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ABSTRACT: Supply chain management (SCM) is the 

management of operations that are involved in the procurement of 

raw materials, its processing into finished goods, and distribution 

to the end consumer. In order to maximize profits in the supply 

chain, more customers should be explored from the rural areas 

but there is difficulty in reaching the customers due to road 

network accessibility for heavy loaded trucks. Our objective seeks 

to find out the optimum quantity and optimal cost required by the 

supplier and customer to maximize the supply chain profit. We 

applied a quantity-based mathematical model with renewal theory 

and shipment consolidation to obtain the profit function in the 

supply chain system. Then, we presented a solution to the model 

to determine the optimal solution in the supply chain. Our results 

show that the demand rate and the supply chain’s profit are 

higher, especially for the more retailers demand. Therefore, 

involving small vehicles for delivery of products to customers into 

areas where road network accessibility is difficult for heavy trucks 

is advantageous for the supply chain. 

KEYWORDS: Delivery, Inventory, Replenishment, Shipment 

consolidation, Supply chain. 
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INTRODUCTION 

Supply chain management (SCM) is the management of operations that are involved in the 

procurement of raw materials, its processing into finished goods, and distribution to the end 

consumer. It also involves the flow of information and products between and among supply 

chain stages to maximize profitability. The major functions involved are the procurement of 

raw materials, product development, marketing, operations, distribution, finance, and customer 

services (O’Byrne, 2016). SCM also involves the active streamlining of the supply-side 

activities of a business to maximize customer value and gain an overall competitive advantage 

in the marketplace.  

Supply chain processes employ a combination of people, systems and technology and are 

performed by the firm itself or in collaboration with external supply chain partners (Simon, 

2012). The ultimate goal of supply chain is profit maximization, regardless of what service or 

product they offer or the nature of their supply chain practices (Rothschild, 2006). They 

consider how the products are delivered to customers faster and with greater accuracy than you 

could with a manual system and track shipments to ensure they reach their destinations safely 

and on time (Rob O’Byrne, 2016). For fast delivery to customers, Adyang (2012) argued that 

proper supply chain practices led to higher profitability. Muthoni (2010) suggested that 

enhancement of operational excellence in the retail service workshop processes increased 

service quality, customer satisfaction and service performance. Zohreh and Amir (2018) 

explained that the most important features that can be mentioned in order to manage supply 

chain orders for profitability are long-term orders earnings, increased customer loyalty, long-

term cooperation with the company, minimizing the total costs, involves forward flows in order 

to reduce fixed and variable costs and increase customer responsiveness; and that applying 

dispatch volume limit, increases both the ordering cycle and the total annual costs. 

In order to maximize profit, Judit et al. (2017) suggested that the manufacturing companies 

should keep their inventory value at the lowest possible rate to minimize costs. However, 

several processes such as Vendor Managed Inventory [VMI] were also encouraged by Judit et 

al. (2017). Here the supplier manages the inventory at the customer and secondly the 

consignment inventory processing in which suppliers store goods at the customer location.  

This study investigated the level of profitability in the supply chain when the company 

management employs high service level drivers who are conversant with the road network and 

apply quantity-based shipment consolidation for the delivering of finished products to 

customers located in rural areas. Shipment consolidation allows small loading vehicles to 

enhance the service level since many of the customers have small scale businesses and are 

unable to buy a huge quantity and combination of two or more orders or multiple small batches 

into a single larger quantity to be dispatched or delivery is possible (Qishu, 2011). That is, 

instead of shipping individual loads whenever an order arrives, the transporters will hold the 

outbound quantities for a period of time, and then dispatch them on the same vehicle 

(Bookbinder et al., 2012). This strategy is ensuring continuous performance improvement of 

the company from huge losses to profitability and a higher level of quantity supply.  

Our objective seeks to find out the optimum quantity and optimal cost the customer’s require 

for the supply chain to maximize profit. The questions we answered are; what is the optimal 

values of the supplier quantity (𝑺𝑸) and retailer (𝑹𝑸) that minimized the expected long-run 

average cost in supply chain management? What is the variation of the optimality of 
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replenishment quantity of the supplier and retailer and total relevant cost? To answer these 

questions, we considered that shipment is made only when a certain quantity of outstanding 

demand is accumulated. A consolidation cycle begins immediately after the previous dispatch, 

and ends upon arrival of the order which causes the accumulative weight to reach the supplier 

or the retailer quantity. The cycle length is random, depending on the inter-arrival times 

between orders. The load dispatched to replenish the supplier’s inventory from the 

manufacturer is often greater than that delivered to the retailers from the supplier.  

MATERIAL AND METHODOLOGY 

We used quantity-based policy with renewal theory to obtain the long-run average cost function 

in a coordinated supply chain system. This is to help determine the order-up-to levels of the 

retailers from the supplier. We considered replenishments to represent the events that the 

retailer receives products from the supplier and deliveries represent the events that the retailer 

delivers the products to the consumers. The batch size is not the same but equal to the order 

quantity to be delivered and may vary due to stochastic demand from customers (that is the end 

consumers). Demands from supplier to the retailer and from the retailer to consumers follow a 

compound Poisson distribution. 

The replenishment (delivery) cycle denotes the time interval between two consecutive 

replenishments (deliveries). Also the replenishment and delivering cost of the supplier and 

retailers is composed of a fixed cost which is incurred when there is a positive replenishment 

quantity and a linear variable cost which is linearly proportional to the quantity. This variable 

cost includes the cost for loading products on vehicles at the company, transporting them to the 

supplier, and unloading them from the vehicles at the retailer. Figure 1 shows the inventory 

levels at the supplier and the retailers. The reorder points of the supplier and the retailers can 

be easily determined to be zero. 

 

 

 

 

 

 

 

 

 

 

 

                      Figure 1: Inventory levels of the supplier and retaile 

 

  (Inventory level at the 

        

Time  

Time 
Delivery 

Inventory level at the 

  



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323  

Volume 7, Issue 3, 2024 (pp. 43-59)    

46  Article DOI: 10.52589/AJMSS-UAUZSSPU  

  DOI URL: https://doi.org/10.52589/AJMSS-UAUZSSPU 

www.abjournals.org 

Mathematical Model   

We develop a mathematical model for the quantity in a coordinated supply chain system in 

which the retailers initiate the ordered quantity from the supplier who has been replenished by 

a supplier using small vehicles. In order to keep the model mathematically tractable, we 

consider a simplified framework based on Jac-Hun (2010) who considered 𝑄 for the size of a 

replenishment quantity and 𝑟 the number of dispatches in a cycle. In our model, we considered 

the replenishment quantity of the supplier (𝑆𝑄) and the delivery quantity of the retailers (𝑅𝑄).  

 Let first define the following notations: 

 𝑇𝑖: Inter-arrival time between the arrivals of the (𝑛 − 1)𝑠𝑡and the 𝑛𝑡ℎ retailers 

𝐴𝑡: Arrival time of the 𝑛𝑡ℎ retailer (𝐴𝑡 = ∑ 𝑇𝑖
𝑛
𝑖=1 ) 

𝜆: Arrival rates of the customers 

 
1

𝜆
 : The mean of the inter-arrival time of customers 

𝑁(𝑡): Number of orders that have arrived by time t, (𝑁(𝑡) = 𝑚𝑎𝑥{𝑛/𝐴 ≤ 𝑡𝑡});  

it is assumed that this follows the Poisson distribution with mean  𝜆𝑡 

𝑑𝑛: Demand quantity (or weight) of the 𝑛𝑡ℎ retailer 

𝜇:   Mean of demand quantities 

𝜎2: Variance of the demand quantities 

𝐷𝑛 :  Cumulative demand quantity of the first n retailers (𝐷𝑛 = ∑ 𝑑𝑖
𝑛
𝑖=1 ) 

𝑁2(𝑥): Minimum number of retailers whose cumulative demand quantity      

exceeds, i.e., 𝑁2(𝑥) = 𝑚𝑖𝑛{𝑛/𝐷𝑛 > 𝑥} 

𝐿𝑗(𝑥): Minimum number of retailers whose cumulative demand quantity exceeds    

𝑥 in the 𝑗𝑡ℎ delivery cycle. 

𝑆𝑄: The order-up-to level of the supplier 

𝑅𝑄: The order-up-to level of the retailer 

ℎ𝑆: The inventory holding cost per unit per unit time at the supplier 

ℎ𝑅: The inventory holding cost per unit per unit time at the retailer. 

𝐼𝑆(𝑡): Inventory level of the supplier at time t  

𝐼𝑅(𝑡): Inventory level of the retailer at time t 

𝐶𝑅: The cost replenishing one unit at supplier  
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𝐴𝑅:The fixed cost of replenishing the inventory at the retailer from the supplier 

𝐶𝐷: The cost of delivering one unit from the supplier to the retailer; 

𝐴𝐷: The fixed cost of delivering of a shipment from the supplier to the retailer; 

𝐾: Number of delivery cycles within replenishment cycles (a random variable) 

𝐹(𝑥): Distribution of  𝐷𝑁2(𝑆𝑅), the sum of demand quantities of the customers that arrive during 

a delivery cycle, i.e., 𝐹(𝑥) = 𝑃{ 𝐷𝑁2(𝑆𝑅) ≤ 𝑥 } 

𝐹(𝑘)(𝑥): k-fold convolution of 𝐹(𝑥)   

𝐶(𝑆𝑄 , 𝑅𝑄): The expected long-run average cost incurred when the order-up-to-levels of the 

supplier and the retailer are 𝑆𝑄 and 𝑅𝑄 respectively. 

Assumptions of the Model 

To enable us to achieve the quantity-based dispatching model for the coordinated supply chain, 

the following are the assumptions of the model. 

(a)  The inventory level is under continuous review. 

(b)  The load is dispatched whenever the size of demands is accumulated. 

(c)  The mean and variance of the quantities is known to each supplier   

(d)  Inter-arrival times of the order quantities are mutually independent. 

(e)  Shortages are not allowed. 

(f)   Lead times for inventory replenishments are fixed and negligibly short. 

(g)  There are an integer number of delivery cycles in each replenishment cycle. 

(h)  The distances between the supplier and retailers are not very large.   

Since we assume that dispatching decisions are made on a recurrent basis, one can make use 

of the renewal theory (Çetinkaya & Lee, 2000) to obtain an optimal solution for our problem. 

Here let 𝑇𝑖 (𝑖 = 1, 2,⋯ , 𝐾) be the instants that the demands have accumulated to a level of 𝑆𝑄 

and 𝑅𝑄 and a dispatch takes place. At a time instant 𝑇𝐾, an inventory replenishment takes place 

and the replenishment arrives at once (as we assume zero lead time).                                                                                                                                                                                                                                                              

The objective here is to obtain the optimal values of  𝑆𝑄 and 𝑅𝑄 so that the average long-run 

cost of the system is minimized. The average long-run cost of the system is given by  

          𝑇𝐶(𝑆𝑄, 𝑅𝑄) =
𝐸[𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑐𝑦𝑐𝑙𝑒 𝑐𝑜𝑠𝑡]

𝐸[𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑐𝑦𝑐𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ]
                                                            (1) 

by using the renewal reward theorem. The cost of a replenishment/delivery cycle consists of 

the following parameters or variables; expected delivery cycle length; expected delivery 

quantity to the retailer in a delivery cycle; expected number of delivery cycles within a 
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replenishment cycle; expected replenishment cycle length; expected replenishment quantity to 

the supplier in the replenishment cycle; expected inventory holding cost at the retailer in a 

delivery cycle; and expected inventory holding cost at the supplier in a replenishment cycle as  

components in the objective function (the expected long-run average cost). 

Note that the inter-arrival times of demands {𝑇𝑛: 𝑛 ≥ 1} are exponentially distributed with 

parameter,  𝜆. 𝑑𝑛, 𝑛 = 1, 2, 3,⋯ are random variables representing the demand quantity of the 

𝑛𝑡ℎ customer, and 𝑑𝑛’s are assumed to be identically and independently distributed and are 

independent of 𝑁1(𝑡) as well.  

The Expectation Delivery Cycle Length 

When the inventory at the retailer drops below a certain point, she replenished the items to 

bring the inventory back at a level 𝑅𝑄. This implies that the inventory level of the retailer is a 

generative process. Since the number of customers that arrive at the retailer for a delivery cycle 

is 𝑁2(𝑅𝑄), from Wald’s equation (Ross, 1996), the expected delivery cycle length is given as 

𝐸[𝑇𝑖]𝐸[𝑁2(𝑅𝑄)]. But 𝐸[𝑇𝑖] =
1

𝜆
  on the inter-arrival time of the customer, then the value of 

𝐸[𝑁2(𝑅𝑄)] can be estimated as 
𝑅𝑄

𝐸[𝑑𝑛]
+ 1 since  

𝑁2(𝑅𝑄)−1

𝑅𝑄
=

1

𝐸[𝑑𝑛]
  as given in Ross (1996) 

Thus, the expected delivery cycle length is 

𝐸[𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑐𝑦𝑐𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ] = 𝐸[𝐴𝑁2(𝑅𝑄)] = 𝐸 [∑ 𝑇𝑖
𝑁2(𝑅𝑄)

𝑖=1
] = 𝐸[𝑇𝑖]𝐸[𝑁2(𝑅𝑄)]  

 = 𝐸[𝑇𝑛] (
𝑅𝑄

𝐸[𝑑𝑛]
+ 1) =

𝑅𝑄+𝜇

𝜆𝜇
                                              

(2) 

Expected Delivery Quantity to the Retailer in a Delivery Cycle  

The number of customers arriving at the retailer during a delivery cycle is 𝑁2(𝑅𝑄). The delivery 

quantity to the retailer is 𝐷𝑁2(𝑅𝑄). 

Now, 𝐸[𝐷𝑁2(𝑅𝑄) − 𝑅𝑄] =
𝐸[𝑑𝑛

2 ]

2𝐸[𝑑𝑛]
 by the inspection paradox (Ross, 1996), the expected delivery 

quantity in a delivery cycle is given as 

𝐸[𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦] = 𝐸[𝑁2(𝑅𝑄)] = 𝑅𝑄 + 𝐸 [𝐷𝑁2(𝑅𝑄) − 𝑅𝑄]  

                                       = 𝑅𝑄 +
𝐸[𝑑𝑛

2 ]

2𝐸[𝑑𝑛]
= 𝑅𝑄 +

𝑉𝑎𝑟[𝑑𝑛]+𝐸[𝑑𝑛]
2

2𝑒[𝑑𝑛]
=

2𝜇𝑅𝑄+𝜇
2+𝜎2

2𝜇
                 (3) 

Expected Number of Delivery Cycles within a Replenishment Cycle 

To calculate the expected long-run average cost we most first of all know by obtaining the 

expected value and the variance of the number of delivery cycles within a replenishment cycle. 

From equation (2), we considered that  𝐷𝑁2(𝑅𝑄) follows the Poisson distribution with parameter 

2𝜇𝑅𝑄+𝜇
2+𝜎2

2𝜇
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i.e., 𝐸 [𝐷𝑁2(𝑅𝑄)
] =

2𝜇𝑅𝑄+𝜇
2+𝜎2

2𝜇
  by allowing the value of 𝐷𝑁2(𝑅𝑄)

 to be less than or equal to 𝑅𝑄. 

We know from the assumption that 𝐹(𝑘)(𝑆𝑄) is the distribution function of the Poisson 

distribution with parameter 𝑘 (
2𝜇𝑅𝑄+𝜇

2+𝜎2

2𝜇
), since  𝐹(𝑘)(𝑆𝑄) is the 𝑘 − 𝑓𝑜𝑙𝑑 convolution of 

the Poisson with 
2𝜇𝑅𝑄+𝜇

2+𝜎2

2𝜇
  

Since k can be expressed as 𝐾 = 𝑚𝑖𝑛 {𝑘/∑ 𝐷𝐿𝑗(𝑅𝑄)
𝑘
𝑗=1 > 𝑆𝑄}, the event {𝐾 ≥ 𝑘} is equivalent 

to {∑ 𝐷𝐿𝑗(𝑅𝑄)
𝑘−1
𝑗=1 ≤ 𝑆𝑄} and  

hence 𝑃{𝐾 ≥ 𝑘} = 𝑃 {∑ 𝐷𝐿𝑗(𝑅𝑄)
𝑘−1
𝑗=1 ≤ 𝑆𝑄} = 𝐹

(𝑘−1)(𝑆𝑄). 

Therefore, the distribution function of K is expressed as 

   𝑃{𝐾 ≤ 𝑘} = 1 − 𝐹(𝑘)(𝑆𝑄) = 1 − ∑
 𝑘(

2𝜇𝑅𝑄+𝜇
2+𝜎2

2𝜇
)

𝑖

𝑒𝑠𝑝(−𝑘(
2𝜇𝑅𝑄+𝜇

2+𝜎2

2𝜇
))

𝑖!

𝑆𝑄
𝑖=0

                     (4) 

This equation represents the distribution function of the (𝑆𝑄 + 1)-stage Erlang (Gamma) 

distribution with mean 
2𝜇(𝑆𝑄+1)

2𝜇𝑅𝑄+𝜇2+𝜎2
  and variance 

4𝜇2(𝑆𝑄+1)

(2𝜇𝑅𝑄+𝜇2+𝜎2)
2. Therefore, we can approximate the expected value and the variance of the 

number of delivery cycles within a replenishment cycle as 

             𝐸[𝐾] =
2𝜇(𝑆𝑄+1)

2𝜇𝑅𝑄+𝜇2+𝜎2
                                                                    (5) 

and  𝑉𝑎𝑟[𝐾] =
4𝜇2(𝑆𝑄+1)

(2𝜇𝑅𝑄+𝜇2+𝜎2)
2                                                                (6) 

Expected Replenishment Cycle Length 

A replenishment cycle has k delivery cycles. From Wald’s equation (1996), the expected 

replenishment cycle length is calculated by multiplying the expected delivery cycle length by 

the expected number of delivery cycles within a replenishment cycle. That is, 

𝐸[∑ 𝑋𝑖
𝐾
𝑗=1 ] = 𝐸[𝐾]𝐸[𝑋]   

𝑤ℎ𝑒𝑟𝑒 𝑋1, 𝑋2, … are independent and identically distributed random variables with finite 

expectations and K is a stopping time for 𝑋1, 𝑋2, … such that 𝐸[𝐾] < ∞. The stopping time for 

𝑋1, 𝑋2, … if the event {𝐾 = 𝑘} is independent of 𝑋𝑘+1, 𝑋𝑘+2,… , 𝑘 ≥ 1. From equations (2) and 

(4) the approximate expected replenishment cycles is 

𝐸[𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑐𝑦𝑐𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ] = 𝐸[𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑐𝑦𝑐𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ]. 𝐸[𝐾]  

                                                        =
2(𝑆𝑄+1)(𝑅𝑄+𝜇)

𝜆(2𝜇𝑅𝑄+𝜇2+𝜎2)
                                                        (7) 
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Expected replenishment quantity to the supplier in a replenishment cycle 

 There are K delivery cycles in the replenishment cycle; we calculate the expected 

replenishment quantity in a replenishment cycle by multiplying the expected delivery quantity 

in a delivery cycle by the expected number of delivery cycles within a replenishment cycle. 

From (3) and (5), It can be given as  

𝐸[𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦] = 𝐸[𝐾]𝐸[𝐷2(𝑅𝑄)] = 𝑆𝑄 + 1                                             (8) 

Expected Inventory Holding Cost at the Retailer in a Delivery Cycle 

The inventory level of the retailer in a delivery cycle is expressed as 

𝐼𝑅(𝑡) =

{
 
 

 
 
𝑅𝑄                                                𝑖𝑓 0 ≤ 𝑡 < 𝐹1
𝑅𝑄 − 𝐷1                                     𝑖𝑓 𝐹1 ≤ 𝑡 < 𝐹2
𝑅𝑄 − 𝐷2                                     𝑖𝑓𝐹2 ≤ 𝑡 < 𝐹3
⋮                                                                   

𝑅𝑄 − 𝐷𝑁2(𝑅𝑄)−1    𝑖𝑓 𝐹𝑁2(𝑅𝑄)−1 ≤ 𝑡 ≤ 𝐹𝑁2(𝑅𝑄)

 

The expected inventory holding cost at the retailer in a delivery cycle is calculated as follows 

ℎ𝑅𝐸 [𝑅𝑄𝑇1 + (𝑅𝑄 − 𝐷1)𝑇2 + (𝑅𝑄 − 𝐷2)𝑇3 +⋯+ (𝑅𝑄 − 𝐷𝑁2(𝑅𝑄)−1)𝑇𝑁2(𝑅𝑄)]  

               = ℎ𝑅𝐸 [𝑅𝑄 ∑ 𝑇𝑖
𝑁2(𝑅𝑄)

𝑖=1
− ∑ 𝐷𝑖𝑇𝑖+1

𝑁2(𝑅𝑄)−1

𝑖=1
]  

               = ℎ𝑅𝑅𝑄𝐸[𝑇𝑖]𝐸[𝑁2(𝑅𝑄)] − ℎ𝑅𝐸 [𝐸 [∑ 𝐷𝑖𝑇𝑖+1
𝑁2(𝑆𝑅𝑄)−1

𝑖=1
]]   

               = ℎ𝑅𝑅𝑄𝐸[𝑇𝑖]𝐸[𝑁2(𝑅𝑄)] − ℎ𝑅𝐸 [𝐸 [∑ 𝐷𝑖𝑇𝑖+1/𝑁2(𝑅𝑄) = 𝑚 + 1
𝑁2(𝑅𝑄)−1

𝑖=1
]] 

               = ℎ𝑅𝑅𝑄𝐸[𝑇𝑖]𝐸[𝑁2(𝑅𝑄)] − ℎ𝑅𝐸 [𝐸[∑ 𝐷𝑖𝑇𝑖+1/𝑁2(𝑅𝑄)
𝑚
𝑖=1 = 𝑚 + 1]]  

              = ℎ𝑅𝑅𝑄𝐸[𝑇𝑖]𝐸[𝑁2(𝑅𝑄)] − ℎ𝑅𝐸[𝑇𝑖]𝐸 [𝐸[∑ 𝐷𝑖/𝑁2(𝑅𝑄)
𝑚
𝑖=1 = 𝑚 + 1]]  

 We assume that 𝑑𝑖, 𝑖 = 1,⋯ ,𝑁2(𝑅𝑄) − 1, follows an exponential distribution and also the 

cumulative demand quantities, 𝐷1, ⋯ , 𝐷𝑚, for 𝑚 = 𝑁2(𝑅𝑄) − 1, are mutually independent 

random variables following the uniform distribution with range (0, 𝑅𝑄) from the relationship 

between the arrival times of the Poisson arrival process and the uniform distribution (Ross, 

1996). 

Thus, 𝐸[𝐷𝑖] as 
𝑅𝑄

2
, and  

𝐸[∑ 𝑚𝑚
𝑖=1 𝐷𝑖𝑇𝑖+1/𝑁2(𝑅𝑄) = 𝑚 + 1] = 𝑚𝐸[𝐷𝑖𝑇𝑖+1] = 𝑚𝐸[𝐷𝑖]𝐸[𝑇𝑖+1] = 𝑚

1

𝜆

𝑅𝑄

2
.  

Therefore,  
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𝐸 [𝐸[∑ 𝑚𝑚
𝑖=1 𝐷𝑖𝑇𝑖+1/𝑁2(𝑅𝑄) = 𝑚 + 1] = 𝐸 [𝑚

1

𝜆

𝑅𝑄

2
] =

1

𝜆

𝑅𝑄

2
𝐸[𝑚]   ] =

1

𝜆

𝑅𝑄

2
𝐸[𝑁2(𝑅𝑄) − 1]  

Since 𝐸[𝑁2(𝑅𝑄)] =
𝑅𝑄

𝜇+1
, the expected inventory holding cost at the retailer in a delivery cycle 

is estimated as  

ℎ𝑅𝑅𝑄𝐸[𝑇𝑖]𝐸[𝑁2(𝑅𝑄) − 1] − ℎ𝑅
1

𝜆

𝑅𝑞

2
𝐸[𝑁2(𝑅𝑄) − 1]  

                    = ℎ𝑅 (𝑅𝑄
1

𝜆
(
𝑅𝑄

𝜇
+ 1) −

1

𝜆

𝑅𝑄

2

𝑅𝑄

𝜇
) 

                    =
ℎ𝑅𝑅𝑄(𝑅𝑄+2𝜇)

2𝜆𝜇
                                                                                           

Expected Inventory Holding Cost at the Supplier in a Replenishment Cycle 

The inventory level of the supplier in a replenishment cycle is expressed as 

𝐼𝑆(𝑡) =

{
 
 

 
 

𝑆𝑄                                   𝑖𝑓 0≤𝑡<𝐹𝐿𝑗(𝑅𝑄)
                                                                                         

𝑆𝑄−𝐷𝐿𝑗(𝑅𝑄)
                   𝑖𝑓 𝐹

𝐿𝑗(𝑅𝑄)
≤𝑡<∑ 𝐹

𝐿𝑗(𝑅𝑄)   
2
𝑗=1                                                                   

𝑆𝑄 − ∑ 𝐷𝐿𝑗(𝑅𝑄)
2
𝑗=1    𝑖𝑓 ∑ 𝐹𝐿𝑗(𝑅𝑄)

2
𝑗=1 ≤ 𝑡 < ∑ 𝐹𝐿𝑗(𝑅𝑄)

3
𝑗=1                    

⋮                                                                                         

𝑆𝑄−∑ 𝐷
𝐿𝑗(𝑅𝑄)

𝐾−1
𝑗=1                   𝑖𝑓 ∑ 𝐹

𝐿𝑗(𝑅𝑄)
𝐾−1
𝑗=1 ≤𝑡≤∑ 𝐹

𝐿𝑗(𝑅𝑄)
𝐾
𝑗=1                                          

  

   The expected inventory holding cost at the supplier in a replenishment cycle is given as  

ℎ𝑠𝐸 [𝑆𝑆𝐹𝐿𝑗(𝑅𝑄)] + (𝑆𝑄 − 𝐷𝐿𝑗(𝑅𝑄)) 𝐹𝐿2(𝑅𝑄) +⋯+ (𝑆𝑄 − ∑ 𝐷𝐿𝑗(𝑅𝑄)
𝐾−1
𝑗=1 ) 𝐹𝐿𝐾(𝑅𝑄)  

          = ℎ𝑆𝐸 [𝑆𝑄 ∑ 𝐹𝐿𝑗(𝑅𝑄)
𝐾
𝑗=1 − ∑ {𝐹𝐿𝑗(𝑅𝑄)∑ 𝐷𝐿𝑗(𝑅𝑄)

2
𝑗=1 }𝐾

𝑖=2 ]  

          = ℎ𝑆𝑆𝑄𝐸[𝐾]𝐸 [𝐹𝑁
2(𝑅𝑄)

] − ℎ𝑆𝐸 [∑ {𝐹𝐿𝑗(𝑅𝑄)∑ 𝐷𝐿𝑗(𝑅𝑄)
𝑖−1
𝑗=1 }𝐾

𝑖=2 ]  

          = ℎ𝑆𝑆𝑄𝐸[𝐾]𝐸 [𝐹𝑁
2(𝑅𝑄)

] − ℎ𝑆𝐸 [∑ {𝐹𝑁2(𝑅𝑄)∑ 𝐷𝐿𝑗(𝑅𝑄)
𝑖−1
𝑗=1 }𝐾

𝑖=2 ]  

          = ℎ𝑆𝑆𝑄𝐸[𝐾]𝐸 [𝐹𝑁
2(𝑅𝑄)

] − ℎ𝑆𝐸 [𝐸 [∑ {𝐹𝑁2(𝑅𝑄)∑ 𝐷𝐿𝑗(𝑅𝑄)
𝑖−1
𝑗=1 }𝐾

𝑖=2 /𝐾 = 𝑘]]   

          = ℎ𝑆𝑆𝑄𝐸[𝐾]𝐸 [𝐹𝑁
2(𝑅𝑄)

] − ℎ𝑆𝐸 [𝐸 [𝐹𝑁2(𝑅𝑄)] 𝐸 [∑ ∑ 𝐷𝐿𝑗(𝑅𝑄)
𝑖−1
𝑗=1

𝐾
𝑖=2 /𝐾 = 𝑘]]  

          = ℎ𝑆𝑆𝑄𝐸[𝐾]𝐸 [𝐹𝑁
2(𝑅𝑄)

] − ℎ𝑆𝐸[𝐹𝑁2(𝑅𝑄)]𝐸 [𝐸[∑ ∑ 𝐷𝐿𝑗(𝑅𝑄)
𝑖−1
𝑗=1

𝐾
𝑖=2 /𝐾 = 𝑘]]  

 But 

 𝐸 [𝐸[∑ ∑ 𝐷𝐿𝑗(𝑅𝑄)
𝑖−1
𝑗=1

𝐾
𝑖=2 /𝐾 = 𝑘]] = 𝐸 [𝐸[∑ (𝑘 − 𝑗)𝐷𝐿𝑗(𝑅𝑄)

𝑘−1
𝑗=1 /𝐾 = 𝑘]  
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                                                         = 𝐸 [𝐷𝑁
2(𝑅𝑄)

] 𝐸[𝐸[∑ (𝑘 − 𝑗)/𝐾 = 𝑘]𝑘−1
𝑗=1 ]  

                                                         = 𝐸 [𝐷𝑁
2(𝑅𝑄)

] 𝐸 [
𝐾2−𝐾

2
]  

                                                         = 𝐸 [𝐷𝑁
2(𝑅𝑄)

]
𝑉𝑎𝑟[𝐾]+𝐸[𝐾]2−𝐸[𝐾]

2
  

Hence, the expected inventory holding cost at the supplier in a cycle is given as  

ℎ𝑆𝑆𝑄𝐸[𝐾]𝐸 [𝐹𝑁
2(𝑅𝑄)

] − ℎ𝑆𝐸 [𝐹𝑁2(𝑅𝑄)] 𝐸 [𝐷𝐿𝑗(𝑅𝑄)]
𝑉𝑎𝑟[𝐾]+𝐸[𝐾]2−𝐸[𝐾]

2
  

          =
ℎ𝑆(𝑆𝑄+1)(𝑆𝑄+𝜇)(4𝜇𝑆𝑄+4𝜇𝑅𝑄+2𝜇

2+2𝜎2−8𝜇)

4𝜆𝜇(2𝜇𝑅𝑄+𝜇2+𝜎2)
                                                           (10) 

Hence the total average long-run cost is obtained by adding equation (3), (5), (8), (9), and (10) 

divided by the expected Replenishment Cycle Length (7).  That is, substituting the total sum 

of equation, (3), (5), (7), (8), (9), and (10) in replenishment cycle cost in equation (1) to give  

𝑇𝐶(𝑆𝑄, 𝑅𝑄) =
𝜆𝜇𝐴𝑅

(𝑆𝑄+1)
+
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2+𝜆(𝜎2−𝜇2)(𝐶𝑅+𝐶𝐷)

2(𝑅𝑄+𝜇)
+

𝜆(𝜎2−𝜇2)𝐴𝑅

2(𝑆𝑄+1)(𝑅𝑄+𝜇)
+
ℎ𝑆(𝑆𝑄+1)

2
+

                                            
(ℎ𝑆+ℎ𝑅)(𝑅𝑄+𝜇)

2
+
ℎ𝑆(𝜎

2−𝜇2−6𝜇)

4𝜇
+ 𝜆𝜇(𝐶𝑅 + 𝐶𝐷)                        (11) 

Since all demands at the planned period will be eventually satisfied through the replenishment 

and delivery processes, the cost terms related to the unit replenishment cost (𝐶𝑅) and the unit 

delivery cost (𝐶𝐷) are not affected by the decision variables (i.e., the order-up- to-levels).  This 

implies that the same quantity should be replenished and delivered regardless of the order-up-

to levels. 

Our objective here is to minimize the average long-run cost and the minimization problem is 

given by 

                                          𝑇𝐶(𝑆𝑄, 𝑅𝑄)   

                                   𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑆𝑄, 𝑅𝑄 ≥ 0  

We then give a cost analysis of the quantity-based model. The optimal values of 𝑆𝑄
∗ 

and 

𝑅𝑄
∗ can be obtained in analytical form. We obtain the optimal solution for the best lower bound 

of the average long-run cost. 

The optimal solution for the average long-run cost 𝑇𝐶(𝑆𝑄
∗ , 𝑅𝑄

∗ ) in (35) is given as follows; 

from (11) we have   

               
𝜕𝐶(𝑆𝑄,𝑅𝑄)

𝜕𝑆𝑄
=

−𝜆𝜇𝐴𝑅

(𝑆𝑄+1)
2 −

𝜆(𝜎2−𝜇2)𝐴𝑅

2(𝑆𝑄+1)
2
(𝑅𝑄+𝜇)

+
ℎ𝑆

2
                                                      (12) 

 and 
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𝜕𝐶(𝑆𝑄,𝑅𝑄)

𝜕𝑅𝑄
= −

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇
2+𝜆(𝜎2−𝜇2)(𝐶𝑅+𝐶𝐷)

2(𝑅𝑄+𝜇)
2 −

𝜆(𝜎2−𝜇2)𝐴𝑅

2(𝑆𝑄+1)(𝑅𝑄+𝜇)
2 +

(ℎ𝑆+ℎ𝑅)𝑅𝑄

2
                    (13) 

We note that the cost function 𝑇𝐶(𝑆𝑄, 𝑅𝑄) is strictly convex for any positive 𝑆𝑄 and 𝑅𝑄. Thus 

the unique global minimum for any positive 𝑆𝑄 and 𝑅𝑄 can be obtained by solving 

𝜕𝐶(𝑆𝑄,𝑅𝑄)

𝜕𝑆𝑄
=

−𝜆𝜇𝐴𝑅

(𝑆𝑄+1)
2 −

𝜆(𝜎2−𝜇2)𝐴𝑅

2(𝑆𝑄+1)
2
(𝑅𝑄+𝜇)

+
ℎ𝑆

2
= 0 and 

𝜕𝐶(𝑆𝑄,𝑅𝑄)

𝜕𝑅𝑄
= −

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇
2+𝜆(𝜎2−𝜇2)(𝐶𝑅+𝐶𝐷)

2(𝑅𝑄+𝜇)
2 −

𝜆(𝜎2−𝜇2)𝐴𝑅

2(𝑆𝑄+1)(𝑅𝑄+𝜇)
2 +

(ℎ𝑆+ℎ𝑅)𝑅𝑄

2
= 0  

That is for  
𝜕𝐶(𝑆𝑄,𝑅𝑄)

𝜕𝑆𝑆
= 0, we get 

             0 = −
𝜆𝜇𝐴𝑅

(𝑆𝑄+1)
2 −

𝜆(𝜎2−𝜇2)𝐴𝑅

2(𝑆𝑄+1)
2
(𝑅𝑄+𝜇)

+
ℎ𝑆

2
  

              
ℎ𝑆

2
=

𝜆𝜇𝐴𝑅

(𝑆𝑄+1)
2 +

𝜆(𝜎2−𝜇2)𝐴𝑅

2(𝑆𝑄+1)
2
(𝑅𝑄+𝜇)

  

 (𝑆𝑄 + 1)
2
=

2𝜆𝜇𝐴𝑅(𝑅𝑄+𝜇)+𝜆(𝜎
2−𝜇2)𝐴𝑅

2ℎ𝑆(𝑅𝑄+𝜇)
  

                 =
2𝜆𝜇𝐴𝑅𝑅𝑄+𝜆𝐴𝑅(𝜎

2+𝜇2)

2ℎ𝑆(𝑅𝑄+𝜇)
  

            𝑆𝑄 = √
2𝜆𝜇𝐴𝑅𝑅𝑄+𝜆𝐴𝑅(𝜎2+𝜇2)

2ℎ𝑆(𝑅𝑄+𝜇)
− 1                                                                         (14)   

For value of  𝑅𝑄, 
𝜕𝐶(𝑆𝑄,𝑅𝑄)

𝜕𝑅𝑄
= 0  

             0 = −
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2+𝜆(𝜎2−𝜇2)(𝐶𝑅+𝐶𝐷)

2(𝑅𝑄+𝜇)
2 −

𝜆(𝜎2−𝜇2)𝐴𝑅

2(𝑆𝑄+1)(𝑅𝑄+𝜇)
2 +

(ℎ𝑆+ℎ𝑅)𝑅𝑄

2
  

           0 =
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2+𝜆(𝜎2−𝜇2)(𝐶𝑅+𝐶𝐷)(𝑆𝑄+1)−𝜆(𝜎
2−𝜇2)𝐴𝑅+(ℎ𝑆+ℎ𝑅)(𝑆𝑄+1)(𝑅𝑄+𝜇)

2
𝑅𝑄

2(𝑆𝑆+1)(𝑆𝑅+𝜇)2
 

               (ℎ𝑆 + ℎ𝑅)(𝑆𝑄 + 1)(𝑅𝑄 + 𝜇)
2
𝑅𝑄 = 2𝜆𝜇𝐴𝐷 − ℎ𝑅𝜇

2 + 𝜆(𝜎2 − 𝜇2)(𝐶𝑅 + 𝐶𝐷)(𝑆𝑄 +

1) +                     𝜆(𝜎2 − 𝜇2)𝐴𝑅  

 (𝑅𝑄 + 𝜇)
2
=

{2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇
2+𝜆(𝜎2−𝜇2)(𝐶𝑅+𝐶𝐷)}(𝑆𝑄+1)+𝜆(𝜎

2−𝜇2)𝐴𝑅

(ℎ𝑆+ℎ𝑅)(𝑆𝑄+1)
  

            𝑅𝑄 = √
{2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2+𝜆(𝜎2−𝜇2)(𝐶𝑅+𝐶𝐷)}(𝑆𝑄+1)+𝜆(𝜎2−𝜇2)𝐴𝑅

(ℎ𝑆+ℎ𝑅)(𝑆𝑄+1)
− 𝜇                            (15) 

The optimal pair is then given by  
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(𝑅𝑄
∗, 𝑆𝑄

∗) = (√
{2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2+𝜆(𝜎2−𝜇2)(𝐶𝑅+𝐶𝐷)}(𝑆𝑄+1)+𝜆(𝜎2−𝜇2)𝐴𝑅

(ℎ𝑆+ℎ𝑅)(𝑆𝑄+1)
− 𝜇,√

2𝜆𝜇𝐴𝑅𝑅𝑄+𝜆𝐴𝑅(𝜎2+𝜇2)

2ℎ𝑆(𝑅𝑄+𝜇)
−

1 )             (16)        

Note the demand is compound Poisson and the demand quantities follow an exponential 

distribution. Thus, the approximated cost function is derived from equation (11) by letting 𝜇2 =
𝜎2. Therefore, 

𝑇𝐶(𝑆𝑄, 𝑅𝑄) =
𝜆𝜇𝐴𝑅

(𝑆𝑄+1)
+
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2+𝜆(𝜇2−𝜇2)(𝐶𝑅+𝐶𝐷)

2(𝑅𝑄+𝜇)
+

𝜆(𝜇2−𝜇2)𝐴𝑅

2(𝑆𝑄+1)(𝑅𝑄+𝜇)
+
ℎ𝑆(𝑆𝑄+1)

2
+

(ℎ𝑆+ℎ𝑅)(𝑅𝑄+𝜇)

2
+
ℎ𝑆(𝜇

2−𝜇2−6𝜇)

4𝜇
+ 𝜆𝜇(𝐶𝑅 + 𝐶𝐷)  

𝑇𝐶(𝑅𝑄 , 𝑆𝑄) =
𝜆𝜇𝐴𝑅
(𝑆𝑄 + 1)

+
2𝜆𝜇𝐴𝐷 − ℎ𝑅𝜇

2

2(𝑅𝑄 + 𝜇)
+
ℎ𝑆(𝑆𝑄 + 1)

2
+
(ℎ𝑆 + ℎ𝑅)(𝑅𝑄 + 𝜇)

2
−
3ℎ𝑆
2

+ 𝜆𝜇(𝐶𝑅 + 𝐶𝐷) 

𝑇𝐶(𝑅𝑄 , 𝑆𝑄) =
𝜆𝜇𝐴𝑅

(𝑆𝑄+1)
+

𝜆𝜇𝐴𝐷

(𝑅𝑄+𝜇)
−

ℎ𝑅𝜇
2

2(𝑅𝑄+𝜇)
+
ℎ𝑆(𝑆𝑄+1)

2
+
ℎ𝑆(𝑅𝑄+𝜇)

2
+
ℎ𝑅(𝑅𝑄+𝜇)

2
−
3ℎ𝑆

2
+ 𝜆𝜇(𝐶𝑅 +

𝐶𝐷)  

𝑇𝐶(𝑅𝑄 , 𝑆𝑄) =
𝜆𝜇𝐴𝑅

(𝑆𝑄+1)
+

𝜆𝜇𝐴𝐷

(𝑅𝑄+𝜇)
+ ℎ𝑆 {

𝑆𝑄+𝑅𝑄+𝜇

2
− 1} +

ℎ𝑅

2
{𝑅𝑄 + 𝜇 −

𝜇2

𝑅𝑄+𝜇
} + 𝜆𝜇(𝐶𝑅 + 𝐶𝐷)     

(17)                                     

The optimal pair is then given by 

                        
𝜕𝐶(𝑆𝑄,𝑅𝑄)

𝜕𝑆𝑄
= 0, we ge  −

𝜆𝜇𝐴𝑅

(𝑆𝑄+1)
2 +

ℎ𝑆

2
= 0    

                           
𝜆𝜇𝐴𝑅

(𝑆𝑄+1)
2 =

ℎ𝑆

2
  ⇛   (𝑆𝑄 + 1)

2
=

2𝜆𝜇𝐴𝑅

ℎ𝑆
   

                               𝑆𝑄
∗ = √

2𝜆𝜇𝐴𝑅

ℎ𝑆
− 1                                                                               (18) 

For value of  𝑅𝑄, 

   0 =
𝜕𝐶(𝑆𝑄,𝑅𝑄)

𝜕𝑅𝑄
  = −

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇
2

2(𝑅𝑄+𝜇)
2 +

(ℎ𝑆+ℎ𝑅)

2
= 0 

     
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2

2(𝑅𝑄+𝜇)
2 =

(ℎ𝑆+ℎ𝑅)

2
 ⇛ (𝑅𝑄 + 𝜇)

2
=

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇
2

(ℎ𝑆+ℎ𝑅)
  

     𝑅𝑄
∗ = √

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2

(ℎ𝑆+ℎ𝑅)
− 𝜇                                                                                               (19) 

  (𝑅𝑄
∗, 𝑆𝑄

∗) = (√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2

(ℎ𝑆+ℎ𝑅)
− 𝜇 , √

2𝜆𝜇𝐴𝑅

ℎ𝑆
− 1 )                                                          (20)  
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 The corresponding optimal costs is 

𝑇𝐶(𝑅𝑄 , 𝑆𝑄) =
𝜆𝜇𝐴𝑅

(√
2𝜆𝜇𝐴𝑅
ℎ𝑆

−1+1)
+

𝜆𝜇𝐴𝐷

(√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2

(ℎ𝑆+ℎ𝑅)
−𝜇+𝜇)

+ ℎ𝑆

{
 
 

 
 
√
2𝜆𝜇𝐴𝑅
ℎ𝑆

−1+√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2

(ℎ𝑆+ℎ𝑅)
−𝜇+𝜇

2
− 1

}
 
 

 
 

+

                                         
ℎ𝑅

2

{
 
 

 
 

√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2

(ℎ𝑆+ℎ𝑅)
− 𝜇 + 𝜇 −

𝜇2

√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2

(ℎ𝑆+ℎ𝑅)
−𝜇+𝜇

}
 
 

 
 

+ 𝜆𝜇(𝐶𝑅 + 𝐶𝐷) 

𝑇𝐶(𝑅𝑄 , 𝑆𝑄) =
𝜆𝜇𝐴𝑅

(√
2𝜆𝜇𝐴𝑅
ℎ𝑆

)
+

𝜆𝜇𝐴𝐷

(√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2

(ℎ𝑆+ℎ𝑅)
)

+ ℎ𝑆

{
 
 

 
 
√
2𝜆𝜇𝐴𝑅
ℎ𝑆

−1+√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2

(ℎ𝑆+ℎ𝑅)

2
− 1

}
 
 

 
 

+ 

                                             
ℎ𝑅

2

{
 
 

 
 

√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2

(ℎ𝑆+ℎ𝑅)
−

𝜇2

√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2

(ℎ𝑆+ℎ𝑅) }
 
 

 
 

+ 𝜆𝜇(𝐶𝑅 + 𝐶𝐷) 

𝑇𝐶(𝑅𝑄
∗, 𝑆𝑄

∗) =
√2𝜆𝜇𝐴𝑅ℎ𝑆

2
+ 𝜆𝜇𝐴𝑅

√(2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2)(ℎ𝑆+ℎ𝑅)

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2
+ ℎ𝑆

{
 
 

 
 
√
2𝜆𝜇𝐴𝑅
ℎ𝑆

+√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2

(ℎ𝑆+ℎ𝑅)
−3

2

}
 
 

 
 

 

+
ℎ𝑅

2
{√

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2

(ℎ𝑆+ℎ𝑅)
−
𝜇2√2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2(ℎ𝑆+ℎ𝑅)

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2
} + 𝜆𝜇(𝐶𝑅 + 𝐶𝐷)                                     (21) 

This is a lower bound of (𝑅𝑄
∗, 𝑆𝑄

∗) for any positive values of 𝑅𝑄 and 𝑆𝑄, 

 i.e 𝑇𝐶(𝑅𝑄
∗, 𝑆𝑄

∗) ≥
√2𝜆𝜇𝐴𝑅ℎ𝑆

2
+ 𝜆𝜇𝐴𝑅

√(2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2)(ℎ𝑆+ℎ𝑅)

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2
+ ℎ𝑆

{
 
 

 
 
√
2𝜆𝜇𝐴𝑅
ℎ𝑆

+√
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇

2

(ℎ𝑆+ℎ𝑅)
−3

2

}
 
 

 
 

 

                            +
ℎ𝑅

2
{√

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2

(ℎ𝑆+ℎ𝑅)
−
𝜇2√2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2(ℎ𝑆+ℎ𝑅)

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2
} + 𝜆𝜇(𝐶𝑅 + 𝐶𝐷)         (22) 

                                                                               for any 𝑅𝑄 , 𝑆𝑄 ≥ 0.  
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RESULTS AND DISCUSSIONS 

From the models, we developed under inventory replenishment with quantity-based 

dispatchable model, the optimal values of 𝑆𝑄 and 𝑅𝑄 that minimized the expected long-run 

average cost can be obtained as follows.  

(a) If 2𝜆𝜇𝐴𝑅 < ℎ𝑆 and 2𝜆𝜇𝐴𝐷 < 𝜇(ℎ𝑆 + 2ℎ𝑅), 𝑆𝑄
∗ = 0 and 𝑅𝑄

∗ = 0.  

Since the cost for replenishing and delivering products is less than the cost of holding 

inventories, both the supplier and the retailer use a policy in which they satisfy the requirement 

from downstream members of the supply chain without carrying inventory but with immediate 

replenishments from upstream members.  

b) If 2𝜆𝜇𝐴𝑅 < ℎ𝑆 and 2𝜆𝜇𝐴𝐷 ≥ 𝜇(ℎ𝑆 + 2ℎ𝑅), 𝑆𝑄
∗ = 0 and   𝑅𝑄

∗ = √
2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2

(ℎ𝑆+ℎ𝑅)
− 𝜇  

The supplier does not hold inventory since the cost of holding inventories at the supplier is 

greater than the cost of replenishing products from the outside supplier. In this case, there is a 

single delivery cycle within a replenishment cycle. 

c) If 2𝜆𝜇𝐴𝑅 ≥ ℎ𝑆 and 2𝜆𝜇𝐴𝐷 ≥ 𝜇(ℎ𝑆 + 2ℎ𝑅),    𝑆𝑄
∗ = √

2𝜆𝜇𝐴𝑅

ℎ𝑆
− 1 and  𝑅𝑄

∗ = 0. 

The retailer does not hold inventory since the cost of holding inventories at the retailer is greater 

than the cost of delivering products from the supplier to the retailer, when needed. In this case, 

there may be multiple delivery cycles within a replenishment cycle, that is, replenishment 

occurs when the cumulative demand exceeds the order-up-to level of the supplier while 

delivery occurs when there is demand at retailer. 

d) If 2𝜆𝜇𝐴𝑅 ≥ ℎ𝑆 and 2𝜆𝜇𝐴𝐷 < 𝜇(ℎ𝑆 + 2ℎ𝑅),    𝑆𝑄
∗ = √

2𝜆𝜇𝐴𝑅

ℎ𝑆
− 1 and  

𝑅𝑄
∗ = √

2𝜆𝜇𝐴𝐷−ℎ𝑅𝜇2

(ℎ𝑆+ℎ𝑅)
− 𝜇.  

Both members hold inventories, since the cost of holding inventories is less than the cost of 

replenishment or delivery. If the order-up-to level of the supplier is smaller than that of the 

retailer, there is a single delivery cycle within a replenishment cycle. Otherwise, they may be 

multiple delivery cycles within a replenishment cycle.  

We used the numerical variables and constant values to evaluate the performance of the model 

developed. We let fixed replenishment cost (𝐴𝑅) = 200 𝑎𝑛𝑑 400 fixed delivery cost 

 (𝐴𝐷) = 10, 20, 30 𝑎𝑛𝑑 40, the unit inventory holding cost for the retailer  

(ℎ𝑅) = 1, 2, 3, 4 𝑎𝑛𝑑 6, the unit inventory holding cost at the supplier (ℎ𝑆) = 1,2, 3, 4 𝑎𝑛𝑑 5,  

arrival rate, (𝜆) = 1,3, 4, 5 𝑎𝑛𝑑 6, and the mean of the demand size, (𝜇) = 1, 2, 3, 4, 5 𝑎𝑛𝑑 6.  

We set the unit replenishment cost (𝐶𝑅), and unit delivery cost (𝐶𝐷) to be 1 and 𝜆 =  𝜇 =  ℎ𝑅 =

 ℎ𝑆 = 1, 𝐴𝑅 = 200 and 𝐴𝐷 = 10 to compute  (𝑅𝑄
∗, 𝑆𝑄

∗) in equation (42) and (43) and obtained 
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𝑅𝑄
∗ = 2.08 and  𝑆𝑄

∗ = 19.00, respectively. The total minimum cost, 𝑇𝐶(𝑅𝑄
∗, 𝑆𝑄

∗) is obtained 

from Equation (45) as 1257.53. We vary one parameter at a time while keeping other at based 

values. We rounded the values of 𝑅𝑄
∗, 𝑆𝑄

∗ 𝑎𝑛𝑑 𝑇𝐶(𝑅𝑄
∗, 𝑆𝑄

∗) to the nearest two decimal 

places. The 9th, 10th columns indicate the near-optimal set of (𝑅𝑄
∗, 𝑆𝑄

∗). The calculated results 

are shown in Table 1. 

Table 1: Variation of the optimality of replenishment quantity of the retailer and supplier 

and total relevant cost 

No 𝐴𝑅 𝐴𝐷 ℎ𝑅 ℎ𝑆 𝜆 𝜇 𝑅𝑄
∗ 𝑆𝑄

∗
 𝑇𝐶(𝑅𝑄

∗, 𝑆𝑄
∗) 

1 200 10 1 1 1 1 2.08 19.00 1257.53 

2 200 20 1 1 1 1 3.42 19.00 1790.99 

3 200 30 1 1 1 1 4.43 19.00 2197.20 

4 200 40 1 1 1 1 5.28 19.00 2538.60 

5 200 10 1 2 1 3 1.12 23.50 7470.92 

6 200 20 1 2 1 4 2.93 27.28 16684.87 

7 200 30 1 2 1 5 4.57 30.62 28787.06 

8 200 40 1 2 1 6 6.17 33.64 43866.62 

9 200 10 2 1 3 2 4.11 47.99 22056.83 

10 200 20 2 2 3 4 6.58 47.99 101686.7 

11 200 30 2 2 3 5 9.58 53.77 175025.5 

12 200 40 2 1 3 6 15.35 83.85 230729.8 

13 200 10 3 1 1 3 4.30 68.28 70130.64 

14 200 20 3 2 4 5 7.04 62.25 240925.2 

15 400 30 3 3 6 4 11.23 79.00 877486.6 

16 400 40 3 4 4 2 7.47 39.00 212234.6 

17 400 10 4 3 5 4 2.93 72.03 388129.6 

18 400 20 3 2 3 6 5.06 83.85 398420.4 

19 400 30 6 3 4 2 5.12 45.189 204968.2 

20 400 40 4 5 6 5 10.99 68.28 1726590 

 

Table 1 shows the computed values of the optimal replenishment quantity of the retailer and 

supplier and minimum total relevant cost of the supply chain. From the computed values of the 

retailer and supplier optimal replenishment quantity and minimum total cost of the supply 

chain, we observed that the optimality replenishment quantity of retailer, supplier and 

minimum total cost of the supply chain increases with increase in the parameters. As the 

individual parameters such as the fixed replenishment cost (𝐴𝑅), increases from 200 to 400, 

fixed delivery cost (𝐴𝐷), from 10 to 40 the unit inventory cost the retailer (ℎ𝑅), from 1 to 6, the 

unit inventory cost at the supplier (ℎ𝑆), from 1 to 5, arrival rate, (λ), from 1 to 6 and the mean 

of the demand size, (𝜇) from 1 to 6, the retailer’s and supplier’s optimal replenishment quantity 

and minimum relevant total cost of the supply chain increases which account for the carrying 

cost. At fixed replenishment cost (𝐴𝑅) of 200, fixed delivery cost (𝐴𝐷) of 10, unit replenishment 

cost (𝐶𝑅), and unit delivery cost (𝐶𝐷) to be 1 and 𝜆 =  𝜇 =  ℎ𝑅 = ℎ𝑆 = 1The value of the 

minimum relevant cost of the supply chain is 257.53 which agrees with the minimum total cost 

of the supply chain as given in literature (Shao-Fu et al., 2006). This minimum total average 

long-run cost 1257.53 is at fixed replenishment cost(𝐴𝑅) =  200, fixed delivery cost (𝐴𝐷) =
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10, the unit inventory holding cost for the retailer (ℎ𝑅) = 1, arrival rate, (𝜆) = 1, mean of the 

demand size, (𝜇) =   5 , optimal replenishment quantity of retailer (𝑅𝑄
∗ ) = 2.08 and optimal 

replenishment quantity of retailer (𝑆𝑄
∗) = 19.00.             

The Table also shows the analysis of the variation of total relevant cost of the supply chain 

with respect to the simultaneous variation of retailer’s and supplier’s replenishment quantity. 

From Table 1, it is evident that there is a general increase in the optimal order quantity of the 

retailer, supplier and total relevant cost of the supply chain if there is an increase in the arrival 

rate, (λ), the mean of the demand size, (𝜇), fixed replenishment cost (𝐴𝑅) and fixed delivery 

cost (𝐴𝐷). 

 

CONCLUSION 

We considered a supply chain consisting of a single supplier and a single retailer, in which the 

supplier ordered her quantity from the manufacturer and released part to the retailer on an order. 

We proposed an integrated inventory replenishment and shipment delivery planning model for 

a case of compound Poisson demands with distribution-free demand quantity using the renewal 

theory. After developing several properties for obtaining a closed-form expression for 

approximated long-run average cost, we determined the order-up-to level of each member of 

the supply chain that minimizes the long-run average cost. 

The result shows that the total relevant cost of the supply chain is optimally increasing at an 

increasing optimal value of replenishment quantity of the retailer and a constant replenishment 

quantity of the supplier. Also, keeping the replenishment cost, the unit inventory cost of the 

retailer, arrival rate and the mean of the demand constant while increasing the unit inventory 

cost of the supplier and varying the fixed delivery cost, the total relevant cost of the supply 

chain and an optimal order quantity value of the retailer increases while an optimal order 

quantity of the supplier is constant. Also, there is the variation of total relevant cost of the 

supply chain with respect to the simultaneous variation of retailer’s and supplier’s 

replenishment quantity. There is also a general increase in the optimal order quantity of the 

retailer, supplier and total relevant cost of the supply chain if there is an increase in the arrival 

rate, (λ), and the mean of the demand size, (𝜇), and also when there is an increase in the fixed 

replenishment cost (𝐴𝑅), fixed delivery cost (𝐴𝐷), the value of k, the retailer inventory holding 

cost and the supplier inventory holding cost, respectively.         

There is also an evident that the variation in optimal values of replenishment quantities and 

total relevant costs of the supplier, retailer and the supply chain is linear with respect to the 

arrival rate and the mean of the demand respectively. We observed an increase in decision 

variables and objective function is linear with respect to the arrival rate and the mean of the 

demand. This is due to the fact that demand increases linearly at the retailer point as the value 

of the arrival rate and the mean of the demand increases. Consequently, retailers order a greater 

number of items which in turn increases the total relevant cost of the supply chain. 
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