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ABSTRACT: Casson fluids is commonly used in many notable 

technological and industrial properties, such as synthetic 

lubricants, specific oil paints, biological fluids, diverse polymer 

solutions to mention few. The Casson fluid is considered to be one 

of the most prominent types of fluids within the category of non-

Newtonian substances. The impact of Casson fluid impact on 

hydromagnetic oscillatory flow along a permeable plate immersed 

in porous medium is investigated in the optically thin thermal 

radiation regime. The solutions of the dimensionless equations 

have been obtained. In view of the assumed oscillatory pressure 

gradient, the resultant linear partial differential equations were 

reduced to a boundary-valued-problem where the unsteady flow is 

superimposed on the mean steady flow. The influence of 

controlling parameters dictating the flow behaviour have been 

demonstrated graphically and explained thoroughly. It is revealed 

from the computational analysis that the function of Casson fluid 

parameter is to diminish the fluid velocity. Additionally, the skin 

friction is increased at both walls as the suction/injection 

parameter is increased. Interestingly, the results obtained for 

limiting case in this research is consistent with previous literature, 

thereby establishing the accuracy and validity of the current 

investigation. 

KEYWORDS: Casson parameter, Oscillatory flow, Magnetic 

field, Darcy porous medium, Slip parameter. 
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INTRODUCTION 

The term "Casson fluid" describes a type of non-Newtonian fluid characterized by variable 

viscosity. The dominance of viscous force in this system can be attributed to the action of 

variable viscosity in the fluid. Fluids commonly employed in many applications include paints, 

diverse polymer solutions, blood, honey, etc. Typical instances of Casson fluids encompass 

synthetic lubricants, mud extraction, clay coatings, and biomedical fluids. The Casson fluid 

simulation that are readily accessible are classified based on their distinct rheological 

properties, including Oldroyd-B, Eyring-Powell, Oldroyd-A, Maxwell, Carreau, Jeffrey and 

Burger. In the field of modern technology, there are some flow features that defy 

comprehension when analysed solely through the lens of the Newtonian flow model. 

Consequently, the utilization of the non-Newtonian fluid notion is more advantageous. Some 

noteworthy works like Amaraikannan et al. (2021a), shahzad et al. (2021), Amaraikannan et 

al. (2021b) and Ali et al. (2021a) provide valuable insights for readers on this topic. 

Additionally, Ojemeri et al. (2023) recently put forth MHD flow of an electrically conductive 

Casson fluid with thermal radiation effect in a vertical porous plate. Also, Nandeppanavar 

(2018) described the movement pattern of a Casson fluid through a moving plate. Sheikh et al. 

(2020) have presented a study on the implication of the flow of a non-Newtonian fluid across 

a moving sheet. Ahmad et al. (2019) introduced a novel approach to modelling a Casson fluid 

with fractional derivatives in a more recent study. Further, Sarkar and Endalew (2019, 2020), 

Hamid et al. (2019), Das et al. (2021), Amjad et al. (2021), and Sarkar et al. (2020) have 

published the flow behavior of the Casson fluid in various physical settings.  

Magneto-hydrodynamics (MHD) is the analysis of electrically conducting liquids, namely, 

salty water, electrolytes, plasma, and liquid metals. This kind of fluid has a variety of scientific 

and technological significance, namely, in production of crystals, reactor cooling, magnetic 

drug targeting and MHD sensors. The empirical analysis of contemporary MHD flow in a 

laboratory was first done by Hartmann and Lazarus (1937). This investigation established the 

basic ideas for the creation of several MHD equipment, such as MHD pumps, MHD generators, 

brakes, flow meters and so on. Buoyancy-induced flow along a magnetized oscillating system 

with heat transfer across different geometrical settings, has been a topic of growing interest 

among many researchers today owing to its vast applications in geophysics, solid mechanics, 

hydrology, oil recovery and in the field of engineering, to cite a few (Chitra and Suhasini, 

2018). With these concerns in mind, Omokhuale et al. (2024) recently highlighted the 

consequences of viscous dissipation on a thermally and chemically controlled nanofluid 

through a boundary layer region in an oscillating system while Usman et al. (2024) presented 

the impact of thermophoresis on magnetized oscillatory system of a buoyancy-induced flow 

with nanoparticles along a boundary layer regime. In a different paper, Usman and Sanusi 

(2023) investigated the impacts of non-Newtonian nanofluid flows across a semi-infinite flat 

plate entrenched in a porous media affected by heat radiation, Soret, and pressure terms. 

Sharma et al. (2022) presented the numerical study of MHD oscillatory flow of viscous 

dissipative fluid along an upstanding channel entrenched with porous medium due to heat 

source and thermal radiation impacts. Falade et al. (2017) deliberated on suction/injection 

effects in a magnetized oscillatory slip flow along a vertical plate with unequal wall 

temperature confined to an applied magnetic field. Hamza et al. (2011) outlined the influence 

of chemical reaction and slip condition on a transient MHD heat and mass transfer flow via a 

vertical plate filled with porous medium in an oscillating system.  
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The study of thermal radiation effect, which is the electromagnetic wave radiation that a surface 

generates because of its heat, is gaining growing attention, especially when a magnetic field is 

applied, due to its relevance in constructing different advanced energy conversion systems 

capable of operating at high temperatures (Jamaludin et al. 2020). Other areas of possible 

advantages include nuclear plants, solar technology, spacecraft aerodynamics, to state a few. 

In view of this, several scholars have carried out investigations on the impact of heat radiation 

in a number of physical configurations. With the numerous advantages of thermal radiation in 

mind, Hamza et al. (2023) recently scrutinized the consequences of thermal radiation and 

super-hydrophobicity on a magnetized natural convection fluid through a heated porous 

superhydrophobic microchannel. Shah et al. (2023) investigated the impact of heat transfer in 

MHD Casson flow in the presence of thermal and chemical reactions influenced by thermal 

fluid properties. Using Darcy's model, Gireesha et al. (2020) outlined how thermal radiation 

and free convection affected the flow of a water-based hybrid nanofluid containing 

nanoparticles through a porous vertical channel, and Goud et al. (2023) examined the analysis 

of transient MHD flow through a permeable medium across an upright plate in the context of 

the coexistence of viscous dissipation and thermal radiation effects. The impacts of thermal 

radiation, heat generation, and an induced magnetic field on the free convection of a couple 

stress fluid in a flux-isothermal upstanding plate have been analysed by Hasan et al. (2020) 

employing the method of indeterminate coefficient. In the presence of thermal radiation, 

Bejawada and Nandeppanavar (2022) studied the effects of the MHD heat transfer problem on 

the micropolar fluid through a vertically permeable moving plate. Parthiban and Pasad (2023) 

outlined a theoretical investigation of radiative-convection effects on MHD fluid flow in a 

heated square enclosure having a non-Darcy square cavity in the coexistence of the Hall effect 

and the heat source or sink. Using a spectral relaxation method, Haroun et al. (2017) highlighted 

the impact of heat radiation on magnetized mixed convection nanofluid flow along a moving 

plate.  

Based on the preceding discourse, the primary objective of the current study is to build on the 

work done by Falade et al. (2017) by investigating the influence of Casson fluid on 

hydromagnetic oscillatory flow coated with suction/injection effects filled with porous 

medium. The results of this kind of research would be useful in engineering and industry 

applications, particularly for exploration of crude oil from petroleum products.  

Structure of the Flow 

The steady natural convection flow of a Casson fluid within an upstanding permeable channel 

in an oscillating system affected by an applied transverse magnetic field is considered. It is 

thought of that there is no applied voltage which signifies the non-involvement of an electric 

field. The flow is assumed to be in the x-direction which is taken along the plate in the upward 

direction, the y –axis is perpendicular to it and the z axis along the wideness of the channel as 

sketched in Figure 1. Also, it is assumed that the whole system is rotating with a constant vector 

Ω about y –axis. Since it is presumed that the plate surface is semi-infinite, the flow variables 

are functions of y only. Following Falade et al. (2017) and taking into account the Casson fluid 

parameter, while obeying the Bousinesq approximation, the resultant equations of this problem 

can be modelled as: 

 

  



African Journal of Mathematics and Statistics Studies 

ISSN:  2689-5323 

Volume 7, Issue 3, 2024 (pp. 156-167) 

159  Article DOI: 10.52589/AJMSS-Y7ULVQMA 

  DOI URL: https://doi.org/10.52589/AJMSS-Y7ULVQMA 

www.abjournals.org 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of the flow 
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Inserting equation (5) into equations (1 – 4), we have the dimensionless governing equations 

as follows: 
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With the appropriate boundary conditions 

 

𝑢 = 𝛾
𝑑𝑢

𝑑𝑦
,    𝜃 = 0  𝑜𝑛     𝑦 = 0

𝑢 = 0,   𝜃 = 𝑒𝑖𝑤𝑡     𝑜𝑛       𝑦 = 1
}        (8) 

 

METHOD OF SOLUTION 

We employed the theory of simultaneous differential equations to solve the resultant linear 

partial differential equations restricted to relevant boundary condition, after the unsteady flow 

is superimposed on the mean steady flow, so that in the neighbourhood of the plate, and 

assuming that an oscillatory pressure gradient as shown eqn (9), the solutions of velocity and 

temperature is in the form:  

−
𝑑𝑃
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= 𝜆𝑒𝑖𝑤𝑡, u(t, y) = 𝑢0(𝑦)𝑒𝑖𝑤𝑡, 𝜃(𝑡, 𝑦) = 𝜃0(𝑦)𝑒𝑖𝑤𝑡    (9) 

Where 𝜆 is any constant, and 𝜔 is the frequency of oscillation (See Falade et al. (2017)). In 

view of (9), eqns (6 – 8) reduced to a boundary-valued-problem as follows: 
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The exact solutions of temperature and velocity is obtained as: 
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RESULTS AND DISCUSSION 

The analysis of Casson fluid on MHD oscillating system equipped with radiation and porous 

medium impacts on natural convection flowing through an immeasurable upstanding 

permeable plate has been performed. The flow is instigated by buoyancy-induced growing 

pressure gradient along an upward facing plate. In order to point out the effects of physical 

parameters such as; Casson fluid parameter 𝜉, suction parameter s, magnetic parameter Ha and 

thermal Grashof number Gr, on the flow behaviours, computation of the flow fields is carried 

out. The influences of the major controlling parameters on the temperature and velocity 

distributions have been presented and discussed in Figures 4.2 to 4.12. The main default values 

selected for this analysis as they relate to real life applications are 𝜉 = 0.1, s=1, Ha=1, 𝛿 = 1, 

Da=1, 𝜔 = 𝜋 and Gr=1. The graphical comparison of the work of Falade et al. (2017) and the 

present investigation is portrayed in Figure 4.1. The comparison displays an excellent 

agreement for the limiting case when Casson parameter, 𝜉  = 1000.  

The action of Casson fluid parameter on the fluid velocity is depicted in Figure 4.2. It can 

clearly be seen that increasing Jeffrey fluid parameter, the velocity decreases. The velocity 

gradient for the application of various values of magnetic effect and is illustrated in Figure 4.3. 

The action of magnetic field perpendicular to the flow in an electrically conducting fluid 

produces a Lorentz force, which opposes the flow. With the aid of Figure 4.4, we comprehend 

the behaviour of fluid velocity as the Darcy porous medium is varied. It is apparent from this 

diagram that the fluid motion grows as Darcy number is raised. This is true since, with stronger 

permeability of the porous material, the barriers placed on the flow path reduces, thereby 

encouraging free flow leading to stronger fluid speed. This action makes the fluid boundary 

wall and thickness to rise, which in turn escalates the fluid velocity. Thermal radiation’s impact 

on the fluid temperature and velocity are seen in Figure 4.5 and Figure 4.6 respectively. It is 

noteworthy to report that when the thermal radiation is increased, the temperature of the fluid 

is notice to improve. This is attributable to the heat transport from the upper surface to the fluid 

because the fluid takes in its own radiations. Further, as displayed in Figure 4.6, the fluid 

motion is accelerating as a function of growing thermal radiation effect owing to heat 

production that elevates the flow movement. This is so because the heat emitted from the heated 

wall strengthens the fluid particles. The consequences of varying suction/injection parameter 

are demonstrated in Figure 4.7 and Figure 4.8 respectively. From the sketch in Figure 4.7, it is 

viewed that mounting level of suction/injection parameter encourages the fluid temperature. 
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The concavity with the rise in the suction/injection parameter is due to the direction of 

temperature flow from the hot plate towards the cold wall. Similarly, it is evident that 

increasing the suction/injection raises the fluid velocity towards the cold wall as shown in 

Figure 4.8. Figure 4.9 explains that increasing the frequency of oscillation retards the fluid 

temperature inside the channel which is due to the weakening in the heat transfer amount as 

the heating frequency. The effect of Casson fluid parameter is demonstrated in Figure 4.10. It 

is seen that a rise in the skin friction is established in the cold plate while a reverse attribute 

happens in the heated wall. However, a point of intersection is viewed near the middle of the 

vertical channel. 

 

 

Figure 4.1: Comparison with the work of  

Falade et al. (2017) and the present work 

 

 

Figure 4.2: Outcome of Casson 

parameter on Velocity distribution  

 

 

Figure 4.3: Outcome of Hartmann 

number on Velocity distribution  

 

 

Figure 4.4: Outcome of Darcy number on 

Velocity distribution 
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Figure 4.5: Outcome of thermal 

radiation on Temperature distribution  

 

Figure 4.6: Outcome of thermal 

radiation on Velocity distribution 

 

Figure 4.7: Outcome of suction/injection 

on Temperature distribution  

 

Figure 4.8: Outcome of suction/injection 

on Velocity distribution 

 

Figure 4.9: Outcome of oscillation 

parameter on Velocity distribution  

 

Figure 4.10: Outcome of Casson 

parameter on Skin friction  
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CONCLUSION 

The performance evaluation of Casson fluid effect on magnetized oscillatory flow along a 

permeable channel saturated with porous material is investigated in the optically thin thermal 

radiation regime. The solutions of the non-dimensional equations have been derived and the 

impacts of pertinent embedded parameters dictating the flow pattern have been illustrated 

graphically and discussed. The Casson fluid model is an easier model that adequately explains 

the physiological and peristaltic flows of non-Newtonian form. The summary of the key 

findings from this research is highlighted below: 

i. The application of Casson fluid parameter is revealed to substantially suppress the fluid 

velocity 

ii. Suction/injection increases the fluid temperature and velocity respectively 

iii. The amount of heat transfer is decreased at the heated wall for growing values of 

suction/injection while a counter attribute happens at the cold plate 

iv. The effect of Casson fluid parameter is observed to raise the shear stress at the cold 

plate while a reverse attribute happens in the heated wall 
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