(M){[ϵ]} 

denoted by, (a , b) → a ∗ b such that the 

following conditions are satisfied: 

1) 𝑎 ∗ 𝑏 = 𝑎. 𝑏 +  ∑ 𝜖𝑘 𝑇𝑘  (𝑎 , 𝑏)          ∞
𝑘+1 Point-wise multiplication 

2) (a ∗ b) ∗ c =a ∗ (b ∗ c),  ∀ a, b, c ∈ C∞(M).  Associativity. 

3) a ∗1 = 1 ∗ a = a,   ∀ a ∈ C∞(M). Identity 

In other words, a deformation quantisation of a Poisson manifold (C∞(M){. , .}) is 

given by a star product on C∞(M){[ϵ]} with the following the following properties; 

1. (C∞(M){[ϵ]},∗) is a deformation of the algebra structure on C∞(M) 

2. The terms T1 (a , b) are given by the bi-differential operators in a and b. 

3. T1(a , b) −  T2(a , b) = {a , b}. 

4. a ∗1 = 1 ∗a = a,  ∀a ∈ C∞(M) 

Remark 4.4. Deformation quantisation uses the Poisson brackets and star product to map 

classical observables to quantum operators while preserving important physical properties and 

principles, such as the Heisenberg uncertainty principle. 

Poisson Brackets and Casimir Function 

Given a Poisson bracket on a Poisson algebra A. Then, an element a ∈ A is a 

Casimir function, if {a ,b} = 0, ∀ b ∈ A. That is, it is a Casimir function, if its Poisson 

structure commutes with all other functions, where the Poisson brackets of a Casimir 

function with any other function is zero. 

Proposition 4.5. If b is a function whose differentials span the cotangent bundles everywhere, 

then, a ∈ C∞(M) is a Poisson manifold, such that {a , b} = o is a 
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Casimir function. 

Proof. Let {a , b} = 0. This implies that Poisson brackets between the manifold and the Casimir 

function is zero.  i.e {a , b} = 0,  for any other function b 

{a , b} = ab −  ba. 

Since, b is a Casimir function, we have; 

ab = ba = 0. 

Since b commutes with a. Then, {a , b} = 0.  

Remark 4.6. A Casimir function is a function on the phase space that commutes with all other 

functions under the Poisson bracket. The existence and properties of Casimir functions are 

closely tied to the symmetries and conserved quantities of the system described by the Poisson 

bracket. Casimir functions often arise when dealing with systems with certain Lie group 

symmetries, such as mechanical systems with rotational or translational symmetries. Also, in 

the background of Hamiltonian mechanics, they correspond to constants of motion or 

conserved quantities. For example, the energy of a system is often represented by a Casimir 

function. 

Poisson Brackets and Poisson Automorphism 

A Poisson automorphism of a Poisson manifold is a diffeomorphism; 

ϕ : C∞(M)  → C∞(M) 

that preserves the Poisson brackets. That is, for any a , b ∈ C∞(M),  we have; 

{a , b} = {ϕ∗a , ϕ∗b}. 

Where, ϕ∗ is the pullback operation that transform functions on C∞(M) into the function on the 

diffeomorphism image of C∞(M) under ϕ. 

Remark 5.1. Intuitively, a Poisson automorphism is a smooth and invertible transformation 

that preserves the Poisson structure. This means that when we apply this transformation to the 

functions on the manifold M, the Poisson brackets, {. , .} relations between the functions remain 

unchanged. The significance of this preservation is that Poisson automorphisms represent 

symmetries or transformations that maintain the fundamental Poisson algebraic structure of the 

manifold. In other words, the manner the functions interact with each other through the Poisson 

brackets remain consistent under such transformations. 
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