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ABSTRACT: The dynamic behaviour of damped shear beam 

resting on bi-parametric elastic foundation when traversed by 

moving load travelling at constant velocity is investigated in this 

present study. The beam-type structure has a uniform cross-

sectional area and it is assumed to be simply supported. The 

governing equations are coupled second order partial differential 

equations. The method of integral transformation called Finite 

Fourier series was first used to reduce the sets of coupled second 

order partial differential equations governing the motion of this 

class of dynamical problem to sequence of coupled second order 

ordinary differential equations. Thereafter, the simplified coupled 

equations describing the motion of the beam-load system were 

then solved by Laplace transformation in conjunction with 

convolution theory to obtain the solution. The closed form solution 

obtained was analyzed to obtain the conditions under which the 

beam-load system will experience resonance phenomenon and 

speeds at which this may occur are also established. The effects of 

pertinent structural parameters on the response of a damped shear 

beam when under the action of the moving load were presented in 

plotted curves. From the graphs, it is interestingly found that 

increase in the values of vital structural parameters, such as axial 

force 𝑁𝑓, circular frequency CF, foundation stiffness K and shear 

modulus G, reduces the transverse displacement of the damped 

shear beam when under the action of the moving load. Practically 

speaking, increase in the values of these structural parameters 

significantly enhances the stability of the beam and increases the 

critical speed of the dynamical system. Consequently, the 

resonance risk of the vibrating system is reduced and thus the 

safety of the occupant of this structural member is guaranteed. 

KEYWORDS: Dynamic response, axial force, moving load, 

shear beam, elastic foundation, critical speed, resonance. 
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INTRODUCTION 

The analysis of interactions between moving bodies and structural members has been a 

prominent area of research in structural dynamics for over a century. This enduring interest 

stems from the extensive applications of structural dynamics across various fields, including 

Civil, Mechanical, Aerospace, and Structural Engineering, which have inspired numerous 

engineers, mathematicians, and physicists to explore studies on the vibrations of structures 

under moving loads. Moving loads can induce considerable vibrations in elastic structures, 

particularly at high speeds. In contrast to stationary loads or subsystems that cause constant 

stresses and deformations, moving loads create effects that vary based on the load's position, 

which is also time-dependent [1]. Practical instances of vibrations induced by moving loads 

include those experienced in bridges and railways due to vehicles or trains, piping systems 

affected by two-phase flow, beams subjected to pressure waves, and operations involving high-

speed machining. The vibrations of beams resulting from traveling loads have been thoroughly 

investigated [2-7]. One of the early investigations into the dynamic behavior of elastic beams 

under traveling loads was carried out by Ayre et al. [8], who analyzed the effects of the load-

to-beam weight ratio for a uniformly moving mass load. They successfully derived the solution 

for the associated partial differential equation using the infinite series method. Worthy of note 

is the work of Bolotin [9] who applied Galerkin’s method to study the dynamics of a 

concentrated mass traversing a simply supported beam at a constant speed. In more recent 

work, Lin and Trethewey [10] studied the dynamic analysis of an elastic Bernoulli-Euler beam 

subjected to dynamic loads resulting from arbitrary movements of a spring-mass-damper 

system, employing the finite element method (FEM). 

Similarly, Olsson [11] contributed essential insights into the moving load problem and 

provided reference data for more extensive studies. Jaiswal and Iyenggar [12] investigated the 

dynamic response of an infinitely long beam supported by a finite-depth foundation under the 

influence of a moving force, examining the impacts of various parameters such as foundation 

mass, load velocity, damping, and axial force on the beam. Lee [13] utilized the Bernoulli-

Euler beam theory in conjunction with the assumed mode method to investigate the transverse 

vibrations of a beam that is constrained at intermediate points and subjected to a moving load. 

In the majority of early studies, the focus was primarily on structures such as beams or plates 

that did not rest on elastic foundations. However, for practical applications, it is useful to 

examine structures that are supported by elastic foundations. For instance, an analysis that 

incorporates such a foundation can be instrumental in understanding the behavior of plates and 

beams on roadways or runways. The Winkler approximation model is frequently referenced in 

the literature as a foundation model [14,15]. Nevertheless, for significant engineering 

challenges, such as the vibration of plates or beams, it is advisable to utilize a more compact 

and accurate two-parameter foundation model rather than relying solely on the Winkler 

approximation. The Winkler model has been the object of some criticisms. This one-parameter 

model fails to accurately depict the continuous nature of practical foundations, as it neglects 

the interaction between lateral springs. Additionally, it predicts discontinuity in the deflections 

of the foundation surface at the ends of a finite beam, which contradicts real-world observations 

[16,17]. Therefore, it is recommended to adopt a more compact and realistic elastic foundation 

model, known as the bi-parametric elastic foundation or Pasternak foundation model, which 

accounts for the continuity of surface displacement beyond the load area. This model introduces 

a second foundation constant, the shear modulus G, alongside the foundation stiffness K. The 

inclusion of the shear modulus enhances the accuracy and reliability of the analysis, although 

it complicates the problem and makes it more challenging to solve. Notably, the dynamics of 
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moving loads on bi-parametric elastic foundations have been thoroughly investigated [18-21].  

Engineers frequently incorporate artificial stresses in structures prior to applying loads, so that 

the stresses which then exist in the structures under the load are more favourable than would 

otherwise be the case. These artificial stresses can exist as forces acting axially or in other 

directions. When these forces act axially, they are referred to as axial forces. This process of 

inducing artificial stresses is known as pre-stressing. The primary objective of pre-stressed 

structures is to mitigate tensile stresses, thereby reducing the likelihood of flexural cracking or 

bending during operational conditions. As a result, a substantial body of literature has been 

dedicated to the investigation of the vibrations of pre-stressed beams subjected to moving loads 

[22-24]. It should be noted at this juncture that a tremendous amount of work has been done on 

the dynamical problems involving Bernoulli-Euler and other beam types under moving loads, 

lumped or distributed [25-31]. However, studies involving shear beams under moving loads 

are scanty in the literature. Shear beam theory is a fundamental aspect of structural engineering, 

focusing on beams where shear deformation plays a significant role. Unlike the classical Euler-

Bernoulli beam theory, which assumes that plane sections remain plane and perpendicular to 

the neutral axis, shear beam theory accounts for shear deformations, making it crucial for 

analyzing short and deep beams. The shear beam model is commonly characterized by two 

coupled partial differential equations in terms of two dependent variables, namely transverse 

displacement of the cross-section measured about the neutral axis and the rotation of the cross-

section measured about the neutral axis. In this present study, an approximate analytical 

solution of the transverse response of a simply supported damped shear beam resting on bi-

parametric elastic subgrade when under the action of moving load travelling at constant 

velocity is obtained. Both the beam and elastic foundation models were assumed to be 

homogeneous. Effects of axial force, shear modulus, foundation stiffness and some other vital 

structural parameters on dynamic behaviour of a beam-like structural member carrying moving 

load are investigated. The conditions under which the beam-load system will experience 

resonance phenomenon and speeds at which this may occur are also established. 

Problem Statement  

The equations governing transverse displacement (deflection) of shear beam on elastic 

foundation and under the action of moving load are based on the following assumptions: 

(a) The material is linearly elastic and the beam is homogeneous at any cross-section 

(prismatic) 

(b) The x - y plane is the principal plane. 

(c) There is an axis of the beam that undergoes no extension or contraction. The x-axis is 

located along this neutral axis. 

(d) Plane section remains plain after bending but is no longer normal to the longitudinal axis. 

(e) The effect of shear deformation is considered. 

(f) The beam is simply supported (Pin-Pin ends). 

(g) The applied moving load is concentrated. 

(h) The damping, prestressed and foundation parameters are all linear. 
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MATHEMATICAL MODEL 

The shear beam investigated in the present study is finite and uniform. The governing equations 

of motion describing the transverse displacement 𝑉(𝑥, 𝑡) and rotation of the cross-section, 

𝑊(𝑥, 𝑡) of a finite damped shear beam resting on bi-parametric elastic foundation and 

subjected to moving load travelling at constant velocity are second order simultaneous partial 

differential equations given by 

𝜕

𝜕𝑥
[𝐾∗𝐺∗𝐴 (𝑊(𝑥, 𝑡) −

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
 )]  +  𝜇

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑡2
− 𝑁𝑓

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
− 𝐶

𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
 + 𝐹𝑟(𝑥, 𝑡)

= 𝑃(𝑥, 𝑡) 

(1) 

 

𝜕

𝜕𝑥
( 𝐸𝐼

𝜕𝑊(𝑥, 𝑡)

𝜕𝑥
) − 𝐾∗𝐺∗𝐴 (𝑊(𝑥, 𝑡)  −  

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
 ) = 0 (2) 

where 𝜇 is the mass per unit length of the beam, 𝐾∗ is the shear correction factor, 𝐺∗ is the 

shear parameter of the beam, 𝐴 is the cross-sectional area of the beam, 𝑁𝑓 is the axial force, 𝐶 

is the coefficient of viscous damping per unit length of the beam, 𝐸 is the Young modulus of 

elasticity of the beam material, I is the moment of inertia,  EI is the flexural stiffness / rigidity, 

x is the spatial coordinate, t is the time coordinate, 𝐹𝑟(𝑥, 𝑡) is the foundation reaction and 

𝑃(𝑥, 𝑡) is the moving load acting on the beam per unit length. The relationship between the 

foundation reaction 𝐹𝑟(𝑥, 𝑡) and lateral deflection 𝑉(𝑥, 𝑡) is given by  

   𝐹𝑟(𝑥, 𝑡) = 𝐾𝑉(𝑥, 𝑡) − 𝐺
𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
    

(3) 

 

where 𝐾 and 𝐺 are two parameters of the foundation model. Specifically, 𝐾 is the Foundation 

Stiffness  

and 𝐺 is the Shear Modulus.  

In this study, it is assumed that the load function 𝑃(𝑥, 𝑡) is given in the form 

  𝑃(𝑥, 𝑡) = 𝑃0𝛿(𝑥 − 𝑣𝑡).     (4) 

 

𝛿(·) is the well-known Dirac delta function with the property.  

∫ 𝜕(𝑥 − 𝑣𝑡)𝑓(𝑥)𝑑𝑥
𝑎

𝑏

= {   0,            𝑓𝑜𝑟  𝑣𝑡 <  𝑎  <   𝑏,     𝑓(𝑣𝑡),    𝑓𝑜𝑟  𝑎  <  𝑣𝑡

<  𝑏,     1,            𝑓𝑜𝑟   𝑎  <  𝑏 <  𝑣𝑡.     

(5) 

 

 

It is remarked here that the beam under consideration is assumed to have simple support at both 

ends 𝑥 =  0 and 𝑥 =  𝐿. Thus, boundary conditions are given as  
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𝑉(0, 𝑡) = 𝑉(𝐿, 𝑡) = 0,            

𝜕𝑉(0, 𝑡)

𝜕𝑥
=

𝜕𝑉(𝐿, 𝑡)

𝜕𝑥
= 0   𝑊(0, 𝑡) = 𝑊(𝐿, 𝑡)

= 0,
𝜕𝑊(0, 𝑡)

𝜕𝑥
=

𝜕𝑊(𝐿, 𝑡)

𝜕𝑥
= 0 

(6) 

and the initial conditions are given as 

 
𝑉(0, 𝑥) = 0 =

𝜕𝑉(𝑥, 0)

𝜕𝑡
𝑊(0, 𝑥) =  0 =

𝜕𝑊(𝑥, 0)

𝜕𝑡
 

              

(7) 

Substituting (3) and (4) into (1), after some simplifications and re-arrangements, Equations  

(1) and (2) become 

𝜕

𝜕𝑥
[𝐾∗𝐺∗𝐴 (𝑊(𝑥, 𝑡) −

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
 )]  +  𝜇

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑡2
− 𝑁𝑓

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
− 𝐶

𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
 + 𝐾𝑉(𝑥, 𝑡)

− 𝐺
𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
= 𝑃0𝛿(𝑥 − 𝑣𝑡) 

(8) 

 

and 

𝜕

𝜕𝑥
( 𝐸𝐼

𝜕𝑊(𝑥, 𝑡)

𝜕𝑥
) − 𝐾∗𝐺∗𝐴 (𝑊(𝑥, 𝑡)  −  

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
 ) = 0 

(9) 

 

(8) 𝑎𝑛𝑑(9) are the second order partial differential equations governing the flexural motion of 

the structurally damped shear beam resting on bi-parametric elastic foundation and subjected 

to moving load travelling at constant velocity. 

 

SOLUTION PROCEDURES 

To find the analytical solution of the initial boundary value problem in (8) and (9), the finite 

Fourier transformation method is employed alongside the Laplace Transform. Hence, we 

provide the following definition and theorem: 

Definition 1: The finite Fourier sine transform 𝑢(𝑛, 𝑡) of a function 𝑈(𝑥, 𝑡) is defined as 

𝑢(𝑛, 𝑡) = ∫ 𝑈(𝑥, 𝑡) 𝑠𝑖𝑛 𝑠𝑖𝑛 
𝑛𝜋𝑥

𝑙
 𝑑𝑥 

𝑙

0

 
(10) 

 

 

and the inverse transform is 

    𝑈(𝑥, 𝑡) =
2

𝑙
∑ 𝑢(𝑛, 𝑡) 𝑠𝑖𝑛 𝑠𝑖𝑛 

𝑛𝜋𝑥

𝑙
 𝑑𝑥.     

∞

𝑛=1

  
(11) 
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Definition 2: The finite Fourier cosine transform 𝑢0(𝑛, 𝑡) of a function 𝑈0(𝑥, 𝑡) is defined as 

    𝑢0(𝑛, 𝑡) = ∫ 𝑈0(𝑥, 𝑡) 𝑐𝑜𝑠 𝑐𝑜𝑠 
𝑛𝜋𝑥

𝑙
 𝑑𝑥   

𝑙

0

 
(12) 

 

and the inverse transform is 

      𝑈0(𝑥, 𝑡) =
2

𝑙
∑ 𝑢0(𝑛, 𝑡) 𝑐𝑜𝑠 𝑐𝑜𝑠 

𝑛𝜋𝑥

𝑙
 𝑑𝑥.  

∞

𝑛=1

  
(13) 

 

Definition 3: The Laplace transform 𝐹(𝑠) of a function 𝑓(𝑡) is defined as  

      𝐿(𝑓(𝑡)) = 𝐹(𝑠) = ∫ 𝑓(𝑡) 𝑒−𝑠𝑡𝑑𝑡 .  
∞ 

0

 
(14) 

 

Theorem 1: The convolution theorem states that  

      𝐿−1{𝐹(𝑠)𝐺(𝑠)} =  𝐹(𝑠) ∗ 𝐺(𝑠) = ∫ 𝑓(𝑡 − 𝑢)𝑔(𝑢)𝑑𝑢.
𝑡 

0

 
(15) 

 

where 𝐹(𝑠) and 𝐺(𝑠) are the Laplace transforms of 𝑓(𝑡) and 𝑔(𝑡) respectively.    

Thus, applying (10) and (12) to the governing equations (8) and (9) respectively, in conjunction  

with the Dirac delta function property in (5), we obtain 

 

𝜇
𝜕2𝑉𝑛(𝑡)

𝜕𝑡2
+ [(

𝑛𝜋

𝐿
)

2

(𝑁𝑓 + 𝐺) − 𝐾] 𝑉𝑛(𝑡) − (
𝑛𝜋

𝐿
) 𝐾∗𝐺∗𝐴

𝜕𝑊𝑛(𝑡)

𝜕𝑥
− 𝐶

𝜕𝑉𝑛(𝑡)

𝜕𝑡
= 𝑃0 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃𝑛 𝑡     

(16) 

 

and 

−𝐸𝐼 (
𝑛𝜋

𝐿
)

2

𝑊𝑛(𝑡) + 𝐾∗𝐺𝐴 (
𝑛𝜋

𝐿
𝑉𝑛(𝑡) − 𝑊𝑛(𝑡)) = 0     

(17) 

 

where 

𝜃𝑛 =
𝑛𝜋𝑣

𝐿
 

Then from Equation (17), we have 
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𝑊𝑛(𝑡) =

𝑛𝜋
𝐿 𝐾∗𝐺𝐴

𝐸𝐼 (
𝑛𝜋
𝐿 )

2

+ 𝐾∗𝐺∗𝐴
𝑉𝑛(𝑡) 

(18) 

 

Now substituting (18) into (16), we have 

𝜇
𝜕2𝑉𝑛(𝑡)

𝜕𝑡2
+ [(

𝑛𝜋

𝐿
)

2

(𝑁𝑓 + 𝐺) − 𝐾] 𝑉𝑛(𝑡) − (
𝑛𝜋

𝐿
) 𝐾∗𝐺∗𝐴

𝜕

𝜕𝑥
(𝛾𝑛𝑉𝑛(𝑡)) − 𝐶

𝜕𝑉𝑛(𝑡)

𝜕𝑡
= 𝑃0 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃𝑛 𝑡     

(19) 

 

where 

𝛾𝑛 =

𝑛𝜋
𝐿 𝐾∗𝐺∗𝐴

𝐸𝐼 (
𝑛𝜋
𝐿 )

2

+ 𝐾∗𝐺∗𝐴
 

 

(20) 

 

The term involving the derivative with respect to 𝑥 in (19) vanishes as 𝑉𝑛(𝑡) is a function of 𝑡 

alone and after some simplifications and re-arrangements, we obtain 

𝜇𝑉�̈�(𝑡) + [(
𝑛𝜋

𝐿
)

2

(𝑁0 + 𝐺0) − 𝐾0 − 𝛾𝑛 (
𝑛𝜋

𝐿
) 𝐾∗𝐺𝐴] 𝑉𝑛(𝑡) − 𝐶𝑉�̇�(𝑡) = 𝑅0 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃𝑛 𝑡     

(21) 

 

Thus, (21) simplifies to 

𝑉�̈�(𝑡) + 𝛼𝑎1𝑉�̇�(𝑡) + 𝛼𝑎4𝑉𝑛(𝑡) = 𝑅0 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃𝑛 𝑡     (22) 

 

where   

     𝛼𝑎1 =  −
𝐶

𝜇
, 𝛼𝑎4 =

(
𝑛𝜋
𝐿 )

2
(𝑁0 + 𝐺0) − 𝐾0 − 𝛾𝑛 (

𝑛𝜋
𝐿 ) 𝐾∗𝐺𝐴

𝜇
, 𝑅0 =  

𝑃0

𝜇
 

 

Next, we subject (22) to Laplace transformation (14), namely  

  𝐿(𝑓(𝑡)) = 𝐹(𝑠) = ∫ 𝑓(𝑡) 𝑒−𝑠𝑡𝑑𝑡    
∞ 

0

 
(23) 

 

where 𝑠 is the Laplace parameter. In view of (23), (22) becomes 

  𝑠2�̃�(𝑛, 𝑠) + 𝛼𝑎1𝑠�̃�(𝑛, 𝑠) + 𝛼𝑎4�̃�(𝑛, 𝑠) = 𝑅0 [
𝜃𝑛

𝑠2 + 𝜃𝑛
2 ] 

(24) 
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After simplification and rearrangement, we obtain the simple algebraic equation given by 

 �̃�(𝑛, 𝑠) = 𝑅0 [
1

𝑠2 + 𝛼𝑎1𝑠+𝛼𝑎4
 ] [

𝜃𝑛

𝑠2 + 𝜃𝑛
2 ] 

(25) 

 

which is further simplified to give 

 �̃�(𝑛, 𝑠) = 𝑅0 [
1

(𝑠 +
𝛼𝑎1

2 )
2

+ 𝑝2

 ] [
𝜃𝑛

𝑠2 + 𝜃𝑛
2 ] 

(26) 

 

 

where 

  𝑝2 = 𝛼𝑎4 − (
𝛼𝑎1

2
)

2

. 
(27) 

 

In order to obtain the Laplace inversions of (26), we set 

𝐹(𝑠) = [
1

(𝑠 +
𝛼𝑎1

2 )
2

+ 𝑝2

 ] 
 

 

and  

𝐺(𝑠) = [
𝜃𝑛

𝑠2 + 𝜃𝑛
2 ] 

so that the Laplace inversion of (26) is the convolution of 𝐹(𝑠) and 𝐺(𝑠) defined by  (15) 

𝐹(𝑠) ∗ 𝐺(𝑠) = ∫ 𝑓(𝑡 − 𝑢)𝑔(𝑢)𝑑𝑢
𝑡 

0

.    
(28) 

 

 

Noting that  

𝐿−1[𝐹(𝑠)] =
1

𝑝
 𝑒𝑥𝑝 𝑒𝑥𝑝  (−

𝛼𝑎1

2
𝑡)  𝑠𝑖𝑛 𝑠𝑖𝑛 (𝑝𝑡)  

    

(29) 

 

and  

  𝐿−1[𝐺(𝑠)] =𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃𝑛𝑡)  

    

(30) 

 

Now using (29) and (30) in (28), (26) becomes 
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  𝑉(𝑛, 𝑡) = {𝛽2 [𝑃 𝑒𝑥𝑝 𝑒𝑥𝑝  (
𝛼𝑎1

2
𝑡)  𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃𝑛𝑡)   − 𝜃𝑛 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑃𝑡 ]    

+  𝛽0 [𝑃 𝑒𝑥𝑝 𝑒𝑥𝑝  (
𝛼𝑎1

2
𝑡)  𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃𝑛𝑡)   +  𝜃𝑛 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝑃𝑡) ]  

−  𝛼𝑎1𝑃𝜃𝑛 [𝑒𝑥𝑝 𝑒𝑥𝑝  (
𝛼𝑎1

2
𝑡)  𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃𝑛𝑡)  −𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑃𝑡) ]}

×
𝑅0 𝑒𝑥𝑝 𝑒𝑥𝑝 (− 

𝛼𝑎1

2 𝑡) 

𝑃(𝛽1 −  𝛽0)(𝛽2 −  𝛽0)
 

    

(31) 

 

where 

𝛽1 = (𝑃 + 𝜃𝑛)2,   𝛽2 = (𝑃 −  𝜃𝑛)2,     𝛽0 = − (
𝛼𝑎1

2
)

2

. 

Thus, in view of (11), one obtains 

𝑉(𝑥, 𝑡) =  
2

𝐿
∑ {𝛽2 [𝑃 𝑒𝑥𝑝 𝑒𝑥𝑝 ( 

𝛼𝑎1

2
𝑡)  𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃𝑛𝑡  − 𝜃𝑛 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑃𝑡 ]  + 𝛽0 [𝑃

∞

𝑛=1

𝑒𝑥𝑝 𝑒𝑥𝑝 ( 
𝛼𝑎1

2
𝑡)  𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃𝑛𝑡)  + 𝜃𝑛 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝑃𝑡) ]  

−  𝛼𝑎1𝑃𝜃𝑛 [𝑒𝑥𝑝 𝑒𝑥𝑝 ( 
𝛼𝑎1

2
𝑡)  𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃𝑛𝑡)  −𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑃𝑡) ]}  

×
𝑅0 𝑒𝑥𝑝 𝑒𝑥𝑝 (− 

𝛼𝑎1

2 𝑡) 

𝑃(𝛽1 −  𝛽0)(𝛽2 −  𝛽0)
𝑠𝑖𝑛 𝑠𝑖𝑛 

𝑛𝜋𝑥

𝐿
     

(32) 

 

which represents the transverse displacement to the moving load of prestressed damped shear 

beam resting on bi-parametric elastic foundation.   

 

DISCUSSION OF THE CLOSED-FORM SOLUTION 

Resonance in a dynamical system is of great concern in design engineering and engineering 

analysis; hence, it is pertinent to establish the condition under which resonance occurs. 

Resonance takes place when the motion of the vibrating system becomes unbounded, that is, 

the point at which transverse displacement of an elastic beam increases without limit. In actual 

practice, when this happens, the structure would collapse as the intensive vibration causes 

cracks or permanent deformation in the vibrating structures. It is clearly seen from Equation 

(32) that the simply supported uniform damped shear beam resting on bi-parametric elastic 

foundation and traversed by moving load considered in this study reaches a state of resonance 

whenever 

 𝛽1 = 𝛽0   𝑜𝑟    𝛽2 = 𝛽0      (33) 

 

The velocity at which resonance may occur, termed the critical velocity associated with the 

conditions (33) respectively, are given as 
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𝑉𝑐𝑟
1 =  

𝐿

𝑛𝜋
[√𝛽0 −  √𝛼𝑎5 + 𝛽0 ] 

(34) 

 

and 

   𝑉𝑐𝑟
2 =  

𝐿

𝑛𝜋
[√𝛼𝑎5 + 𝛽0  −  √𝛽0].   

(35) 

 

 

NUMERICAL RESULT AND DISCUSSION 

The uniform damped shear beam of length 𝐿 = 12.192 𝑚 is considered in order to illustrate 

the analysis presented in this study. The load is assumed to travel along the beam with constant 

velocity 𝑉 =  8.128 𝑚/𝑠, Young modulus of elasticity 𝐸 = 2.10924 × 109 𝐾𝑔/𝑚, moment 

of inertia I = 2.87698×10-3, 𝜋 =  22/7, the damping coefficient 𝐶 = 3000 and the mass per 

unit length of the beam µ =  2758.291𝑘𝑔/𝑚. The values of foundation stiffness K and shear 

modulus G are varied between 0 𝑁/𝑚3 𝑎𝑛𝑑 4 ×  107 𝑁/𝑚3. Also, the values of axial force 

𝑁𝑓 are varied between 0𝑁 and 4 ×  108 𝑁. The transverse displacement 𝑉 of the beam is 

calculated and plotted against time 𝑡 for various values of axial force 𝑁𝑓, foundation stiffness 

K, shear modulus G, load position 𝐿𝑝, circular frequency CF and the load velocity V. The 

results are as shown on the various graphs given below. 

Figure 1 depicts the displacement response of a simply supported uniform damped shear beam 

under the action of moving load travelling at constant velocity for various values of axial force 

𝑁𝑓 and for fixed values of foundation stiffness K=400000, 𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝐺 =
40000000 and the damping coefficient 𝐶 = 3000.   The graph shows that as the value of axial 

force 𝑁𝑓 increases, the deflection of the beam decreases noticeably. 

The deflection profile of a simply supported uniform damped shear beam subjected to moving 

load travelling at constant velocity for various values of foundation stiffness K is presented in 

Figure 2. It is observed that for fixed values of axial force 𝑁𝑓 = 

40000000, 𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝐺 = 40000000 and the damping coefficient 𝐶 = 3000, a higher 

value of foundation stiffness K reduces the transverse displacement of the vibrating beam 

considerably. 

In the same vein, a similar graph is plotted against various values of time t in Figure 3 for a 

simply supported uniform damped shear beam under moving load travelling at constant 

velocity for various values of shear modulus G and for fixed values of axial force 

𝑁𝑓 =40000000, 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝐾 = 40000000, and the damping coefficient 𝐶 =
3000. It is clearly noted that the deflection of the beam decreases significantly with an increase 

in the value shear modulus G.  

The response of a simply supported uniform damped shear beam subjected to moving load 

travelling at constant velocity for various values of the load position coordinate Lp and for 

fixed values of other parameters is displayed in Figure 4. It is deduced from the figure that the 

dynamic deflection at the mid-span of the beam is very large compared to other load positions.  

For various values of circular frequency CF and for fixed values of other parameters, Figure 5 
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shows the deflection profile of the vibrating damped shear beam. It is evident from the curve 

that the higher the value of the circular frequency, the lower the deflection of the beam. 

The response amplitude of the uniform damped shear beam to the travelling load for various 

load velocities is presented in Figure 6. It is clearly seen from the figure that the higher the 

speed of the travelling load the larger, the deflection of a simply supported uniform damped 

shear beam. 

 

Figure 1: The displacement response of a simply supported uniform damped shear beam under 

the action of moving load travelling at constant velocity for various values of axial force 𝑁 and 

for fixed values of K = 400000, 𝐺 = 40000000  and 𝐶𝑜 = 3000.    

Figure 2: The displacement response of a simply supported uniform damped shear beam under 

the action of moving load travelling at constant velocity for various values of foundation 

stiffness K and for fixed values of 𝑁𝑓 = 40000000, 𝐺 = 40000000  and 𝐶 = 3000. 
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Figure 3: The displacement response of a simply supported uniform damped shear beam under 

the action of moving load travelling at constant velocity for various values of 

𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝐺  and for fixed values of 𝑁𝑓 = 40000000, 𝐾 = 40000000  and 𝐶 = 3000. 

 

Figure 4: The response amplitude of a simply supported uniform damped shear beam under 

the action of moving load travelling at constant velocity for various values of load position Lp 

and for fixed values of 𝑁𝑓 = 40000000, 𝐾 = 40000000,  𝐺 = 40000000 and 𝐶 = 3000.    

 

 

 

 

 

 

 

Figure 5: The response amplitude of a simply supported uniform damped shear beam under 

the action of moving load travelling at constant velocity for various values of circular frequency 
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Cf and for fixed values of 𝑁𝑓 = 40000000,   𝐾 = 40000000,  𝐺 = 40000000 and 𝐶𝑜 =
3000. 

   

Figure 6: The response amplitude of a simply supported uniform damped shear beam under 

the action of moving load travelling at constant velocity for various values of load velocity V 

and for fixed values of 𝑁 = 40000000,   𝐾 = 40000000,  𝐺 = 40000000 and 𝐶 = 3000. 

 

CONCLUSION 

This paper investigates the dynamic behaviour of a damped shear beam resting on bi-

parametric elastic foundation when under the moving load. The governing equations are 

coupled second order partial differential equations. Solution procedure, involving finite Fourier 

transform technique and Laplace transformation in conjunction with convolution theory is used 

to obtain the solution of the coupled second order partial differential equations describing the 

motion of the beam-load system. Detailed analyses are performed to investigate the effect of 

some pertinent structural parameters such as axial force Nf, foundation stiffness K and shear 

modulus G on dynamic deflection of the beam. It is evident from the plotted curves that the 

presence of these structural parameters contributes immensely to the stability of the beam when 

traversed by the travelling load. The study shows that the deflection of the beam reduces 

significantly with increased axial force, shear modulus and stiffness of the foundation. Also, it 

shows that the dynamic deflection at the mid-span of the beam is very large compare to other 

load positions. The study reveals that the higher the value of the circular frequency, the lower 

the deflection of the beam. The study further reveals that the higher the speed of the travelling 

loads, the larger the deflection of a simply supported uniform damped shear beam. 

Consequently, the study further established the conditions under which the beam-load system 

will experience resonance phenomenon and the speeds at which this may occur. 
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