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ABSTRACT: In this paper, a probability model is proposed 

which engaged the mathematical combination of Lindley 

distribution and a trigonometric component known as haversine 

function 𝛿𝑠. The one parameter model prototype sustains the 

capacity to forecast multimodal decreasing trend sinusoidal 

outcomes. By nomenclature, the proposed probability model is 

called Modified Lindley Trigonometric Distribution (MLTD). 

Some statistical properties studied include the hazard function, 

mean residual life function, moments, conditional moments and 

moment generating function, Bonferroni and Lorenz curve, 

entropy, asymptotic distribution, order statistics, and parameter 

estimation; where the hazard function specially features a cyclic 

or periodic bathtub and inverted bathtub shape in chain format. 

The numerical behavior of the estimates of the average bias and 

mean square error were examined under Monte Carlo simulation 

approach; and an applicative simulation is experimented to 

underscore the parametric behavior of MLTD in data modeling. 

A real life flood data is used to illustrate the essence of the 

development.        

KEYWORDS: Lindley distribution, Trigonometry, Kernel, 

Sinusoids, Multimodal, Simulation. 
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INTRODUCTION 

Lindley Distribution (LD) was proposed according to Lindley (1958) to forecast for situations 

that mirror monotone decreasing trend, and with an increasing monotonic failure rate. It is a 

one parameter product of mixture model (Lindsay, 1995); which is a methodical approach for 

the development of a lifetime distribution and is given as: 

 

                                                     𝑔(𝑢) = 𝑒−𝛾𝑢  
𝛾2(1+𝑢)

𝛾+1
 , 𝑢 > 0, 𝛾 > 0                (1) 

The distribution was fitted to a lifetime waiting data collated from a sequenced customer 

queue management in a bank. Since then, many researchers have taken interest in the 

different forms of extensions and generalizations including the power LD due to Ghitany 

(2013), a two parameter generalized LD due to Ekhosuehi et al. (2018), Topp-Leone power 

LD due to Opone et al. (2022), two parameter extension of LD due to Gillariose and Tomy 

(2023), generalized power LD due to Guptha and Maruthan (2023), Shabeer et al. (2023) and 

the avalanche rest. As a matter of fact, each of these developments in literature has 

meaningfully addressed different profound limitations of their root model, and presented 

various possible modeling options.   

Of course, the general motive for the various developments is simply to improve on the 

flexibility of the LD, ranging from left to right skewed density trends, monotone increasing 

density shapes, bathtub and inverted bathtub features, and symmetric characteristics. Others 

are monotone decreasing, bathtub and inverted bathtub hazard functions. It is observed that 

these flexibility characteristics were attained primarily due to the increased number of 

parameters as generated by the new compound structure. More so, some specific evaluations 

of their parameter combinations, is accountable for these improvements.   

However, the motivation for this work stems from the fact that amidst the flexibility 

goodness, none of the Lindley family of distribution forecasts for heavily multimodal 

decreasing trend scenarios. These phenomenon is usually obtainable in countries’ daily gross 

domestic product (GDP) rainfall data, crypto or forex trading, temperature data, climate 

change, flood data, sound and light wave data, to mention a few.  

 

     

Figure 1: A pictorial example of multimodal decreasing trend   

Furthermore, how can we describe the hazard rate of outcomes that are erratic? In the stock 

market, dwindling loss trend can be preceded by great improvement in profit margin; and the 
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cycle continues. This is however suggestive of a hazard trend with continuous upward and 

downward movement. Obviously, the developments, so far, have not captured probability 

modeling in this order.  

Consequently, this research aims at proposing a one parameter distribution which is a further 

development from LD that sustains the flexibility to reproduce as many modal structures as 

possible, in addition to the original shape of its root model and other possible shapes. Another 

objective will be to realize a sine wave hazard trend.  

Howbeit, we construct the probability distribution using integration method and the idea of 

normalizing constant. This development will be achieved mathematically by primitively 

substituting 𝛿𝑠 for variable 𝑢 in the component (1 + 𝑢), as contained in equation (1): 

                                                   𝑝𝜏 = 𝑒
−𝛾𝑢  

𝛾2(1+ 𝛿𝑠)

𝛾+1
 

where 𝛿𝑠 = 𝑆𝑖𝑛
2(𝑢/2) and  𝑝𝜏 is a new kernel or arbitrary expression (not a probability 

function any longer). Hence, integrating 𝑝𝜏 for 𝑢 > 0 and applying the normalizing constant, 

we obtain the density function as:  

                                          𝑓(𝑢, 𝛾) =  𝑒−𝛾𝑢  
2𝛾(1+ 𝛿𝑠) (1+𝛾+𝛾

2+𝛾3)

(1+𝛾)(3+2𝛾2)
,   𝑢 > 0, 𝛾 > 0               (2) 

                                                       = 𝑒−𝛾𝑢  
2𝛾(1+𝛾2)(1+ 𝛿𝑠)

(3+2𝛾2)
 

Modified Lindley-Trigonometric Distribution (MLTD) could be another nomenclature for this 

development; where the shapes of the distribution are given thus: 
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Figure 2: The MLTD PDF plots at different values of the parameter 𝑎  

As revealed in Figure 2, MLTD exhibits different characteristics including monotone 

decreasing trend, which is the shape of the root distribution; monotone increasing, left 

skewed, bathtub and various regular and irregular k-modal decreasing trends.  

It might be of concern to really validate MLTD as proper probability density function (PDF), 

since some of the trends are unconventional. Usually, ∫ 𝑓(𝑥)𝑑𝑥
∞

0
= 1 serves as a more 

conventional approach to it; hence, we obtain: 

                                   ∫ 𝑒−𝛾𝑢  
2𝛾(1+ 𝛿𝑠) (1+𝛾+𝛾

2+𝛾3)

(1+𝛾)(3+2𝛾2)
 𝑑𝑢

∞

0
= 

2𝛾(1+𝛾2)(
1

𝛾
+

1

2𝛾+2𝛾3
)

3+2𝛾2
= 1  

The cumulative distribution function (CDF) corresponding to equation (2) is derived as 

∫ 𝑓(𝑥)𝑑𝑥
𝑢

0
 and obtained thus: 

                                              𝐹(𝑢, 𝛾) = 1 +
ⅇ−𝛾𝑢{−3(1+𝛾2)+𝛾2Cos[𝑢]−𝛾Sin[𝑢]}

3+2𝛾2
             (3) 

Other properties of the proposed probability model will be studied in section (2); where 

simulation and real data application come in respectively at the remaining segments.  

Hazard and Mean Residual Life Function (MRL) 

Here, we present the hazard and MRL functions of MLTD using equations (2) and (3): 

                        𝐻(𝑢, 𝛾)  =  
𝑓(𝑢,𝛾)

1−𝐹(𝑢,𝛾)
           

                                       = − 
2𝛾(1+𝛾+𝛾2+𝛾3)(1+𝛿𝑠)

(1+𝛾)(−3(1+𝛾2)+𝛾2Cos[𝑢]−𝛾Sin[𝑢])
, 𝑢 > 0, 𝛾 > 0 
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The MLTD hazard plot in Figure 3 reveals a periodic trend characterized by cyclic bathtub 

and inverted bathtub chain. The plot shapes show to be similar at various parameter values, 

where the number of peaks is dependent on the evaluation of the variable 𝑢. The implication 

of the hazard outcome of MLTD is that the system it models is time risk based or has low 

reliability rate such that care has to be taken to know when to make purchases, sales or even 

withdrawals.  

 

 

Figure 3: Hazard plot for MLTD for 𝛾 = 0.5 𝑎𝑛𝑑 1.5 

 

Mean Residual Life Function (MRL) as a function under reliability theory, gives insight on 

the expected additional lifetime; on a condition that a system has survived or has been 

economically stable until time t. This is defined as: 

                                  𝑚(𝑥) =  𝐸[𝑋 –  𝑥 ǀ 𝑋 > 𝑥 ] =   
1

1− 𝐺(𝑥)
 ∫ [ 1 − 𝐺(𝑡) ] 𝑑𝑡
∞

𝑥
                                                    

Let                                   𝜃 =
1

1− 𝐺(𝑢)
= −

(3+2𝛾2)ⅇ𝛾𝑥

−3(1+𝛾2)+𝛾2Cos[𝑢]−𝛾Sin[𝑢]
                                                                                                     

Hence, the MRL of a random variable 𝑈~𝑀𝐿𝑇𝐷(𝑢, 𝛾) is obtained as                               

                                 𝑚(𝑢) = 𝜃 ∫ [ 1 − (1 +
ⅇ−𝛾𝑥(−3(1+𝛾2)+𝛾2Cos[𝑡]−𝛾Sin[𝑡])

3+2𝛾2
) ] 𝑑𝑡

∞

𝑢
   

                                 𝑚(𝑢) = −
3(1+𝛾2)2+(𝛾2−𝛾4)Cos[𝑢]+2𝛾3Sin[𝑢]

(𝛾+𝛾3)(−3(1+𝛾2)+𝛾2Cos[𝑥]−𝛾Sin[𝑥])
   

where at  𝑢 = 0,       𝑚(0) = −
3(1+𝛾2)

2
+(𝛾2−𝛾4)

(𝛾+𝛾3)(−3(1+𝛾2)+𝛾2)
=

3+7𝛾2+2𝛾4

3𝛾+5𝛾3+2𝛾5
= 𝜇                                                            

Moments, Conditional Moments and Moment Generating Function 

If X is a random variable with density function 𝑔(𝑥), then the 𝑟𝑡ℎ moment about the origin of 

X is defined by: 

                                      𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑔(𝑥)𝑑𝑥
∞

0
= 𝜇′

𝑟  
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The 𝑟𝑡ℎ raw moment for a distribution 𝑈~𝑀𝐿𝑇𝐷(𝑢, 𝛾) about the origin is however derived as                                                                                             

                                      𝐸(𝑈𝑟) =
𝛾(1+𝛾2)(6𝛾−1−𝑟−(−ⅈ+𝛾)−1−𝑟−(ⅈ+𝛾)−1−𝑟)Г[1+𝑟]

2(3+2𝛾2)
 

As a result, the first four 𝑟𝑡ℎ moments of the MLTD are further obtained at 𝑟 = 1,2,3 𝑎𝑛𝑑 4 

        𝜇1
′ =

3+7𝛾2+2𝛾4

3𝛾+5𝛾3+2𝛾5
=  𝜇;                                        𝜇2

′ =
2𝛾(1+𝛾2)(3+9𝛾2+12𝛾4+2𝛾6)

(3+2𝛾2)(𝛾+𝛾3)3
   

        𝜇3
′ = 

2𝛾(1+𝛾2)(9+36𝛾2+51𝛾4+54𝛾6+6𝛾8)

(3+2𝛾2)(𝛾+𝛾3)4
 ;              𝜇4

′ =
24(3+15𝛾2+30𝛾4+25𝛾6+25𝛾8+2𝛾10)

(3+2𝛾2)(𝛾+𝛾3)4
  

Therefore, the variance, skewness and kurtosis of the MLTD can be obtained as 

                  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒( 𝜇2) =   𝜇2
, − 𝜇2 = 𝜎2;       𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 (𝑆𝑘) =

𝜇3

𝜎3
= 

𝜇3
, −3𝜇2

, 𝜇 + 2𝜇3

(𝜇2)
3
2⁄

  

                   𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝐾𝑠) =
𝜇4

(𝜇2)2
=
𝜇4
, − 4𝜇3

, 𝜇  + 6𝜇2
, 𝜇2−3𝜇4

(𝜇2
, −𝜇2)2

   

The 𝑟𝑡ℎ  conditional moments of a density function 𝑔(𝑦) from a random variable Y is 

defined by 

                                   𝐸(𝑌𝑟|𝑌 > 𝑦) =  
1

1−𝐺(𝑦)
∫ 𝑥𝑟𝑔(𝑥)𝑑𝑥
∞

𝑦
  

For a distribution 𝑈~𝑀𝐿𝑇𝐷(𝑢, 𝛾) the 𝑟𝑡ℎ  conditional moments is derived thus: 

  𝐸(𝑈𝑟|𝑈 > 𝑢) = −
𝛾(1+𝛾2)(3(1+𝛾2)

2
(1+𝛾𝑢)+𝛾2(Cos[𝑢]−𝛾(𝛾+𝑢+𝛾2𝑢)Cos[𝑢]+(𝑢+𝛾(2+𝛾𝑢))Sin[𝑢]))

(𝛾+𝛾3)2(−3(1+𝛾2)+𝛾2Cos[𝑢]−𝛾Sin[𝑢])
  

 

Finally, the MGF of MLTD as a derivative of 𝐸(𝑡𝑢) = ∫ 𝑒𝑡𝑢𝑓(𝑢)𝑑𝑢
∞

0
 is given by: 

                                            ℳ𝑡 = 𝐸(𝑡𝑢) =
𝛾(1+𝛾2)(3+2(𝛾−𝑡)2)

(3+2𝛾2)(1+(𝛾−𝑡)2)(𝛾−𝑡)
 

Bonferroni and Lorenz Curve 

Let X be a random variable from a probability distribution 𝑔(𝑥) 𝑜𝑟 𝐺(𝑥), with non-negative 

and finite mean 𝜇, then Bonferroni curve is obtained as 𝐵(𝑖) =
1

ⅈ𝜇
∫ 𝑥 𝑔(𝑥)𝑑𝑥
𝑞

0
 ; which can 

further be expressed as                                                                                                               

       𝐵(𝑖) =  
1

ⅈ𝜇
[∫ 𝑥 𝑔(𝑥)𝑑𝑥 − ∫ 𝑥𝑔(𝑥)𝑑𝑥

∞

𝑞

∞

0
] =  

1

ⅈ𝜇
[𝜇 − ∫ 𝑥 𝑔(𝑥)𝑑𝑥

∞

𝑞
]       

whereas the Lorenz curve is obtained as (𝑖) =
1

𝜇
∫ 𝑥 𝑔(𝑥)𝑑𝑥
𝑞

0
 ; and can be represented as                                    

              𝐿(𝑖) =  
1

𝜇
[∫ 𝑥 𝑔(𝑥)𝑑𝑥 − ∫ 𝑥𝑔(𝑥)𝑑𝑥

∞

𝑞

∞

0
]    =  

1

𝜇
[𝜇 − ∫ 𝑥 𝑔(𝑥)𝑑𝑥

∞

𝑞
]      
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Now, 𝐵(𝑖) =
1

𝜇
∫ 𝐺−1(𝑥)𝑑𝑥 =

𝐿(ⅈ)

ⅈ
 

ⅈ

0
 defines the relationship between the Bonferroni curve 

and Lorenz  

where 𝜇 = 𝐸(𝑋), 𝑞 = 𝐺−1(𝑖) and 𝑖 ∈ [0,1] 

Now, let 𝑈~𝑀𝐿𝑇𝐷(𝑢, 𝛾), then  𝐵(𝑖) 𝑎𝑛𝑑 𝐿(𝑖) of MLTD are defined as 

 

                                          𝐵(𝑖) = (𝑖)−1 [

(3𝛾+5𝛾3+2𝛾5)ⅇ−𝛾𝑞((3+7𝛾2+2𝛾4) ⅇ𝛾𝑞−3(1+𝛾2)
2
(1+𝛾𝑞)

+𝛾2((−1+𝛾(𝛾+𝑞+𝛾2𝑞))Cos[𝑞]−(𝑞+𝛾(2+𝛾𝑞))Sin[𝑞]))

𝛾(1+𝛾2)(3+2𝛾2)(3+7𝛾2+2𝛾4)
]                

                                           𝐿(𝑖) = [

(3𝛾+5𝛾3+2𝛾5)ⅇ−𝛾𝑞((3+7𝛾2+2𝛾4) ⅇ𝛾𝑞−3(1+𝛾2)
2
(1+𝛾𝑞)

+𝛾2((−1+𝛾(𝛾+𝑞+𝛾2𝑞))Cos[𝑞]−(𝑞+𝛾(2+𝛾𝑞))Sin[𝑞]))

𝛾(1+𝛾2)(3+2𝛾2)(3+7𝛾2+2𝛾4)
]                 

Where 𝐵(𝑖) 𝑎𝑛𝑑 𝐿(𝑖) for MLTD are both increasing functions. 

Randomness of MLTD 

Here, we study the concept entropy, which is a statistical phenomenon that measures the 

uncertainty of a system or component; for example probability distribution. The Rényi 

entropy of a random X is given by: 

 

                          𝐸𝑅(x, 𝑠) =  
1 

1−𝑠 
log  (∫ 𝑓𝑠(𝑥) 𝑑𝑥 )    where 𝑠 > 0 𝑎𝑛𝑑 𝑠 ≠ 1          

Now, if a random variable  𝑈~𝑀𝐿𝑇𝐷(𝑢, 𝛾), then the Renyi entropy of MLTD is derived thus:                                            

                                     𝐸𝑅(u, 𝑠) =  
1 

1−𝑠 
log   (∫ (

2𝛾(1+𝛾+𝛾2+𝛾3)

(1+𝛾)(3+2𝛾2)
)
𝑠

 ( 1 +  𝛿𝑠 )
𝑠 𝑒−𝛾𝑢s𝑑𝑢

∞

0
 )                                           

            But  (1 + w)𝑛  =  ∑ (𝑛
ⅈ
 )∞

ⅈ=0  𝑤ⅈ 

                                     =  
1 

1−𝑠 
log   (∫ (

2𝛾(1+𝛾+𝛾2+𝛾3)

(1+𝛾)(3+2𝛾2)
)
𝑠

 ∑ ( 𝑠
ⅈ
 )∞

ⅈ=0   ( 𝛿𝑠 )
ⅈ  𝑒−𝛾𝑢s𝑑𝑢

∞

0
 )                 

                                     =  
1 

1−𝑠 
(log   ∑ (𝑠

ⅈ
 )∞

ⅈ=0 (
2𝛾(1+𝛾+𝛾2+𝛾3)

(1+𝛾)(3+2𝛾2)
)
𝑠

 ∫   ( 𝛿𝑠 )
ⅈ  𝑒−𝛾𝑢s𝑑𝑢

∞

0
 )       (4)        

           

From equation (4), the Renyi entropy of MLTD can further be obtained numerically through 

software assistance. This is executed by evaluation of the upper limit of the integration 

(say 𝑛), and other parameters 𝑠, 𝛾 𝑎𝑛𝑑 𝑖.           

 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323  

Volume 7, Issue 3, 2024 (pp. 9-28)   

16  Article DOI: 10.52589/AJMSS-ZX1MFI9W  

  DOI URL: https://doi.org/10.52589/AJMSS-ZX1MFI9W 

www.abjournals.org 

  Table 1 (a-d): Numerical analysis on MLTD entropy                                     (a) 

 

𝑛 

𝑖 = 0 

𝑎 = 0.1 

𝑠 = 0.1 

𝑖 = 0 

𝑎 = 0.2 

𝑠 = 0.2 

𝑖 = 0 

𝑎 = 0.3 

𝑠 = 0.3 

𝑖 = 0 

𝑎 = 0.4 

𝑠 = 0.4 

𝑖 = 0 

𝑎 = 0.5 

𝑠 = 0.5 

10 2.2028 2.1360 2.0166 1.8287 1.5716 

20 2.9188 2.7773 2.5040 2.1352 1.7294 

50 3.7799 3.3413 2.7462 2.2039 1.7430 

75 4.1059 3.4593 2.7604 2.2045 1.7430 

100 4.3066 3.4999 2.7619 2.2045 1.7430 

150 4.5358 3.5199 2.7621 2.2045 1.7430 
 

(b) 

 

 

𝑛 

𝑖 = 0 

𝑎 = 0.6 

𝑠 = 0.6 

𝑖 = 0 

𝑎 = 0.7 

𝑠 = 0.7 

𝑖 = 0 

𝑎 = 0.8 

𝑠 = 0.8 

𝑖 = 0 

𝑎 = 0.9 

𝑠 = 0.9 

𝑖 = 0 

𝑎 = 0.99 

𝑠 = 0.99 

10 1.2489 0.8455 0.2661 -1.0394 -21.2805 

20 1.3164 0.8072 0.2744 -1.0363 -21.2749 

50 1.3183 0.8704 0.2744 -1.0363 -21.2749 

75 1.3182 0.8704 0.2744 -1.0363 -21.2749 

100 1.3182 0.8704 0.2744 -1.0363 -21.2749 

150 1.3182 0.8704 0.2744 -1.0363 -21.2749 

 

(c) 

 

𝑛 

𝑖 = 1 

𝑎 = 0.6 

𝑠 = 0.6 

𝑖 = 1 

𝑎 = 0.7 

𝑠 = 0.7 

𝑖 = 1 

𝑎 = 0.8 

𝑠 = 0.8 

𝑖 = 1 

𝑎 = 0.9 

𝑠 = 0.9 

𝑖 = 1 

𝑎 = 0.99 

𝑠 = 0.99 

10 -0.79152 -2.18667 -4.91953 -13.0178 -157.927 

20 -0.72188 -2.15767 -4.90787 -13.0124 -157.914 

50 -0.71927 -2.15738 -4.90784 -13.0124 -157.914 

75 -0.71927 -2.15738 -4.90784 -13.0124 -157.914 

100 -0.71928 -2.15738 -4.90784 -13.0124 -157.914 

150 -0.719275 -2.15738 -4.90784 -13.0124 -157.914 
 

(d) 

 

𝑛 

𝑖 = 2 

𝑎 = 0.1 

𝑠 = 0.1 

𝑖 = 2 

𝑎 = 0.2 

𝑠 = 0.2 

𝑖 = 2 

𝑎 = 0.3 

𝑠 = 0.3 

𝑖 = 2 

𝑎 = 0.4 

𝑠 = 0.4 

𝑖 = 2 

𝑎 = 0.5 

𝑠 = 0.5 

10 1.9956 0.9845 0.6583 0.1745 -0.52937 

20 1.7722 1.5022 1.0587 0.4339 -0.38877 

50 2.6945 2.1149 1.3309 0.5165 -0.37095 

75 3.0199 2.2317 1.3449 0.5170 -0.37094 

100 3.2201 2.2719 1.3464 0.5170 -0.37094 

150 3.4483 2.2915 1.3465 0.5170 -0.37094 
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The numerical analysis for MLTD entropy is presented in Table 1(a-d). We observe explicitly 

that entropy can be positive or negative. More so, for any two consecutive values of the 

parameter 𝑠, say (𝑠ⅈ 𝑎𝑛𝑑 𝑠𝑗), (as we have, horizontally across the table) the Renyi entropy of 

MLTD  𝐸𝑅(u, 𝑠), satisfies the proposition according to Golshani and Pasha (2010):  

                              →           𝑠ⅈ  <  𝑠𝑗     →     𝐸𝑅ⅈ(u, 𝑠)  ≥    𝐸𝑅𝑗(u, 𝑠) 
 

Asymptotic Distribution of MLTD 

The concept of extremum is adopted in the approximations of the CDFs of a statistical 

estimator.  

 If 𝑋ⅈ, 𝑖 = 1,2, … ,𝑚 is a sequence of random variables with CDF  𝐺(𝑥) 
 If  𝐺𝑚(𝑥) → 𝐺(𝑥) as n increases 

 

then, there exist a limiting distribution. Now, if a sequence of random variables 𝑋ⅈ are 

independent, identically distributed with means zero and unit variances; and  𝑆𝑚 = 𝑋1 +

𝑋2 +⋯+ 𝑋𝑚, then   lim sum𝑚→∞
|𝑆𝑚|

√2𝑚𝑙𝑜𝑔𝑙𝑜𝑔𝑚
= 1. Bensid and Zeghdoudi (2017) derived the 

asymptotic distributions of the sample extremum of the family of Lindley distributions using 

l’Hopital’s rule. In the same manner, we examine the extreme behavior for a MLTD; where 

the asymptotic distribution of sample extremum   𝑈1;𝑚 = min ( 𝑈1, . . , 𝑈𝑚 ) and  𝑈𝑚;𝑚 =

max ( 𝑈1, . . , 𝑈𝑚 ) can respectively be derived as the   lim𝑡→0
𝐹(𝑡𝑢)

𝐹(𝑡)
, and  lim𝑡→∞

1−𝐹(𝑡+𝑢)

1−𝐹(𝑡)
. 

                            

lim𝑡→0
𝐹(𝑡𝑢)

𝐹(𝑡)
= lim𝑡→0 {[1 +

ⅇ−𝛾𝑡𝑢{−3(1+𝛾2)+𝛾2Cos[𝑡𝑢]−𝛾Sin[𝑡𝑢]}

3+2𝛾2
] [1 +

ⅇ−𝛾𝑡{−3(1+𝑡2)+𝛾2Cos[𝑡]−𝛾Sin[𝑡]}

3+2𝛾2
]⁄ }           

                                     = lim𝑡→0
(3+2𝛾2)+(ⅇ−𝛾𝑡𝑢{−3(1+𝛾2)+𝛾2Cos[𝑡𝑢]−𝛾Sin[𝑡𝑢]})

(3+2𝛾2)+(ⅇ−𝛾𝑡{−3(1+𝛾2)+𝛾2Cos[𝑡]−𝛾Sin[𝑡]})
                                         

                                     = 1   

Now, for           lim𝑡→0
𝐹(𝑡𝑢)

𝐹(𝑡)
= 𝑥 lim𝑡→0

𝑓(𝑡𝑢)

𝑓(𝑡)
         

                  lim𝑡→0
𝐹(𝑡𝑢)

𝐹(𝑡)
= 𝑥 lim𝑡→0 𝑒

−𝛾𝑡𝑢  
2𝛾(1+𝛾2)(1+𝑆ⅈ𝑛2(𝑡𝑢/2))

(3+2𝛾2)
𝑒−𝛾𝑡  

2𝛾(1+𝛾2)(1+𝑆ⅈ𝑛2(𝑡/2))

(3+2𝛾2)
⁄           

                                      = 𝑥 lim𝑡→0 1       

                                      = 𝑥,  ~𝑋1;𝑛  minima  

     lim𝑡→∞
1−𝐹(𝑡+𝑢)

1−𝐹(𝑡)
=

lim𝑡→∞ [(−
ⅇ−𝛾(𝑡+𝑢){−3(1+𝛾2)+𝛾2Cos[(𝑡+𝑢)]−𝛾Sin[(𝑡+𝑢)]}

3+2𝛾2
) (−

ⅇ−𝛾𝑡{−3(1+𝛾2)+𝛾2Cos[𝑡]−𝛾Sin[𝑡]}

3+2𝛾2
)⁄ ]            

                           =
ⅇ−𝛾(𝑡+𝑢){−3(1+𝛾2)+𝛾2Cos[(𝑡+𝑢)]−𝛾Sin[(𝑡+𝑢)]}

ⅇ−𝛾𝑡{−3(1+𝛾2)+𝛾2Cos[𝑡]−𝛾Sin[𝑡]}
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                           = 𝑒−𝛾𝑢, 𝑋𝑛;𝑛 maxima      

By implication, the asymptotic distribution of MLTD extremum for 0 < 𝑥 < 𝑏 is given by 

                                            
𝑃{𝛼𝑛(𝑋𝑛:ⅈ  −  𝛽𝑛) ≤ 𝑥}  

𝑑
→  1 − exp(−𝑥)       

𝑃{𝜀𝑛(𝑋𝑛:𝑛  −  𝜏𝑛) ≤ 𝑥}
𝑑
→exp (−exp (−𝛾𝑥)    

 

where 𝛼𝑛, 𝛽𝑛, 𝜀𝑛 𝑎𝑛𝑑  𝜏𝑛 > 0  are the normalizing constants.  

Distribution of Order Statistics 

The distribution of order statistics refers to an arrangement of sample values in the ascending 

order. These statistics depend on the sequential arrangement of values, but not on the values 

themselves; where the special cases include sample median, minimum and maximum values 

and quantile. Within the subject of continuous probability distribution, the CDF is used in the 

study of random samples; and the objective is to achieve the uniform distribution by reducing 

the analysis to order statistics, see Casella and Berger (2021). 

If 𝑈ⅈ, 𝑖 = 1,2, … ,𝑚 are random variables of size n from a distribution, then the order 

statistics 𝑋1 < 𝑋2 <,… ,< 𝑋𝑚 are defined random variables, from the ascending order. The 

order statistics for MLTD is thus given:  

                                      𝐺(𝑢) =  ∑ (𝑚
𝑗
) [𝐹(𝑢)]𝑗𝑚

𝑗=𝑘  [1 − 𝐹(𝑢)]𝑚−𝑗    

                                                = ∑ ∑ (𝑚
𝑗
) (𝑚−𝑗

𝑙
)(−1)𝑙  𝐹𝑗+𝑙(𝑢)

𝑚−𝑗
𝑙=0

𝑚
𝑗=𝑘  

where the corresponding PDF is derived as  

                                                            𝑔(𝑥) =  
m! 

( 𝑘−1)!( 𝑚−𝑘)!
 𝑓(𝑢) 𝐹𝑘−1(𝑢) {1 − 𝐹(𝑢)}𝑚−𝑘                                

But                                                                     {1 − 𝐹(𝑢)}𝑚−𝑘 = ∑ (𝑚−𝑘
𝑙
)(−1)𝑙[𝐹(𝑢)]𝑙∞

𝑙=0                                                              

  ∴    𝑔(𝑥) =  
m! 2𝛾(1+𝛾2)

(3+2𝛾2)( 𝑘−1)!( 𝑚−𝑘)!
 {(1 +  𝛿𝑠)𝑒

−𝛾𝑢} {1 +
ⅇ−𝛾𝑢{−3(1+𝛾2)+𝛾2Cos[𝑢]−𝛾Sin[𝑢]}

3+2𝛾2
}
𝑘−1

    

{∑ (𝑚−𝑘
𝑙
)(−1)𝑙 [1 +

ⅇ−𝛾𝑢{−3(1+𝛾2)+𝛾2Cos[𝑢]−𝛾Sin[𝑢]}

3+2𝛾2
]
𝑙

∞
𝑙=0 }             (5)                                             

By implication, the PDF of smallest order statistics is obtained evaluating  𝑗 = 𝑘 = 1 in 

equation (5): 

 𝑔1:𝑛 = 
 2𝛾(1+𝛾2)𝑚

(3+2𝛾2)
 [(1 +  𝛿𝑠)𝑒

−𝛾𝑢] {∑ (𝑚−1
𝑙
)(−1)𝑙 [1 +

ⅇ−𝛾𝑢{−3(1+𝛾2)+𝛾2Cos[𝑢]−𝛾Sin[𝑢]}

3+2𝛾2
]
𝑙

∞
𝑙=0 }  

where the corresponding PDF of maximum order statistics is obtained at  𝑗 = 𝑘 = 𝑛 in 

equation (5) 
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 𝑔𝑛:𝑛 =  
 2𝛾(1+𝛾2)𝑚

(3+2𝛾2)
[(1 +  𝛿𝑠)𝑒

−𝛾𝑢]  {1 +

ⅇ−𝛾𝑢{−3(1+𝛾2)+𝛾2Cos[𝑢]−𝛾Sin[𝑢]}

3+2𝛾2
}
𝑛−1

{∑ (0
𝑙
)(−1)𝑙 [1 +

ⅇ−𝛾𝑢{−3(1+𝛾2)+𝛾2Cos[𝑢]−𝛾Sin[𝑢]}

3+2𝛾2
]
𝑙

∞
𝑙=0 }                           

More so,  

         𝐺𝑈(1)(𝑢) = 𝑃{𝑚𝑖𝑛[𝑋ⅈ] ≤ 𝑥} = 1 − [1 − 𝐹𝑈(𝑢)]
𝑛  

         𝐺𝑈(𝑛)(𝑢) = 𝑃{𝑚𝑎𝑥[𝑋ⅈ] ≤ 𝑥} = [𝐹𝑈(𝑢)]
𝑛  

are other special cases of order statistics. 

Different Parameter Estimation Approach  

Some methods for parameter estimation are presented here; which include Cramer-von Mises 

(CVM) estimator, Minimum distance estimation (MDE), maximum spacing estimation 

(MSpE) and maximum likelihood estimation (MLE). 

Let a distribution 𝐺(𝑥) be defined for an independent and identical random sample 𝑋ⅈ, 𝑖 =
1,2, … ,𝑚 from a population; where 𝐺(𝑥, 𝜃): 𝜃 ∈ Ɵ and Ɵ ⊆ 𝑅𝑗   𝑓𝑜𝑟 𝑗 ≥ 1. Let empirical 

distribution function (EDF) be 𝐺𝑚(𝑥) on the premises of the sample; then  

                                    𝐶𝑣𝑚(𝜃) =  (12𝑚)
−1 + ∑ [𝐺(𝑥(ⅈ)) −

2ⅈ−1

2𝑚
]
2

𝑚
ⅈ=1                                  (6) 

defines the Cramer-von Mises (CVM) estimator for parameter 𝜃; where the goal is to 

minimize the function 𝐶𝑣𝑚(𝜃), see Bee (2023). Now, by substituting the CDF of MLTD as in 

equation (3) in (6), we obtain 

         𝐶𝑣𝑚(𝛾) =  (12𝑚)
−1 + ∑ [(1 +

ⅇ
−𝛾𝑢(𝑖){−3(1+𝛾2)+𝛾2Cos[𝑢(𝑖)]−𝛾Sin[𝑢(𝑖)]}

3+2𝛾2
) −

2ⅈ−1

2𝑚
]
2

𝑚
ⅈ=1      (7)                                            

Furthermore, we can minimize equation (7) using software algorithm to obtain the estimates 

of CVM; or we can maximize it by solving  (𝜕  𝐶𝑣𝑚(𝛾))/𝜕𝛾 = 0. 

Nombebe et al. (2023) carried out a comparative study among estimation methods with 

emphasis on the Minimum Distance Estimation. Although the MDE is found to be consistent 

and asymptotically normal, it is shows to be statistically inefficient when compared to the 

MLE. However, the omission of the Jacobian, which is consistent with likelihood functions, 

is observed to be accountable for this limitation. Now, if there exist a 𝜃 ∈ Ɵ such that  

                                             𝑑{𝐺(𝑥, 𝜃),   𝐺𝑚(𝑥)} = inf [𝑑{𝐺(𝑥, 𝜃),   𝐺𝑚(𝑥)}𝜃 ∈ Ɵ  

where 𝑑{. , . }denotes any distance function, and 𝐺𝑚(𝑥) =  
1

𝑚
∑ 1[𝑡,∞](𝑥)
𝑚
ⅈ=1 ; where 1[𝑡,∞] is a 

characteristic function for [𝑡,∞]; then 𝜃 is called the MDE, see Drossos and Philippou 

(1980). 

Maximum spacing estimation as originally applied by Cheng and Amin (1983) is based on 

the probability integral transform; where derived random samples that are independent from 

tel:1983
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any random variable are uniformly distributed owing to the CDF of the random variable. In 

other words, MSE makes selection of parameter values that possibly render the observed data 

in definite quantitative measure of uniformity. 

 Let a corresponding ordered sample be given as  [𝑥(1), … , 𝑥(𝑛)], and spacing be defined 

as  𝐴ⅈ(𝜃); where maximum spacing estimator of 𝜃 is a value that maximizes the function: 

                                                         𝜃 = argmax⏟    
𝜃∈Ɵ

ℳ𝑠𝑝 

                            →                       ℳ𝑠𝑝 = 
1

𝑚+1
 ∑ 𝑙𝑛{ 𝐴ⅈ(𝜃)}
𝑚+1
ⅈ=1                                                                                   

where  𝐴ⅈ(𝜃) =  𝐺(𝑥(ⅈ)) −  𝐺(𝑥(ⅈ−1));  𝐺(𝑥(0)) = 0; 𝐺(𝑥(𝑚+1)) = 1;  see [Almetwally et al. 

(2023)].  

In terms of MLTD, we obtain 

                                               ℳ𝑠𝑝(𝛾) =  
1

𝑚+1
 ∑ 𝑙𝑛[𝐹(𝑢(ⅈ)) − 𝐹(𝑢(ⅈ−1))]
𝑚+1
ⅈ=1   

 =
1

𝑚+1
∑ 𝑙𝑛 [(1 +

ⅇ
−𝛾𝑢(𝑖){

−3(1+𝛾2)+𝛾2Cos[𝑢(𝑖)]

−𝛾Sin[𝑢(𝑖)]
}

3+2𝛾2
)− (1 +𝑚+1

ⅈ=1

ⅇ
−𝛾𝑢(𝑖−1){

−3(1+𝛾2)+𝛾2Cos[𝑢(𝑖−1)]

−𝛾Sin[𝑢(𝑖−1)]
}

3+2𝛾2
)]              (8)                                   

The estimates of MSpE can further be obtained by maximizing equation (8) at   
𝜕ℳ𝑠𝑝(𝛾)

𝜕𝛾
= 0.  

Lastly, the goal of MLE is to obtain the parameter values of a probability function that 

optimizes the likelihood function over the parameter space. This can be studied under 

different data conditions, which include uncensored data and or censoring, see details: Fang 

et al. (2015) and Kinaci et al. (2014). The concept of censoring is what ensures that data 

observations are correctly extracted; in the sense that truncated events are not treated like 

exhaustive investigations. In general, the likelihood functions for the both data conditions are 

respectively given as: 

                                                𝐿(𝑥, 𝜃) = ∏ [𝑔(𝑥ⅈ)]
𝑛
ⅈ=1   

                                                𝐿(𝑥, 𝜃) =
𝑀!

(𝑀−𝑚)!
{∏ 𝑔(𝑥ⅈ)

𝑛
ⅈ=1 }{1 − 𝐺(𝑥𝑇)}

𝑀−𝑚                     (9) 

where 𝑔(𝑥ⅈ) 𝑎𝑛𝑑 𝐺(𝑥ⅈ) are the PDF and CDF of a distribution with an independent random 

observations 𝑥ⅈ , 𝑖 = 1, 2, … , 𝑚; M is the number of specimens being investigated or number 

of trials. Now, if the fixed time or cycle or count to an event (say failure time) is  𝑥0, then for 

Type 1 censoring according to equation (9), the time of termination  𝑥𝑇 = 𝑥0; and 𝑥𝑇 = 𝑥𝑛 

for Type 2 case. However, for this study, we have our emphasis only on the complete or 

uncensored investigations.   
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Now, let 𝑢ⅈ , 𝑖 = 1,2, … ,𝑚 be a vector of observations from MLTD, and then the log-

likelihood for the complete data is defined by:   

                                       𝑙(𝑢, 𝛾) = 𝑙𝑜𝑔𝐿(𝑢, 𝛾) = ∑ 𝑙𝑜𝑔{𝑓(𝑢, 𝛾)}𝑛
ⅈ=1   

                                       𝑙(𝑢, 𝛾) =  ∑ log { 
2𝛾(1+𝛾2)

(3+2𝛾2)
 [1 + 𝑆𝑖𝑛2 (

𝑢

2
)] 𝑒−𝛾𝑢}𝑛

ⅈ=1    

                                                   =  𝑙𝑜𝑔 [
2𝛾(1+𝛾2)

(3+2𝛾2)
]
𝑚

+ ∑ log [1 + 𝑆𝑖𝑛2 (
𝑢𝑖

2
)] 𝑚

ⅈ=1 − 𝛾∑ 𝑢ⅈ
𝑚
ⅈ=1    

        = 𝑚𝑙𝑜𝑔 (2𝛾) + 𝑚𝑙𝑜𝑔 (1 + 𝛾2) − 𝑚𝑙𝑜𝑔 (3 + 2𝛾2) + ∑ log [1 + 𝑆𝑖𝑛2 (
𝑢

2
)] 𝑚

ⅈ=1 −

𝛾∑ 𝑢ⅈ
𝑚
ⅈ=1                     (10) 

The score function for equation (10) is defined by 

                                                          
𝜕𝑙

𝜕𝛾
= 

𝑚

𝛾
+

2𝛾𝑚

1+𝛾2
−

4𝛾𝑚

3+2𝛾2
− ∑ 𝑢ⅈ

𝑚
ⅈ=1   

                                                               
𝑚

𝛾
+

2𝛾𝑚

1+𝛾2
−

4𝛾𝑚

3+2𝛾2
− ∑ 𝑢ⅈ

𝑚
ⅈ=1 = 0 

                                                               
𝑚

𝛾
+

2𝛾𝑚

1+𝛾2
−

4𝛾𝑚

3+2𝛾2
− ∑ 𝑢ⅈ

𝑚
ⅈ=1 = 0   

                                                              
3+7𝛾2+2𝛾4

3𝛾+5𝛾3+2𝛾5
=
∑ 𝑢𝑖
𝑛
𝑖=1

𝑚
   

                                          (3 + 7𝛾2 + 2𝛾4) − 𝑢̅(3𝛾 + 5𝛾3 + 2𝛾5) = 0                    (11) 

The polynomial structure of the equation in (11) suggests that multiple roots will be obtained; 

hence we resort to numerically optimization such as Newton’s method, to realize the 

estimates of the estimator 𝛾. More so, we might be interested in studying the following 

properties of MLE: 

 The estimator 𝛾 of 𝛾 is bias if 𝐸[𝛾] − 𝛾 ≠ 0 

 The estimator 𝛾 of 𝛾 is consistent if 𝛾  
𝑝
→   𝛾  𝑎𝑠 𝑚 → ∞. This also implies that 

                                lim
𝑚→∞

𝑃( |𝛾 −  𝛾|  >  𝜖) = 0                                                            

 The estimator 𝛾 of 𝛾 is asymptotically normal: 

                                 √𝑚(𝛾̂ −  𝛾)
𝐷
→  𝑁 (0,

1

𝐼(𝛾)
 )                                                             

These will be investigated under Monte Carlo simulation.   

Average Bias and Mean Square Error (MSE) under Monte Carlo Approach 

In this section, the stability of the MLE of MLTD is investigated, through Monte Carlo 

simulation study. For different sample sizes  𝑛 = 15, 30, 55, 80, 100, 200 𝑎𝑛𝑑  350, the 

experiment engages a 10000 times repeated trials. In executing the algorithm for the 

biasedness, consistency and asymptotic normality objectives, a quantile function from MLTD 
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comes handy; as it is the kernel in the whole sequence of the data codes. The inverse 

cumulative function of MLTD is a derivative from  𝐹−1(𝑝) = 𝑢, where  𝐹(𝑢) = 𝑝, 0 < 𝑝 <
1. This is given as 

                            [(3 + 2𝛾2)(1 − 𝑝)] + [𝑒−𝛾𝑥{−3(1 + 𝛾2) + 𝛾2Cos(𝑢) − 𝛾Sin(𝑢)}] = 0  

Opone (2021) detailed the Monte Carlo algorithm, where the average bias and mean square 

error of the estimator 𝛾 is given by  

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑖𝑎𝑠 = [  
1

𝑀
∑ (𝛾ⅈ − 𝛾)
𝑀
ⅈ=1 ]                                            

 𝑀𝑆𝐸 = [  
1

𝑀
∑ (𝛾̂ⅈ − 𝛾)

2 𝑀
ⅈ=1 ]   

    

Table 2: Average Bias and MSE of the Estimator 𝛾 

Parameter N Average Bias (𝛾) MSE (𝛾) 

 15 0.31626 5.27540 

 30 0.19005 3.57610 

𝛾 = 0.1 55 0.10085 2.24623 

 80 0.09485 2.05691 

 100 0.05852 1.35571 

 200 0.03523 1.08446 

 350 0.01861 0.45169 

 15 0.06401 0.25472 

 30 0.03385 0.12843 

𝛾 = 0.5 55 0.01876 0.07529 

 80 0.01232 0.04211 

 100 0.01029 0.03573 

 200 0.00621 0.02137 

 350 0.00305 0.01258 

 15 -0.00161 0.03749 

 30 -0.00182 0.01141 

𝛾 = 1.5 55 -0.00250 0.00905 

 80 -0.00414 0.00884 

 100 -0.00560 0.00546 

 200 -0.01141 0.00288 

 350 -0.02391 0.00199 

 15 -0.00279 0.15275 

 30 -0.00635 0.08667 

𝛾 = 2.5 55 -0.01125 0.03772 

 80 -0.01708 0.02354 

 100 -0.02033 0.02418 

 200 -0.04072 0.01381 

 350 -0.07141 0.00554 

 

The estimates for the average bias and mean square error are presented in Table 2, and at 

different selected values of the parameter. Apparently, from the Table, we deduce that the 
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estimates of the average bias and mean square error decrease as the sample size  𝑛 increases. 

This simply indicates that the estimator of MLTD is consistent and asymptotically stable.    

Simulative and Real Life Application 

In this part of the research, we engage fixed simulation of 100 sample data from MLTD over 

different range of supports 𝑥 ∈ 𝑅; where 𝑥 ≤ 𝑛 for  𝑛 = 20, 30, 40 𝑎𝑛𝑑 50. This will in 

essence, x-ray the sinusoidal behavior of MLTD in the modeling of unimodal, bimodal, tri-

modal and multimodal decreasing trend. More so, we take in to consideration the tendencies 

of MLTD at different levels of the selected parameters. For brevity purposes, we consider 

these parameters 𝛾 = 0.04, 0.12 𝑎𝑛𝑑 0.25 alongside some inferential criteria; which include: 

Anderson Darling (𝐴𝑑∗), Cramer-von Mise (𝐶𝑣∗), Kolmogrove (𝐾𝑠∗), Kuiper(𝐾𝑢∗), 
Pearson 𝑋2 (𝑃𝑠∗), Watson 𝑈2 (𝑊𝑢∗) and the p-value. These statistics project the comparative 

fitness of distributions mirroring a particular data; where lesser measures indicate better fit, 

apart from the p-value that reads otherwise. The Exponential and Lindley distributions as 

monotone decreasing probability functions are also juxtaposed in the analogy.   

Table 3: Performance comparison at 𝛾 = 0.04 

𝑥 ≤ 𝑛 Model 𝐴𝑑∗ 𝐶𝑣∗ 𝐾𝑠∗ 𝐾𝑢∗ 𝑃𝑠∗ 𝑊𝑢∗ P-value 

 MLTD 26.629 5.5546 0.4549 0.4612 69.78 1.3306 1.8e-13 

20 Lindley 147.53 22.503 0.7949 0.8037 464.9 4.8516 0 

 Exp 26.629 5.5454 0.4493 0.4662 75.76 1.3857 1.9e-13 

 MLTD 11.370 2.1318 0.2973 0.3068 39.88 0.5885 6.47e-6 

30 Lindley 100.33 17.066 0.6487 0.6587 281.94 3.3221 0 

 Exp 11.225 2.1331 0.3011 0.3093 43 0.6284 6.43e-6 

 MLTD 6.3006 1.0982 0.2040 0.2043 27.66 0.2585 0.00145 

40 Lindley 83.631 13.933 0.5153 0.5247 204.98 2.3441 0 

 Exp 6.3382 1.0993 0.2018 0.2063 32.6 0.2720 0.00144 

 MLTD 2.8644 0.4054 0.1373 0.1489 16.74 0.2085 0.0699 

50 Lindley 63.577 11.127 0.4819 0.4909 167.02 1.7477 0 

 Exp 2.9380 0.4099 0.1394 0.1637 17.52 0.2208 0.068 

 

(a)                 (b)  
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(c)                 (d)  

Figure 4: Density fit for MLTD simulations at 𝛾 = 0.04  

Table 4: Performance comparison at 𝛾 = 0.12  

𝑥 ≤ 𝑛 Model 𝐴𝑑∗ 𝐶𝑣∗ 𝐾𝑠∗ 𝐾𝑢∗ 𝑃𝑠∗ 𝑊𝑢∗ P-value 

 MLTD 2.9974 0.4473 0.1387 0.1857 37.54 0.2319 0.0544 

20 Lindley 51.83 9.2086 0.4039 0.4128 145.7 1.45.7 3.3e-16 

 Exp 3.3986 0.4933 0.1454 0.2229 51.32 0.3636 0.0414 

 MLTD 1.4761 0.2197 0.1262 0.1548 22.46 0.1693 0.2320 

30 Lindley 27.362 4.2595 0.3139 0.3200 103.32 0.5829 1.2e-10 

 Exp 1.7068 0.2409 0.1339 0.1623 25.84 0.1478 0.2 

 MLTD 1.0105 0.1846 0.0926 0.0937 7.38 0.0673 0.2990 

40 Lindley 43.494 7.2195 0.3805 0.3889 141.28 1.1983 0 

 Exp 0.6824 0.1303 0.0836 0.1036 6.42 0.0665 0.4550 

 MLTD 0.4004 0.0462 0.0583 0.1037 7.9 0.0462 0.899 

50 Lindley 32.331 5.2724 0.3265 0.3362 99.94 0.8335 7.7e-13 

 Exp 0.2459 0.0349 0.0505 0.0861 9.2 0.0285 0.957 

 

Plots 

(a)                  (b)  

(c)                 (d)  

Figure 5: Density fit for MLTD simulations at 𝛾 = 0.12 
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Table 5: Performance comparison at 𝛾 = 0.25 

𝑥 ≤ 𝑛 Model 𝐴𝑑∗ 𝐶𝑣∗ 𝐾𝑠∗ 𝐾𝑢∗ 𝑃𝑠∗ 𝑊𝑢∗ P-value 

 MLTD 1.2391 0.4059 0.1329 0.1448 8.94 0.1359 0.1697 

20 Lindley 34.286 6.6444 0.4412 0.4463 98.1 1.4552 7.7e-16 

 Exp 1.1558 0.2682 0.1304 0.1290 8.65 0.2189 0.1770 

 MLTD 0.5505 0.0788 0.0642 0.0908 14.66 0.0388 0.699 

30 Lindley 26.956 5.2050 0.3435 0.3451 65.62 0.9564 1.1e-12 

 Exp 0.6751 0.0798 0.0592 0.1001 12.06 0.0772 0.693 

 MLTD 0.6270 0.0745 0.0644 0.1023 10.76 0.0654 0.724 

40 Lindley 25.385 4.9039 0.3246 0.3305 61.72 0.8413 4.9e-12 

 Exp 1.6559 0.2273 0.1132 0.1462 18.3 0.1477 0.151 

 MLTD 1.2725 0.2521 0.1118 0.1238 21.16 0.1046 0.186 

50 Lindley 32.579 6.4987 0.4189 0.4266 79.14 1.3661 1.2e-15 

 Exp 1.5402 0.2077 0.1048 0.1199 19.86 0.2746 0.197 

 

 

(a)                 (b)  

(c)               (d)  

Figure 6: Density fit for MLTD simulations at 𝛾 = 0.25 

Tables 3-5; and Figures 4-6, present the numerically and graphical analysis of the simulation 

density fit. Firstly, the graphical study is indicative of the appropriate choice of parameters, in 

quest to fit a real life data exhibiting different decreasing trend modal outcomes. Of course it 

is expected that the proposed distribution superiorly fits the simulated samples at different 

levels of the parameters.  However, by careful observation, we underscore the different 

scenarios where MLTD may not stand the chance of optimum data fitness. This is seen in:  

 Table 4 and or Figure 5c at parameter 𝛾 = 0.12, for  𝑥 ≤ 40 

 Table 4 and or Figure 5d at parameter 𝛾 = 0.12, for  𝑥 ≤ 50 

 Table 5 and or Figure 6a at parameter 𝛾 = 0.25, for  𝑥 ≤ 20 
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 Table 5 and or Figure 6d at parameter 𝛾 = 0.25, for  𝑥 ≤ 50 

This implies that the proposed distribution is a good completion, conditionally for outcomes 

that exhibit obvious sinusoidal trends.  

Finally, we fit the MLTD and already mentioned one parameter existing lifetime distributions 

to a real data which denotes the exceedance of Wheaton River flood applied in Akinsete et al. 

(2008).  

1.7, 2.2,  14.4,  1.1,  0.4,  20.6,  5.3,  0.7,  1.9,  13.0,  12.0,  9.3, 1.4,  18.7,  8.5,  25.5,  11.6,  

14.1,  22.1,  1.1,  2.5,  14.4,  1.7,  37.6, 0.6,  2.2,  39.0,  0.3,  15.0,  11.0,  7.3,  22.9,  1.7,  0.1,   

1.1,  0.6,  9.0,  1.7,  7.0,  20.1,  0.4,  2.8,  14.1,  9.9,  10.4,  10.7,  30.0,  3.6,  5.6,  30.8,  13.3, 

4.2,  25.5,  3.4,  11.9,  21.5,  27.6,  36.4,  2.7,  64.0, 1.5,  2.5,  27.4,  1.0, 27.1,  20.2,  16.8,  

5.3,  9.7,  27.5,  2.5, 27.0 

 

Figure 7: Graphical plot showing the histogram of the flood data 

The data showed to have approximately 3-4 modes as observed in Figure 7. As a result, we 

make an appropriate choice of parameter which could limit the modal structure of the density 

fit, sizeable to that of data. This is notably one edge Mathematica has over R software in 

model fitting of this order. Akaike information criterion  (𝐴ⅈ𝑐∗) and log-likelihood (-log L) 

will be used alongside some of the above mentioned inferential measures.  

Table 7: Parameter estimates and corresponding standard error statistics 

Model 𝛾 
 

Std error 

MLTD 0.0823 0.00972 

Lindley 0.1530 0.01281 

Exp 0.0819 0.00966 
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Table 8: Distribution fit inference 

Model 𝐴𝑑∗ 𝐶𝑣∗ 𝐾𝑠∗ 𝐴ⅈ𝑐∗ −𝑙𝑜𝑔𝐿 

MLTD 1.6961 0.2523 0.1414 510.11 -254.055 

Lindley 7.4215 0.8183 0.2408 530.42 -264.211 

Exp 222.03 22.226 0.9996 506.25 -252.128 

 

 

Based on the inferential measures, Table indicates that the proposed Modified Lindley 

Trigonometric Distribution is a good completion compared to some one parameter 

distributions considered. More so, Figure which supports the empirical facts evidently shows 

that the proposed distribution fits outcomes that exhibit sinusoidal decreasing trends; which is 

a common characteristic of some real events.    

 

CONCLUSION 

In this development, a class of sinusoidal family of distributions termed Modified Lindley 

Trigonometric Distribution (MLTD) was proposed and some statistical properties were 

derived. Among the properties, generating multimodal features with just one parameter 

stands out; where the trigonometric interjected function is accountable for this novelty. An 

applicative simulation study was carried out to demonstrate the likelihood of the proposed 

distribution. Finally, a real life data was employed to give essence to the applicability of 

MLTD and the outcome of the result showed that the proposed distribution is a model 

prototype for decreasing trend sinusoidal phenomena.   
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