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ABSTRACT: A new probability distribution termed Stream 

distribution is proposed and studied. This distribution is a 

mathematical combination of level three polynomial components 

and exponential distribution. The mathematical and statistical 

properties of the development are studied, with empirical 

emphasis: on the inequality relationship within the measures of 

central tendency, and the coefficient of variation. The model 

parameter was estimated using the method of maximum 

likelihood, where the asymptotic and consistent properties are 

numerically studied as well. The flexibility of Stream distribution 

is shown, through an application to a Live-Streaming data set and 

showed high efficiency in the inferential performance. The 

distribution is therefore recommended for forecasting needs in the 

light of live online audience engagement.  

KEYWORDS: Stream distribution, Coefficient of variation, 

Polynomial component, Live-Streaming data, Comparative 

analysis. 
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INTRODUCTION 

The analysis and modeling of lifetime data is a crucial aspect of statistical research in various 

scientific and technological fields. The field of lifetime data analysis has experienced rapid 

growth and expansion in recent years, with significant advancements in methodology, theory, 

and application. In the context of modeling real-life phenomena, continuous probability 

distributions and transformation methods have been proposed. Data plays a vital role in 

tracking events and revealing patterns and behaviors of outcomes. Lifetime data refers to data 

whose events exhibit a propensity for failure or success after a measurable amount of valid 

cycles. 

The conception of models to handle such random variables emerged in the twentieth century 

and developed into two main subjects: reliability theory, concerned with modeling lifetimes 

for components and systems in engineering and industrial fields, and survival analysis, used in 

biological fields. In probability distribution theory, flexibility and tractability are highly valued 

in modeling lifetime data. While tractable distributions are useful in theory, flexible 

distributions are more relevant in industrial applications. 

Transforming data to satisfy assumptions is a common statistical practice, but it's preferable to 

use probability distributions that best fit the available data set. Recent efforts have focused on 

developing new distributions and their extensions to accommodate the increasing amount of 

data from various fields. Lindsay (1995) proposed a model for developing new distributions 

from parent k-distributions, which can be combined to form new distributions. However, this 

approach can be complex and sometimes useless, so most mixtures are taken from one family 

of distribution with different parameters and/or distributions that share the same support or 

range. 

Compound distributions, which result from assuming a random variable is distributed 

according to a parameterized distribution with random parameters, offer an alternative 

approach. Sankaran (1970) introduced compounding in the Poisson-Lindley distribution, while 

others have explored convolutions and mixtures of various distributions. This paper aims to 

propose a probability distribution for modeling live-streaming data, building on the existing 

literature and methodologies in lifetime data analysis. 

 

MODEL PROPOSITION 

Stream distribution as a continuous category is derived mathematically following the concept 

of integration and normalizing constant, after a multiplicative combination of the exponential 

distribution and a three level polynomial component. In probability theory and statistics, the 

exponential distribution is the model of the time between events in a poisson process. The event 

is always independent and continuous at a constant average rate. It has a probability density 

function (pdf) defined as  

       𝑓(𝑥;  𝜃) = { 𝜃𝑒−𝜃𝑥         𝑥 ≥ 0      0,               𝑥 < 0                                                                    

where the rate parameter 𝜃 > 0,  and the cumulative distribution function is given as                                                              

     𝐹(𝑥;  𝜃) = { 1 − 𝑒−𝜃𝑥      𝑥 ≥ 0      0,                  𝑥 < 0                                                                
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More so, the three level polynomial components is subjectively defined thus: 

 𝑦 =    1 + 𝑥 + 𝑥3     

Stream Distribution  

The Stream distribution denoted as 𝑆𝐷(𝑥) is derived, recalling that   ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
. This 

implies that continuous probability models can be derived from functions or combination of 

functions  𝑓(𝑥); so far as their integration equals one. This is also termed normalizing constant 

method. Now, let 𝐶𝑛 be normalizing constant, then  

                                                  𝑆𝐷(𝑥, 𝜃) = 𝐶𝑛𝑓(𝑥)                                                                  

Where 𝐶𝑛 =  [ ∫ 𝑓(𝑥)𝑑𝑥
∞

0
]

−1
 and 𝑓(𝑥) =  𝜃𝑒−𝜃𝑥 (1 + 𝑥 + 𝑥^3) 

                             →                               𝐶𝑛 =  
𝜃3

6+𝜃2+𝜃3  

                             →                    𝑆𝐷(𝑥, 𝜃) =   
𝜃3

6+𝜃2+𝜃3 [ 𝜃𝑒−𝜃𝑥 (1 + 𝑥 + 𝑥3)]       

                                                                 =  
𝜃4( 1+𝑥+ 𝑥3 )

𝑒𝜃𝑥(𝜃3+𝜃2+6)
  , 𝑥 > 0, 𝜃 >  0                                               

PROPERTIES OF STREAM DISTRIBUTION 

Cumulative Distribution Function (CDF) 

The Cumulative Distribution Function (CDF) for Stream distribution is an integral derivation 

of the proposed pdf in equation (1),  

                                  𝐹(𝑥) =  ∫ 𝑓(𝑡, 𝜃)𝑑𝑡
𝑥

0
=  ∫

𝜃4( 1+𝑡+ 𝑡3 )

𝑒𝜃𝑡(𝜃3+𝜃2+6)
 𝑑𝑡

𝑥

0
                                                         

=
𝜃4

𝜃3+𝜃2+6
[∫  𝑒−𝜃𝑡𝑑𝑡  

𝑥

0
+ ∫ 𝑡 𝑒−𝜃𝑡𝑑𝑡  

𝑥

0
+ ∫ 𝑡3 𝑒−𝜃𝑡𝑑𝑡  

𝑥

0
]                                                                     

                                            =
𝜃4

𝜃3+𝜃2+6
(

[𝜃3+𝜃2+6−(𝜃3+𝜃2+6)𝑒−𝜃𝑥−𝜃𝑥(6+3𝜃𝑥+𝜃2𝑥2)𝑒−𝜃𝑥]

𝜃4 )                                                 

                               𝐹(𝑥, 𝜃) =  1 − (1 +  
 𝜃𝑥 [ 𝜃2 + 𝜃2 𝑥2 + 3𝜃𝑥 + 6 ] 

𝜃3 + 𝜃2 + 6
) 𝑒−𝜃𝑥                                                    (2)                            

 

 

Moment Generating Function 

The moment generating function of Stream Distribution is derived as:  

                             𝑀𝑥(t)  =  𝐸 ( 𝑒𝑡𝑥 )  =  ∫ 𝑒𝑡𝑥 𝑓(𝑥)
∞

0
 𝑑𝑥  

                                            =  ∫ etx  
𝜃4

𝜃3+𝜃2+6
 (1 +  𝑥 +  𝑥3 )𝑒−𝜃𝑥 dx       

∞

0
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                                           = ∫  
𝜃4

𝜃3+𝜃2+6
 ( 1 + 𝑥 + 𝑥3 )𝑒−𝑥(𝜃−𝑡 ) dx  

∞

0
         

   Given that  ∫   𝑥𝑚𝑒−𝜃𝑥 dx =  
∞

0

Г(𝑚+1)

𝜃𝑚+1     and  ( u +  v)−𝑛  =  ∑ (𝑟+𝑎
𝑟

 ) 𝑢−𝑛−𝑟 𝑣𝑟∞
𝑟=0                                                                                                                    

  =  
𝜃4

𝜃3+𝜃2+6
 [ 

1

 𝜃−𝑡
+  

1

( 𝜃−𝑡 )2 
+ 

6

( 𝜃−𝑡 )4 
 ]                                                                              

                      =
𝜃4

𝜃3+𝜃2+6
 [

1

𝜃
 ∑   

𝑡𝑟

𝜃𝑟  
∞
𝑟=0 +

1

𝜃2  ∑ (𝑟+1
𝑟

 )  
𝑡𝑟

𝜃𝑟  +   
6

𝜃4  ∑ (𝑟+6
𝑟

 )  
𝑡𝑟

𝜃𝑟  
∞
𝑟=0 

∞
𝑟=0                       

                               𝑀𝑥(t) = ∑ (
 𝜃3+ 𝜃2( 𝑟 + 1 )! + ( 𝑟 + 3 )!

𝜃𝑟  (  𝜃3 + 𝜃2+ 6 )
)

𝑡𝑟

𝑟!
∞
𝑟=0                                           

Moment 

 The 𝑟𝑡ℎ moment of the Stream distribution is obtained 

                                        𝐸(𝑥𝑟) =
𝑟! [ 𝜃3 +  𝜃2( 𝑟 + 1 )  +  ( 𝑟 + 1)( 𝑟 + 2 ) ( 𝑟 + 3 ) ]

𝜃𝑟 ( 𝜃3 + 𝜃2 + 6 )
                                     (3)                       

Therefore, the first-four moments about origin of Stream Distribution are given as:                                                                                                          

                                    𝜇1
, =  

𝜃3 +  2𝜃2 + 24

 𝜃 ( 𝜃3 + 𝜃2 + 6 )
=  𝜇                    𝜇2

, =  
2( 𝜃3 + 3𝜃2 + 60 )

 𝜃2 ( 𝜃3 + 𝜃2 + 6 )
                                 

                                    𝜇3
, =   

6( 𝜃3 + 4𝜃2 + 120)

 𝜃3 ( 𝜃3 + 𝜃2 + 6 )
                         𝜇4

, =   
24( 𝜃3 + 5𝜃2 + 210 )

 𝜃4 ( 𝜃3 + 𝜃2 + 6 )
             

The central moment about the mean of Stream distribution is: 

                                     𝜇𝑛 = 𝐸[ (𝑋 − 𝐸[𝑋])𝑛 ] =  ∑ (𝑛
𝑗
)𝑛

𝑗=0  (−1)𝑛−𝑗 𝜇𝑗
, 𝜇𝑛−𝑗                                         

                                   𝜇2 =   𝜇2
, − 𝜇2                              

                                                        =
𝜃6+ 4𝜃5+  2𝜃4  + 84𝜃3  60𝜃2+144 

 𝜃2( 𝜃3+ 𝜃2+ 6)2 =  𝜎2                                               

                                   𝜇3 =   𝜇3
, − 3𝜇2

, 𝜇 + 2𝜇3                                                                             

                                        =
2( 𝜃9 + 6𝜃8 + 6𝜃7+200𝜃6+ 270𝜃5+ 108𝜃4+ 324𝜃3+432𝜃2  + 864 ) 

 𝜃3( 𝜃3+ 𝜃2+ 6 )3
                              

                                  𝜇4  =   𝜇4
, −  4𝜇3

, 𝜇  + 6𝜇2
, 𝜇2 − 3𝜇4                                                         

                                         =

 
3( 3𝜃12  + 24𝜃11  +   44𝜃10  +  968𝜃9+ 2336𝜃8+ 2016𝜃7 +7488𝜃6  +13248𝜃5 +5760𝜃4 +31104𝜃3+24192𝜃2+31104 )   

 𝜃4( 𝜃3+ 𝜃2+ 6 )4                                

Coefficient of Variation, Skewness, Kurtosis, and Index of Dispersion 

The coefficient of variation (CV), The coefficient of skewness (√𝛽1), The coefficient of 

kurtosis (𝛽2) and the index of dispersion ( γ ) of Stream Distribution are thus obtained as: 
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                           𝐶𝑉   =  
𝜎

𝜇1
,  =   

√(𝜃6+ 4𝜃5+  2𝜃4  + 84𝜃3  60𝜃2+144 )

( 𝜃3 + 2𝜃2 + 24 )
                                                 

                           √𝛽1  =  
𝜇3

𝜇2
3/2  =   

2( 𝜃9  + 6𝜃8  + 6𝜃7+200𝜃6+ 270𝜃5+ 108𝜃4+ 324𝜃3+432𝜃2  + 864 )

( 𝜃6+ 4𝜃5+  2𝜃4  + 84𝜃3  60𝜃2+144 )3/2
                    

                               𝛽2 =
𝜇4

𝜇2
2 =

3( 3𝜃12 +24𝜃11 + 44𝜃10+ 968𝜃9+2336𝜃8+2016𝜃7+7488𝜃6 + 13248𝜃5+5760𝜃4 +31104𝜃3+24192𝜃2+31104 )  

( 𝜃6+ 4𝜃5+  2𝜃4  + 84𝜃3  60𝜃2+144 )2                               

                                𝛾 =  
𝜎2

𝜇1
′ =  

(𝜃6+ 4𝜃5+  2𝜃4  + 84𝜃3  60𝜃2+144)

𝜃( 𝜃3 + 2𝜃2 + 24 )( 𝜃3 + 𝜃2 + 6 )
                                                                

 

OTHER PROPERTIES OF THE STREAM DISTRIBUTION 

Mean Residual Life Function (MRL) 

In reliability studies, Mean Residual Life Function (MRL) is the expected additional lifetime, 

given that a component has survived until time t. This is defined as: 

                             𝑚(𝑥) =  𝐸[𝑋 –  𝑥 ǀ 𝑋 > 𝑥 ] =   
1

1− F(x)
 ∫ [ 1 − F(t) ] 𝑑𝑡

∞

𝑥
                                                   

   Where we consider  A =
1

1− F(x)
                                                                                                     

The mean residual life function of Stream distribution is given as                               

                             𝑚(𝑥) = A ∫ [ 1 − 1 − (1 +
 𝜃𝑡 [ 𝜃2 + 𝜃2 𝑡2 + 3𝜃𝑡 + 6 ] 

𝜃3 + 𝜃2 + 6
) 𝑒−𝜃𝑡 ] 𝑑𝑡

∞

𝑥
                                 

                        With    𝐴 =  
1

1−{1−(1+ 
 𝜃𝑥 [ 𝜃2 + 𝜃2 𝑥2 + 3𝜃𝑥 + 6 ] 

𝜃3 + 𝜃2 + 6
)𝑒−𝜃𝑥}

                                                          

                             𝑚(𝑥) =
𝜃3+ 2𝜃2+ 𝜃3𝑥 + 𝜃3𝑥2+ 6𝜃2𝑥2+18𝜃𝑥 +24

𝜃( 𝜃3 + 𝜃2 + 6 ) + 𝜃𝑥( 𝜃2+𝜃2𝑥2 +3𝑥𝜃+6 ) 
                                                                

   Thus at  𝑥 = 0 ,      𝑚(0) =
( 𝜃3 +2 𝜃2 + 24 )

𝜃( 𝜃3 + 𝜃2 + 6 )
= 𝜇                    

                                         

Hazard Function 

According to Gross and Clark [1975], hazard function accounts for the risk of failure of a 

system at varying times 𝑥. At the other hand Survival Function is the probability that a system 

survives beyond a given time 𝑥, 𝑥 ≥ 0. The Hazard Function of Stream distribution is given as 

                               𝐻(𝑥, 𝜃)  =   
𝑓( 𝑥,   𝜃)

1− 𝐹( 𝑥,   𝜃)
 =  

𝑓( 𝑥,   𝜃 )

𝑆( 𝑥,   𝜃 )
                                                                                 

where 𝑆( 𝑥,   𝜃 ) is the survival function                        



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 7, Issue 3, 2024 (pp. 79-94) 

84  Article DOI: 10.52589/AJMSS-RDFCZYVM 

  DOI URL: https://doi.org/10.52589/AJMSS-RDFCZYVM 

www.abjournals.org 

          =
 

𝜃4

𝜃3 + 𝜃2 + 6
 ( 1 + 𝑥 + 𝑥3 ) 𝑒−𝜃𝑥

     [ 1+ 
 𝜃𝑥 [ 𝜃2 + 𝜃2 𝑥2 + 3𝜃𝑥 + 6 ] 

𝜃3 + 𝜃2 + 6
  ] 𝑒−𝜃𝑥

                                                                                                    

                                 𝐻(𝑥, 𝜃) =  
𝜃4( 1 + 𝑥 + 𝑥3 ) 

 ( 𝜃3 + 𝜃2 + 6 ) + 𝜃𝑥( 𝜃2+𝜃2𝑥2 +3𝑥𝜃+6 )
                                             

Bonferroni and Lorenz Curve 

Bonferroni [1930] gave a curve that measures for the conditional mean of a distribution; 

whereas, Dagum [1985] referred to the Lorenz curve as the measure of inequality of the 

variability of X. Let X be a non-negative continuous random variable, with positive and finite 

expected value 𝜇, and distribution F; then Bonferroni curve is obtained as 

    𝐵(𝑝) =
1

𝑝𝜇
∫ 𝑥 𝑓(𝑥)𝑑𝑥

𝑞

0
                                                                                                                      

    𝐵(𝑝) =  
1

𝑝𝜇
[∫ 𝑥 𝑓(𝑥)𝑑𝑥 − ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

𝑞

∞

0
] =  

1

𝑝𝜇
[𝜇 − ∫ 𝑥 𝑓(𝑥)𝑑𝑥

∞

𝑞
]                      

While the Lorenz curve is obtained as                         

      𝐿(𝑝) =
1

𝜇
∫ 𝑥 𝑓(𝑥)𝑑𝑥

𝑞

0
                                                                                                                     

          𝐿(𝑝) =  
1

𝜇
[∫ 𝑥 𝑓(𝑥)𝑑𝑥 − ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

𝑞

∞

0
]    =  

1

𝜇
[𝜇 − ∫ 𝑥 𝑓(𝑥)𝑑𝑥

∞

𝑞
]                       

The relationship between the Boneferroni curve and Lorenz curve is given as              

          𝐵(𝑝) =
1

𝜇
∫ 𝐹−1(𝑥)𝑑𝑥 =

𝐿(𝑝)

𝑝
 

𝑝

0
                                                                    

          Where 𝜇 = 𝐸(𝑋), 𝑞 = 𝐹−1(𝑝) and 𝑝 ∈ [0,1] 

Thus, when 𝑋~𝐽𝑢𝑐ℎ𝑒𝑧(𝜃), the 𝐵(𝑝) 𝑎𝑛𝑑 𝐿(𝑝) of Stream distribution are defined as 

   𝐵(𝑝) =
1

𝑝
(1 −  [ 

( 𝜃3+ 2𝜃2 + 24 )−𝑞( 𝜃4 + 2𝜃3 + 24) − 𝑞2( 𝜃4+ 12𝜃2) − 4𝜃3𝑞3 −  𝜃4𝑞4  ) 

( 𝜃3 + 2𝜃2 + 24 )
] )                     

    𝐿(𝑝) =  (1 −  [ 
( 𝜃3+ 2𝜃2 + 24 )−𝑞( 𝜃4 + 2𝜃3 + 24) − 𝑞2( 𝜃4+ 12𝜃2) − 4𝜃3𝑞3 −  𝜃4𝑞4  ) 

( 𝜃3 + 2𝜃2 + 24 )
 ] )                 

 

Stochastic Ordering 

Given that 𝑋~𝐽𝑢𝑐ℎ𝑒𝑧(𝜃1) 𝑎𝑛𝑑 𝑌 ~𝐽𝑢𝑐ℎ𝑒𝑧(𝜃2), and if 𝜃1  >  𝜃2 then 𝑋 ≤𝑙𝑟 𝑌 and hence 

𝑋 ≤ℎ𝑟 𝑌,  𝑋 ≤𝑚𝑟𝑙 𝑌 and 𝑋 ≤𝑠𝑡 𝑌. Where 𝑙𝑟, ℎ𝑟, 𝑚𝑟𝑙 𝑎𝑛𝑑 𝑠𝑡 represent the likelihood ratio 

order, hazard rate order, mean residual life order and stochastic order respectively. Thus,   

               
𝑓𝑥(𝑥)

𝑓𝑦(𝑥)
=  

 𝜃1 
4

( 𝜃2 
3

 +  𝜃2 
2

+ 6)

 𝜃2 
4

(  𝜃1 
3

+  𝜃1 
2

 + 6 )
 𝑒𝑥( 𝜃2− 𝜃1),    𝑥 > 0.                                                 (4)                 

If, for 𝜃2 >  𝜃1, 
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𝑑

𝑑𝑥
 

𝑓𝑥(𝑥)

𝑓𝑦(𝑦)
= ( 𝜃2 − 𝜃1)

𝑓𝑥(𝑥)

𝑓𝑦(𝑥)
< 0,                                                                          (5) 

From equations (4) and (5),  
𝑓𝑥(𝑥)

𝑓𝑦(𝑥)
  is decreasing in 𝑥.That implies 𝑋 ≤𝑙𝑟 𝑌.  

Remark: 

● 𝑋 ≤𝑠𝑡 𝑌 if 𝐹𝑥(𝑥) ≥  𝐹𝑦(𝑥) ∀𝑥; 

● 𝑋 ≤ℎ𝑟 𝑌 if ℎ𝑥(𝑥) ≥  ℎ𝑦(𝑥) ∀𝑥; 

● 𝑋 ≤𝑚𝑟𝑙 𝑌 if 𝑚𝑥(𝑥) ≥  𝑚𝑦(𝑥) ∀𝑥  

These conditions hold if a random variable X is said to be lesser than a random variable Y. 

These implications are well known [Shaked and Shanthikumar, 1994]:  

                  𝑋 ≤𝑙𝑟 𝑌 ⇒  𝑋 ≤ℎ𝑟 𝑌 ⇒ 𝑋 ≤𝑚𝑟𝑙 𝑌  and  𝑋 ≤ℎ𝑟 𝑌 ⇒ 𝑋 ≤𝑠𝑡 𝑌 

                                                                                

Entropy Measure 

Entropy measures the uncertainty, or randomness of a system, say probability distribution. The 

Rényi [1961] entropy of a random variable X, following the Stream distribution is given by: 

               𝑇𝑅(𝑠) =  
1 

1−𝑠 
log  (∫ 𝑓𝑠(𝑥) 𝑑𝑥 )    where 𝑠 > 0 𝑎𝑛𝑑 𝑠 ≠ 1                                                      

                          =  
1 

1−𝑠 
log   (∫ (

𝜃4

𝜃3+ 𝜃2 + 6
)

𝑠

 ( 1 + 𝑥 +  𝑥3 )𝑠 𝑒−θsx𝑑𝑥
∞

0
 )                                            

                      But  (1 + a)𝑚  =  ∑ (𝑚
𝑖

 )∞
𝑖=0  𝑎𝑖 

                           =  
1 

1−𝑠 
log   (∫ (

𝜃4

𝜃3+ 𝜃2 + 6
)

𝑠

 ∑ (𝑠
𝑖
 )∞

𝑖=0   (𝑥 + 𝑥3 )𝑖  𝑒−θsx𝑑𝑥
∞

0
 )                  

         =  
1 

1−𝑠 
(log   ∑ (𝑠

𝑖
 )∞

𝑖=0 (
𝜃4

𝜃3+ 𝜃2 + 6
)

𝑠

 ∫   ( 1 + 𝑥2)𝑖  𝑥𝑖  𝑒−θsx𝑑𝑥
∞

0
 )                                     

         =  
1 

1−𝑠 
log  (∑ (𝑠

𝑖
 )∞

𝑖=0 ∑ (𝑖
𝑗
 )∞

𝑗=0 (
𝜃4

𝜃3+ 𝜃2 + 6
)

𝑠

 ∫    𝑥2𝑗+𝑖  𝑒−θsx𝑑𝑥
∞

0
 )                             

               We have that   ∫  𝑥𝑚𝑒−𝜃𝑥 dx =  
∞

0

Г(𝑚+1)

𝜃𝑚+1
=  

𝑚!

𝜃𝑚+1
   

                 𝑇𝑅(𝑠) =  
1 

1−𝑠 
log   (∑  (𝑠

𝑖
 ) ∑ (𝑖

𝑗
 )∞

𝑗=0
∞
𝑖=0 (

𝜃4

𝜃3+ 𝜃2 + 6
)

𝑠

  
Г(2𝑗+ 𝑖 + 1)

(𝜃𝑠)2𝑗+ 𝑖 +1  )                                         

                    𝑇𝑅(𝑠) =  
1 

1−𝑠 
log  (∑  (𝑠

𝑖
 ) ∑ (𝑖

𝑗
 )∞

𝑗=0
∞
𝑖=0  

𝜃4𝑠−2𝑗−𝑖−1

(𝜃3+ 𝜃2 + 6)𝑠   
(2𝑗+𝑖)!

𝑠2𝑗+𝑖+1 )                                                     

 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 7, Issue 3, 2024 (pp. 79-94) 

86  Article DOI: 10.52589/AJMSS-RDFCZYVM 

  DOI URL: https://doi.org/10.52589/AJMSS-RDFCZYVM 

www.abjournals.org 

Order Statistics 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size n from Stream Distribution. Let 𝑋1 <  𝑋2 <
, … , < 𝑋𝑛 denote the corresponding order statistics. The pdf and the cdf of the kth order 

statistics say 𝑌 = 𝑋𝑘  is given by:  

                              𝑓𝑌(y) =  
n!

( 𝑘−1)!( 𝑛−𝑘)!
 𝐹𝑘−1(𝑦) {1 − 𝐹(𝑦)}𝑛−𝑘 𝑓(𝑦)                                                                       

                                 𝑓𝑌(y) =  
n!

( 𝑘−1)!( 𝑛−𝑘)!
 ∑ (𝑛−𝑘

𝑙
)𝑛−𝑘

𝑙=0  (−1)𝑙  𝐹𝑘+𝑙−1(𝑦)𝑓(𝑦)                                               

                                 𝐹𝑌(y) =  ∑ (𝑛
𝑗
) 𝐹𝑗𝑛

𝑗=𝑘 (𝑦) {1 − 𝐹(𝑦)}𝑛−𝑗                                                        

                                 𝐹𝑌(y) = ∑ ∑ (𝑛
𝑗
) (𝑛−𝑗

𝑙
)(−1)𝑙  𝐹𝑗+𝑙(𝑦)

𝑛−𝑗
𝑙=0

𝑛
𝑗=𝑘                                                    

Thus the pdf and the cdf of kth order statistics of Stream distribution are given by         

        𝑓𝑌(y) =  
n! 𝜃3( 1+𝑥 + 𝑥3 ) 𝑒−𝜃𝑥

( 𝜃3+ 𝜃2+6)( 𝑗−1)!( 𝑛−𝑗)!
 ∑ (𝑛−𝑗

𝑙
)

𝑛−𝑗
𝑙=0  (−1)𝑙   [ 1 +

 
 𝜃𝑥 [ 𝜃2 + 𝜃2 𝑥2 + 3𝜃𝑥 + 6 ] 

𝜃3 + 𝜃2 + 6
  ] 𝑒−𝜃𝑥(𝑖+𝑗+1)

    (6)                                                                                                                                                                                           

              𝐹𝑌(y) = ∑ (𝑛
𝑗
) ∑ (𝑛−𝑗

𝑙
) ∑ (𝑗

𝑘
)

𝑗
𝑘

𝑛−𝑗
𝑙=0  ∑ ( 𝑘

𝑚
)𝑘

𝑚=0  (−1)𝑗+𝑙  [ 1 +𝑛
𝑗=𝑘

 𝜃𝑥 [ 𝜃2+𝜃2𝑥2+3𝜃𝑥+6 ]

𝜃3 + 𝜃2 + 6
 ] 𝑒−𝜃𝑥(𝑗+𝑙)

                                                                                                                                                                    

That implies that the pdf of minimum order statistics is obtained by substituting 𝑗 = 𝑘 =
1 in equation (6) to have: 

                  𝑓1:𝑛 =  
n[𝜃3( 1+𝑥 + 𝑥3 )𝑒−𝜃𝑥]

( 𝜃3+ 𝜃2+6)
 ∑ (𝑛−1

𝑙
)𝑛−1

𝑙=0  (−1)𝑙   [ 1 +  
 𝜃𝑥 [ 𝜃2 + 𝜃2 𝑥2 + 3𝜃𝑥 + 6 ] 

𝜃3 + 𝜃2 + 6
  ] 𝑒−𝜃𝑥(𝑖+2)

          

While the corresponding pdf of maximum order statistics is obtained by making the 
substitution of 𝑗 = 𝑘 = 𝑛 in equation (6) 

                  𝑓𝑛:𝑛 =  
n[ 𝜃3( 1+𝑥 + 𝑥3 )𝑒−𝜃𝑥]

( 𝜃3+ 𝜃2+6)
   [ 1 +  

 𝜃𝑥 [ 𝜃2 + 𝜃2 𝑥2 + 3𝜃𝑥 + 6 ] 

𝜃3 + 𝜃2 + 6
  ] 𝑒−𝜃𝑥(𝑖+𝑛+1)

                        

                      

Limiting Distribution 

If 𝑋1, . . , 𝑋𝑛  is a random sample, and if 𝑋 =  
𝑋1+ ...  +𝑋𝑛

𝑛
  denotes the sample mean then by the 

usual central limit theorem,  
𝑋 𝑛 − 𝜇 

𝜎

√𝑛

 approaches the standard normal distribution 𝑁(0,1) as 𝑛 →

 ∞. 

There could be an interest in deriving the asymptotic of the extreme values 𝑋𝑛;𝑛 =

𝑚𝑎𝑥 ( 𝑋1, . . , 𝑋𝑛 ) and 𝑋1;𝑛 = 𝑚𝑖𝑛 ( 𝑋1, . . , 𝑋𝑛 ).  Bensid (2017) gave many examples on the 

Lindley family distribution. 

The limiting distribution of sample minima and maxima of Stream distribution is  
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𝐹(𝑡𝑥)

𝐹(𝑡)
= 𝑥

𝑓(𝑡𝑥)

𝑓(𝑡)
                                                                               

                                    = 𝑥
𝜃4(1+ 𝑡𝑥 +𝑡3𝑥3) 𝑒−𝜃𝑡𝑥

𝜃4(1+ 𝑡 +𝑡3 )𝑒−𝜃𝑡
                                                                                                                    

                
𝐹(𝑡𝑥)

𝐹(𝑡)
 = 𝑥 , for 𝑋1;𝑛 minima                                                                           

           
1−𝐹(𝑡𝑥)

1−𝐹(𝑡)
= 𝑙𝑖𝑚𝑡→∞ [

(1+ 
  𝜃3( 𝑡+𝑥 ) + 𝜃3 ( 𝑡+𝑥 )3  +  3 𝜃2( 𝑡+𝑥 )2  + 6𝜃( 𝑡+𝑥 )  

𝜃3 + 𝜃2 + 6
)𝑒−𝜃(𝑡+𝑥)

(1+ 
  𝜃3𝑡  + 𝜃3𝑡3  +  3 𝜃2𝑡2  + 6𝜃𝑡  

𝜃3 + 𝜃2 + 6
)𝑒−𝜃𝑡

]                        

                                    =  𝑒−𝜃𝑥, for 𝑋𝑛;𝑛 maxima                                                                               

 

Maximum Likelihood Estimator 

Let 𝑋𝑖, 𝑖 = 1,2,3, … , 𝑛, be a random variable from Stream Distribution, the maximum 

likelihood estimator (MLE) is obtained thus: 

                    𝐿𝑓(𝑥, 𝜃) =  ( 
𝜃4

 ( 𝜃3+ 𝜃2 + 6 )
 )

𝑛

 ∏  ( 1 + 𝑥 +  𝑥3)𝑛
𝑖=1  𝑒−𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1                                                  

                𝑙𝑛𝐿𝑓(𝑥, 𝜃) = 4𝑛𝑙𝑛𝜃 –  𝑛𝑙𝑛( 𝜃3+ 𝜃2 + 6) + ∑ 𝑙𝑛(1 + 𝑥 + 𝑥3)𝑛
𝑖=1 − 𝜃 ∑ 𝑥𝑖  𝑛

𝑖=1              

  In estimation of MLE, the estimator is maximized at  
𝜕 𝑙𝑛𝐿

 𝜕𝜃  
= 0, then                    

                  
𝜕 𝑙𝑛𝐿𝑓(𝑥,𝜃)

 𝜕𝜃  
=   

4𝑛

 𝜃  
−  

𝑛(3𝜃2+ 2𝜃)

 𝜃3+ 𝜃2 + 6  
+ 0 − ∑ 𝑥𝑖

𝑛
𝑖=1 = 0                                          

                                                
4𝑛 ( 𝜃3+ 𝜃2 + 6)−𝑛𝜃(3𝜃2+ 2𝜃)

 𝜃 ( 𝜃3+ 𝜃2 + 6 ) 
= ∑ 𝑥𝑖    𝑛

𝑖=1                                                 

                                                    
4( 𝜃3+ 𝜃2 + 6 )− 𝜃(3𝜃2+ 2𝜃)

 𝜃 ( 𝜃3+ 𝜃2 + 6 ) 
=    

∑ 𝑥𝑖
𝑛
𝑖=1

 𝑛  
= 0     

                                             (𝜃3+ 2𝜃2  +  24) − (𝜃4 + 𝜃3 + 6𝜃)𝑥 ̅  = 0                                                            

MLE has the following properties: 

 The estimator θ̂n of θ is consistent if θ̂n  
p
→   θ  as n → ∞. This also implies that 

                                                 lim
n→∞

P( |θ̂n −  θ|  >  ϵ) = 0                                                            

 The estimator θ̂n of θ is asymptotically normal: 

                                                  √𝑛(𝜃𝑛 −  𝜃)
𝐷
→  𝑁 (0,

1

𝐼(𝜃)
 )                                                             
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Simulation Study 

Using numerical approach, the quantile function for the Stream distribution can be obtained 

from this expression 𝑥 = 𝐹−1 (𝑢), which is derived from  𝐹(𝑥) = 𝑢; where 𝐹(𝑥) is the 

distribution function given by equation (2); where 0 < u < 1. And it provides for the generating 

of “n” random Stream samples. 

                                         𝑢 =  1 − (1 +  
 𝜃𝑥 [ 𝜃2 + 𝜃2 𝑥2 + 3𝜃𝑥 + 6 ] 

𝜃3 + 𝜃2 + 6
) 𝑒−𝜃𝑥                                                 

                                  1 − 𝑢 =  (1 +  
 𝜃𝑥 [ 𝜃2 + 𝜃2 𝑥2 + 3𝜃𝑥 + 6 ] 

𝜃3 + 𝜃2 + 6
) 𝑒−𝜃𝑥                                                       

                                      𝑙𝑛 (1 +  
 𝜃𝑥 [ 𝜃2 + 𝜃2 𝑥2 + 3𝜃𝑥 + 6 ] 

𝜃3 + 𝜃2 + 6
) −𝑙𝑛 𝑙𝑛 (1 − 𝑢) −  𝜃𝑥 = 0                           

   (𝜃3+𝜃2 + 6)(1 − 𝑢)– [ (𝜃3+𝜃2 + 6 ) + 𝜃𝑥(𝜃2 + 𝜃2 𝑥2 + 3𝜃𝑥 + 6) ] 𝑒−𝜃𝑥 = 0                           

 

EMPIRICAL ANALYSIS 

 

Figure 1: Pdf and CDF plots for Stream Distribution for Different Levels of Parameters 

In Figure 1, the plot for pdf of the Stream distribution for selected values of 𝜃 shows that the 

distribution is positively skewed and unimodal; whereas the cdf is an increasing function at 

various parameter values and converges at 𝐹(𝑥) = 1 as supposed. 

Table 1: Mean, Median and Mode Comparison for Random Simulated Sample Data 

Using Stream Distribution 

Statistics Data1  

(𝑛 = 10) 

Data2  

(𝑛
= 50) 

Data3 

(𝑛 = 100) 

Data4 

(𝑛 = 500) 

Mode 2.000 1.000 4.000 2.000 

Median 2.000 2.000 3.000 3.000 

Mean 3.500 2.720 3.440 2.870 
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In Table 1, it is observed in data1 for 𝑛 = 10, that mode (M) = median (m) < mean (𝜇). In 

data2 for 𝑛 = 50, mode (M) < median (m) < mean (𝜇); whereas, in data3 for 𝑛 = 100 mode 

(M) > median (m) < mean (𝜇). Finally, mode (M) < median (m) > mean (𝜇) as seen in data4 

for   𝑛 = 500. We could deduce clearly that as n increases the inequality tends not to show any 

patterned consistency. 

As given by Lindley distribution, mode (M) < median (m) < mean (𝜇) under certain conditions; 

data 2 is seen to adhere to this. Abadir (2005), however, stated that “for a unimodal and 

positively skewed distributions whose first three moments exist, the inequality mode (M) < 

median (m) < mean (𝜇) does not necessarily hold”. Consequently, data 1, 3 and 4 adhere to 

Abadir’s proposition; and it is seen in the Stream moment derivations in equation (3) that the 

first three moments exist.  

Table 2: Coefficient of Variation (CV) Comparison of Different One-parameter 

Distributions, Valued at 𝜃 = 1. 

 

 

 

 

 

 

 

In Table 2, the coefficient of variation also known as the relative standard deviation (RSD) is 

compared across other parameter probability distributions. The CV for Exponential 

Distribution equals 1, which implies that the standard deviation and mean are equal; this is 

different for other listed distributions. According to Everitt (1998), “higher CV of a model 

indicates greater dispersion around the mean of the model”. By implication, lower values of 

CV, indicate greater precision of its model. Following the result obtained in Table 2, Stream 

Distribution has the lowest variance when valued at 𝜃 = 1. It is worthy of note that this trend 

is consistent for other parameter 𝜃 values. Therefore, Stream Distribution, could be 

comparatively considered a more efficient model. 

 

 

 

 

 

Figure 2: Hazard Plots and Mean Residual Life Plot for Stream Distribution for Different 

Levels of Parameters 

Distributions 𝐶𝑉 =  
𝜎

𝜇
 

Exponential 1 

Lindley 0.8819 

Akash 0.7693 

Shanker 0.8819 

Sujatha 0.7617 

Ishita 0.7693 

Aradhana 0.7551 

Akshaya 0.6425 

Stream 0.6361 

tel:1998
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In figure 2, the two plots show both increasing and decreasing trends respectively. As a result, 

Stream distribution is an increasing failure rate model. It is well-known that the MRL and the 

Hazard function have strong relationship with each other and also to the reliability function. 

Hence, both the MRL and the hazard functions are able to uniquely determine the distribution 

of the lifetime of items. In addition, these two functions usually have opposite monotonic trends 

and represent the aging behavior of a component from different points of view. From the graphs 

in figures 2, it is confirmed that an increasing failure rate function implies a decreasing MRL 

function.   

Remark: At  𝑥 = 0, 𝑚(0) =
( 𝜃3 +2 𝜃2 + 24 )

𝜃( 𝜃3 + 𝜃2 + 6 )
= 𝜇; and 𝐻(0) =  𝑓(0) =  

𝜃4

𝜃3 + 𝜃2 + 6
 . This 

quantity refers to the component failure of the distribution. 

 

Table 3:  Biasedness and Consistency of the MLE 

 

 

 

 

 

 

 

Table 3 shows that MLE is positively bias as 𝐸( 𝜃𝑚𝑙𝑒) −  𝜃 > 0. In addition, as n increases, 

the MLE’s tend to converge to the true parameter values with high probability; which gives a 

confirmation note to the consistency of the estimator. More so, this convergence will never 

meet up to equal the true parameter as n keeps increasing, hence we ascribe the MLE to be 

asymptotically normal. 

Computation of the Average Bias and Mean Square Error for 𝑀 = 1000 Monte Carlo 

Simulations; over the selected values of (𝑛 , 𝜃).  

   𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑖𝑎𝑠 = [  
1

𝑀
∑𝑀

𝑖=1 (𝜃𝑖 − 𝜃)]  𝑎𝑛𝑑 𝑀𝑆𝐸 = [  
1

𝑀
∑𝑀

𝑖=1 (𝜃𝑖 − 𝜃)2 ]                    (71) 

Table  4: Average Bias of the Estimator 𝜃 

N 𝜃 = 8 𝜃 = 10 𝜃 = 15 

20 

50 

0.3586 

0.1556 

         0.4503 

0.1047 

         0.6409 

0.2298 

80 

100 

200 

400 

0.0994 

0.0475 

0.0428 

0.0167 

0.0831 

0.0825 

0.0639 

0.0210 

0.2037 

0.1972 

0.0498 

0.0272 

             N 𝜃𝑚𝑙𝑒   𝑎𝑡  𝜃 = 10 𝜃𝑚𝑙𝑒   𝑎𝑡  𝜃 = 15 

             20 

             50  

             80 

            100 

            200 

            400 

            600 

            800 

          1000 

10.4503 

10.1047 

10.0831 

10.0825 

10.0639 

10.0210 

     10.0154 

10.0088 

     10.0049 

15.6409 

15.2298 

15.2037 

15.1972 

15.0498 

15.0272 

      15.0253 

15.0179 

      15.0040 
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Table 5:  MSE of the Estimator 𝜃 

N 𝜃 = 8 𝜃 = 10 𝜃 = 15 

20 

50 

3.0782 

1.1013 

5.1541 

1.7315 

12.1505 

4.4184 

80 

100 

200 

400 

0.5980 

0.5085 

0.2535 

0.1258 

1.0819 

0.7982 

0.4146 

0.1956 

2.7699 

2.0735 

1.0323 

0.5009 

 

From Tables 4 and 5, we deduce that the estimates of the average bias and the mean square 

error decrease as the sample size n increases. In addition, MSE estimates increases as 𝜃 

increases, for each of the sample sizes.  

Table 6:  Statistical Table for the PDF of Stream Distribution (𝜃 = 0.1 to 𝜃 = 0.5) 

X 𝜃 = 0.1 𝜃 = 0.2 𝜃
= 0.25 

𝜃 = 0.3 𝜃
= 0.35 

𝜃 = 0.4 𝜃
= 0.45 

𝜃 = 0.5 

1 0.00004

5 

0.00065 0.0015 0.0029 0.0051 0.0083 0.0124 0.0178 

2 0.00015 0.00195 0.0042 0.0080 0.0133 0.0203 0.0291 0.0397 

3 0.00038 0.00450 0.0094 0.0167 0.0264 0.0384 0.0524 0.0678 

4 0.00077 0.00820 0.0163 0.0275 0.0414 0.0573 0.0743 0.0916 

5 0.00132 0.01275 0.0241 0.0387 0.0554 0.0729 0.0899 0.1054 

6 0.00204 0.01777 0.0320 0.0488 0.0665 0.0832 0.0976 0.1088 

7 0.00300 0.02290 0.0392 0.0569 0.0737 0.0878 0.0980 0.1039 

8 0.00389 0.02783 0.0453 0.0626 0.0771 0.0874 0.0928 0.0936 

9 0.00500 0.03232 0.0500 0.0658 0.0771 0.0831 0.0839 0.0805 

10 0.00619 0.03619 0.0533 0.0667 0.0743 0.0762 0.0732 0.0668 

11 0.00744 0.03936 0.0522 0.0656 0.0696 0.0678 0.0620 0.0538 

12 0.00872 0.04178 0.0557 0.0630 0.0635 0.0589 0.0512 0.0423 

13 0.0100 0.04438 0.0551 0.0593 0.0569 0.0502 0.0415 0.0326 

14 0.0113 0.04466 0.0535 0.0548 0.0500 0.0419 0.0330 0.0247 

15 0.0125 0.04435 0.0513 0.0499 0.0433 0.0346 0.0259 0.0184 

16 0.0138 0.04476 0.0484 0.0448 0.0370 0.0281 0.0200 0.0135 

17 0.0149 0.04353 0.0452 0.0398 0.0313 0.0226 0.0153 0.0098 

18 0.0161 0.04229 0.0418 0.0350 0.0262 0.0180 0.0116 0.0071 

19 0.0171 0.04071 0.0382 0.0305 0.0217 0.0142 0.0087 0.0050 

20 0.0181 0.03886 0.0347 0.0263 0.0178 0.0111 0.0064 0.0036 

21 0.0189 0.03682 0.0313 0.0226 0.0145 0.0086 0.0048 0.0025 

22 0.0197 0.03406 0.0280 0.0192 0.0118 0.0066 0.0035 0.0017 

23 0.0203 0.03241 0.0249 0.0163 0.0095 0.0051 0.0025 0.0012 

24 0.0209 0.03015 0.0221 0.0137 0.0076 0.0039 0.0018 0.0008 

25 0.0214 0.02790 0.0194 0.0115 0.0060 0.0029 0.0013 0.0006 
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In Table 6, the trend reveals that the pdf of Stream Distribution is unimodal; and that the axiom            

0 < 𝑃(𝑥) < 1 holds across the variable and the parameter values. 

A fourteen-week (daily) observation was carried out over a facebook live-streaming program. 

The data represents time or cycle-to-event data, which is the weekly average number of viewers 

before it went below 10,000, which was the target for outreach success. 

11.2, 10.9, 13.2, 12.0, 11.5, 11.1, 10.8, 10.3, 13.8, 12.5, 12.3, 12.0, 11.1, 13.7, 14.3, 15.3, 13.1, 

12.0, 11.8, 10.9, 13.5, 12.6, 13.4, 14.2, 11.6,13.7, 12.6, 11.6, 14.0, 11.0, 13.6, 12.0, 11.5, 11.9, 

10.7, 12.6, 12.5, 13.7, 13.5, 12.4, 13.0, 13.2, 12.0, 14.3, 14.3, 12.5, 11.0, 12.0, 13.2, 12.0, 13.5, 

13.2, 12.5, 11.6, 14.0, 12.9, 10.5, 13.4, 14.0, 10.5, 12.6, 13.4, 14, 12.6, 13, 12.8, 13.7, 12.7, 

13.6, 14.5, 13.4, 12.9, 11.0, 15.1, 13.6, 12.4, 12.9, 11.2, 10.7, 12.3, 13.5, 12.6, 13.5, 12.3, 13.5, 

12.4, 12.3, 11.2, 13.5, 10.3, 11.3 (in thousands). 

Finally, we test for the flexibility of the Stream distribution, in comparison with some 

renowned one parameter distributions. Literature has it that two or more parameter distributions 

usually show superiority over one parameter distributions due to its robustness; hence the 

comparative choice of similar one parameter distributions. 

Among many tools, we employ: lnL (Log-Likelihood), AIC (Akaike Information Criterion) 

and BIC (Bayesian Information Criterion), for performance comparison. The models are given 

by:   

                      𝐴𝐼𝐶 =  −2𝑙𝑛𝐿 +  2𝑘, 𝐵𝐼𝐶 =  −2𝑙𝑛𝐿 +  𝑘 𝑙𝑛 ∗ 𝑛                                                 (72) 

where n is the number of observations, k is the number of estimated parameters and L is the 

value of the likelihood function evaluated at the parameter estimates 

Table 7: Performance Comparison for Stream Probability Distribution: 

Model                   Parameter 

                              Estimate 

lnL AIC BIC Rank 

Stream 0.3142 -255.36 512.73 515.24 1 

Exponential 0.0795 -321.42 644.85 647.36 9 

Akash 0.2342 -269.27 540.55 543.06 4 

Lindley 0.1487 -292.66 587.31 589.82 8 

Shanker 0.1561 -287.75 577.50 580.01 7 

Sujatha 0.2270 -271.99 545.97 548.48 5 

Aradhana 0.2212 -274.07 550.13 552.64 6 

Amarendra 0.3074 -257.19 516.38 518.89 2 

Akshaya 0.2946 -260.80 523.60 526.11 3 

 

From Table 7, the best distribution corresponds to the smallest value in AIC, BIC statistics, 

and or the highest value in lnL. It can be easily seen from Table 7 that the Stream distribution 

outperforms other distributions in terms of the inferential measures. 
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CONCLUSION 

The paper aimed at proposing a new probability distribution suitable for modeling live-

streaming data. Different distributions have their niche in modeling data from various fields of 

life. The empirical analyses carried out in this study are sufficient to project Stream distribution 

as a novel one parameter distribution with respect to live-streaming data modeling, which to 

the best of my knowledge is unprecedented in the field of distribution. Since all the models 

compared have one parameter, it follows that the Stream distribution provides the better fit. A 

further back-up for this finding, can be obtained by observing the result in Table 2, where it is 

shown that the coefficient of variation for Stream distribution is least among other listed 

distributions. These imply that the newly proposed distribution is more efficient in modeling 

live-streaming data. 
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