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ABSTRACT: In this work we investigated the optimization of an 

insurer’s investment strategy and the proportional reinsurance 

rate of his portfolio under power utility preference in the cases of 

correlated and uncorrelated Brownian motions. The market in 

which the insurer traded two assets; a risky asset whose price 

process was governed by the geometric Brownian motion (GBM) 

and riskless asset that had its price driven by the Ornstein-

Uhlenbeck stochastic model. We derived the required Hamilton-

Jacobi-Bellman Equation (HJB) by applying the maximum 

principle of dynamic programming and the elimination of 

dependency on variables was used to obtain the analytic solutions 

of optimized investment strategy and the proportional reinsurance 

rate. 
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INTRODUCTION 

Insurance is one of the social sciences designed for risk taking. People are, on a daily basis, 

exposed to an uncountable number of risks affecting them and their properties. By paying a 

fixed cost called insurance premium to the reinsurer, the insurer transfers his risks to an insurer. 

The insurer who gives insurance to another insurer is called the reinsurer. To balance their 

profit and risk both the insurers and reinsurers use investment and reinsurance. A transaction 

where the reinsurer agrees to indemnify an insurer against all or some of the loss that the latter 

may sustain under a policy or policies that he has issued having been paid the required premium 

is called reinsurance. 

Among the many contributors who have studied the maximization or minimizing the 

probability of ruin of the utility of terminal value for the insurer is Brown [1]. Brown 

contributed by giving an analytic solution to the problem of a firm that maximized her 

exponential utility of terminal wealth and minimized the probability of ruin where surplus 

process is given by Lundberg risk model. 

The problem of optimal reinsurance-investment in a stock market where the risky asset 

followed the constant elasticity of variance and Jump-diffusion risk model was done by Zhibin 

and Bayraktar [2]. They obtained an explicit expression for the optimal strategies and value 

function which they demonstrated using numerical examples to express the impact of model 

parameters on the optimal strategies.  

Yang and Jiaqin [3] studied the optimal investment-consumption-insurance problem where a 

random parameter was involved. They discussed the optimal investment, consumption, and life 

insurance purchase problem for a wage earner in the market, complete with a stream of 

Brownian motion. 

The work of Deng et al. [4] gave a solution to the optimal proportional reinsurance and 

investment for a constant elasticity of variance model under variance principle. They assumed 

that the insurer’s surplus process followed a jump-diffusion process. In this work it was 

assumed that the insurer can purchase proportional reinsurance through the variance principle 

and invest in a risk-free asset and a risky asset whose price is modeled by a CEV model. They 

obtain the techniques of stochastic control theory and closed—form expression for the value 

functions and optimal strategies.  

The case of annuity contracts under the constant elasticity of variance (CEV) model was 

studied by Jianwei [5].  He derived the explicit solution for the power and exponential utility 

functions in two different periods, before and after retirement for the optimal investment 

strategy. 

For the optimal portfolios of an insurer and a reinsurer under proportional reinsurance and 

power utility preference in which the insurer’s and the reinsurer’s surplus processes were 

approximated by geometric Brownian motion with drift was investigated by Ihedioha and Osu 

[6]. 

Li et al. [7] studied a time-consistent reinsurance-investment strategy for a mean-variance 

insurer under stochastic interest rate model and inflation risk and derived the time-consistent 

reinsurance-investment strategies as well as the corresponding value function for the mean-

variance problem explicitly using numerical example. 



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 7, Issue 4, 2024 (pp. 134-146) 

136  Article DOI: 10.52589/AJMSS-9OSUNXJT 

  DOI URL: https://doi.org/10.52589/AJMSS-9OSUNXJT 

www.abjournals.org 

The case of optimal proportional reinsurance under the criteria of maximizing the expected 

utility and minimizing the value at risk was studied by Zhibin and Guo [8]. They proved the 

existence and uniqueness of the optimal strategies and Pareto optimal solution. They also 

obtained a relationship between the optimal strategies.  

The case of proportional reinsurance and investment strategies in which the claim process is 

assumed to follow a Brownian motion with drift and the price process of the risky asset 

described by the constant elasticity of variance model was investigated and optimal solutions 

obtained for the reinsurance and investment strategies by Gu et al. [9].  

This study considered the case of an insurer who traded two assets in a complete market where 

the risky asset was governed by the geometric Brownian motion and the risk-less asset’s rate 

of return driven by the Ornstein–Uhlenbeck model. The impact of the correlation of the 

Brownian motions on the insurer’s optimal investment strategy and reinsured proportion rate 

shall be examined. We shall use the maximum principle of dynamic programming to obtain 

the Hamilton-Jacob-Bellman (HJB) equation from which we shall obtain the reinsurer’s 

optimal investment in the risky and the optimal reinsured proportion rate and investigate the 

implications of the correlation of the Brownian motions. 

PREAMBLES 

Brownian Motion 

Brownian motion is regarded as a simple continuous stochastic process that is widely used in 

finance and physics for modeling random behavior that evolves over time. An example of such 

behavior is the random movements of molecules of gas or fluctuation in an asset's price.  

In mathematics, Brownian motion is described by the Wiener process as a continuous-time 

stochastic process named in honor of Norbert Wiener. 

The Wiener process 𝑊𝑡 is characterized by the following four facts; 

1. 𝑊0 = 0 

2. 𝑊𝑡 𝑖𝑠 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 

3. 𝑊𝑡 ℎ𝑎𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 

4. 𝑊𝑡 − 𝑊𝑠 ~ 𝑁(0, 𝑡 − 𝑠), (𝑓𝑜𝑟 0 ≤ 𝑠 ≤ 𝑡) 

𝑁(𝜇, 𝜎2) denotes the normal distribution with expected value of 𝜇 and variance (𝜎2).The 

condition that it has independent increment means that if 0 ≤ 𝑠1 ≤ 𝑡1 ≤ 𝑠2 ≤ 𝑡2 then 𝑊𝑡1
−

𝑊𝑠1
 𝑎𝑛𝑑 𝑊𝑡2

− 𝑊𝑡2
 are independent random variables. 

Geometric Brownian Motion 

A stochastic process 𝑆(𝑡) is said to follow a geometric Brownian motion if it satisfies the 

following stochastic differential equation (SDE) 

𝑑𝑆(𝑡) = 𝑆(𝑡)[𝜇𝑑𝑡 + 𝜎𝑑𝑍(𝑡)]  

where 𝑍(𝑡) is a Wiener process or Brownian motion, 𝜇 and 𝜎 are constants. 
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Ornstein-Uhlenbeck Model 

The Ornstein-Uhlenbeck process is one of the several approaches used to model (with 

modifications) interest rate, and commodity price stochastically. An Ornstein-Uhlenbeck 

process 𝑥(𝑡), satisfies the following stochastic differential equation:  

𝑑𝑥(𝑡) = 𝜃(𝜇 − 𝑥(𝑡))𝑑𝑡 + 𝜎𝑑𝑍(𝑡)  

where 𝜃 > 0, 𝜇 𝑎𝑛𝑑 𝜎 > 0 are parameters and 𝑑𝑍(𝑡)denotes the Wiener process. It is also 

mentioned as Vasicek model. 

Dynamic Programming 

Dynamic programming or recursive optimization is a technique that is used for obtaining 

solutions for multistage decision problems. There is no standard mathematical formulation of 

the dynamic programming for each problem depending on the variable given, and the objective 

of the problem, one has to develop a particular equation to fit for solution. Nowadays, 

applications of dynamic programming are done in almost day-to-day managerial problems, 

such as inventory problems, waiting line problems, resource allocation and so on. Dynamic 

programming may be classified depending on the nature of data available as deterministic and 

stochastic or probabilistic models. In deterministic models, the outcome at any decision stage 

is uniquely determined and known. This technique was developed by Richard Bellman in the 

early (1950) principle of optimality: this principle implies that a wrong decision taken at a stage 

does not prevent from taking optimal decision for the remaining stages. That principle is the 

firm base for dynamic programming technique. 

Maximum Principle 

Maximum principle is used in optimal control theory to find the base possible control for taking 

a dynamical system from one state to another, especially in the presence of constraints for the 

state or input controls. It was formulated in (1956) by the Russian mathematician Lev 

Pontryagin and his students. It has as a special case the Euler-Lagrange equation of the calculus 

variations. The principle states, informally, that the control Hamiltonian must take an extreme 

value over control in the set of all admissible controls. Whether the extreme value is maximum 

or minimum depends both on the problem and on the sign convention used to define the 

Hamiltonian. The normal convention, which is the one used in Hamiltonian, leads to a 

maximum hence maximum principle but the sign convention used in this article makes the 

extreme value a minimum. 

If 𝑢 is the set of values of permissible control, then the principle states that the optimal control 

𝑢∗ must satisfy: 𝐻(𝑥∗(𝑡), 𝑢∗(𝑡), 𝜆∗(𝑡), 𝑡)  ≤ 𝐻(𝑥∗(𝑡), 𝑢, 𝜆∗(𝑡), 𝑡), ∀ 𝑢 ∈ 𝑈, 𝑡 ∈ [𝑡𝑜 , 𝑡𝑓], 

where𝑥∗ ∈ 𝑐1[𝑡𝑜 , 𝑡𝑓] is the optimal state trajectory (a special type of optimization problem 

where the decision variables are functions rather than real numbers) and 𝜆∗ ∈ 𝐵 ∨ [𝑡𝑜 , 𝑡𝑓] is the 

optimal costate trajectory. 
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Hamilton-Jacobi-Bellman (HJB) Equation 

This is a partial differential equation which is central to optimal control theory. The solution 

of the HJB equation is the value function which gives the minimum cost for a given dynamical 

system with an associated cost function. When solved locally, the Hamilton-Jacobi-Bellman is 

a necessary condition, but when solved over the whole of state space, the HJB equation is a 

necessary and sufficient condition for an optimum. The solution is open loop, but it also permits 

the solution of the closed loop problem. The Hamilton-Jacobi-Bellman equation can be 

generalized to the stochastic system as well. The equation is a result of the theory of dynamic 

programming which was pioneered in the year (1950’s) by Richard Bellman and co-workers. 

Insurance 

Insurance is a contract, represented by a policy, in which an individual or entity receives 

financial protection or reimbursement against losses from an insurance company. The company 

pools clients” risks to make payments more affordable for the insured – (retrieved from 

http://www.investopedia.com/terms/i/insurance.asp) 

Reinsurance  

Reinsurance, often referred to as “insurance for insurance companies,” is a contract between a 

reinsurer and an insurer. In this contract, the insurance company—the cedent—transfers risk 

to the reinsurance company, and the latter assumes all or part of one or more insurance policies 

issued by the cedent. Reinsurance contracts may be negotiated with a reinsurer or arranged 

through a third party; i.e., a reinsurance broker or intermediary. Reinsurers may also buy 

reinsurance protection, which is called “retrocession.” This is done to reduce any further spread 

risk and the impact of catastrophic loss events-(retrieved from https://content.naic.org/cipr-

topics/reinsurance) 

Insurance Company 

 A company that provides coverage in the form of compensation resulting from loss, damages, 

injury, treatment or hardship in exchange for premium payments is called an insurance 

company. An insurance company calculates the risk of occurrence then determines the cost to 

replace (pay for) the loss to determine the premium amount. 

 

THE MARKET AND MODEL FORMULATION 

Assuming an insurance company has a claim process 𝐶(𝑡) at time 𝑡, described by 

𝑑𝐶(𝑡) = 𝛼𝑑𝑡 − 𝛽𝑑𝑍1(𝑡),                              (1)   

where 𝛼 and 𝛽 are positive constants with 𝑍1(𝑡) a standard Brownian motion in a complete 

probability space {𝛺, 𝐹, (𝐹𝑡), ℘}. If the premium rate is given as  

𝑝 = (1 + 𝜃)𝛼,                              (2) 

with security rise premium (safety loading) 𝜃 > 0, using equation (1), the surplus process of 

the company is given by 

about:blank
https://content.naic.org/cipr-topics/reinsurance
https://content.naic.org/cipr-topics/reinsurance
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𝑑𝑆𝑝(𝑡) = 𝑝𝑑𝑡 − 𝑑𝐶(𝑡)  

 = 𝛼𝜃𝑑𝑡 + 𝛽𝑑𝑍1(𝑡).                             (3)  

Since the insurance company is permitted to purchase proportional reinsurance to reduce rise 

and pay reinsurance premium 𝑟(𝑡) continuously at the rate (1 + 𝜆)𝛼𝜓(𝑡) with 𝜆 > 𝜃 > 0 is 

the security risk premium of the reinsurer and 𝜓(𝑡) is the proportion measured at time 𝑡, the 

surplus of the company is then given as 

𝑑𝑆𝑝(𝑡) = (𝜃 − 𝜆𝜓(𝑡))𝛼𝑑𝑡 + 𝛽(1 − 𝜓(𝑡))𝑑𝑍1(𝑡) ,                           (4) 

Suppose the insurance company invests her surplus in a market consisting of; a risk–free asset 

(bond) and a risky asset (stock), with prices 𝑃𝑏(𝑡) and 𝑃𝑠(𝑡) at time 𝑡 respectively and these 

price processes are driven by Ornstein–Uhlenbeck and geometric Brownian motion models, 

respectively, so that we have 

𝑃𝑏(𝑡) (𝑡) = 𝑟(𝑡)𝑃𝑏(𝑡) 𝑑𝑡,                              (5)   

for the risk–free asset, where 

𝑑𝑟(𝑡) = 𝜎(𝜇 − 𝑟(𝑡))𝑑𝑡 + 𝛿𝑑𝑍2(𝑡),                             (6) 

where 𝜎 is the speed of mean reversion, 𝜇 the mean level attracting the interest rate, 𝛿 the 

constant volatility of the interest rate, 𝑍2(𝑡) is another standard Brownian motion, and 

𝑑𝑃𝑠(𝑡)  = 𝑃𝑠(𝑡) [𝜉𝑑𝑡 + 𝛾𝑑𝑍3(𝑡)],                            (7) 

where 𝜉 and 𝛾 denote the appreciation rate (mean) and the volatility of the risky asset 

respectively 𝑍3(𝑡) is also a standard Brownian motion and, 

𝐶𝑜𝑣(𝑍𝑖(𝑡), 𝑍𝑖(𝑡)) = 𝜌𝑖𝑗𝑡;   𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,3.                          (8)  

The insurance company holds the risky asset as long as 

𝜉 > 𝑟(𝑡).                                    (9) 

Let 𝑋(𝑡) be the amount of money invested in the risky asset by the company at time 𝑡, then the 

amount invested in the risk–free asset at time 𝑡 is the difference [𝑊(𝑡) − 𝑋(𝑡)], where 𝑊(𝑡) 

is the total amount of money for investment. 

The investment strategy [𝜓(𝑡); 𝑋(𝑡)] is said to be admissible if it is 𝐹 − 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 and 

satisfies 0 ≤ 𝜓(𝑡) ≤ 1. That is 

𝐸 [∫ ⬚
1

0
𝑋2(𝑡)𝑑𝑡] < ∞.                               (10) 

For the admissible strategy (𝜓(𝑡), 𝑋(𝑡)), the wealth process of the company is driven by the 

stochastic differential equation (SDE) 

𝑑𝑊(𝑡) =
𝑋(𝑡)𝑑𝑃𝑠(𝑡) 

𝑃𝑠(𝑡) 
+ [𝑊(𝑡) − 𝑋(𝑡)]

𝑑𝑃𝑏(𝑡) 

𝑃𝑏(𝑡) 
+ 𝑑𝑆𝑝(𝑡).                         (11)  

Applying equations (4), (5), and (7) to (11) we get, 
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𝑑𝑊(𝑡) = 𝑋(𝑡)[𝜉𝑑𝑡 + 𝛾𝑑𝑍3(𝑡)] + [𝑊(𝑡) − 𝑋(𝑡)]𝑟(𝑡)𝑑𝑡 +  

                         (𝜃 − 𝜆𝜓(𝑡))𝛼𝑑𝑡 + 𝛽(1 − 𝜓(𝑡))𝑑𝑍1(𝑡) ,                          (12)         

Equation (12) simplifies to 

𝑑𝑊(𝑡) = [(𝜉 − 𝑟(𝑡))𝑋(𝑡) + 𝑟(𝑡)𝑊(𝑡) + (𝜃 − 𝜆𝜓(𝑡))𝛼]𝑑𝑡 +  

                 𝛾𝑋(𝑡)𝑑𝑍3(𝑡) + 𝛽(1 − 𝜓(𝑡))𝑑𝑍1(𝑡),                          (13) 

where 

𝑑𝑡. 𝑑𝑡 = 𝑑𝑡 ∙ 𝑑𝑍1(𝑡) = 𝑑𝑡 ∙ 𝑑𝑍3(𝑡) = 𝑑𝑍1 ∙ 𝑑𝑍3 = 0 𝑑𝑍1 ∙ 𝑑𝑍1 = 𝑑𝑍3 ∙ 𝑑𝑍3 = 𝑑𝑡 } .  

                      (14) 

The quadratic variation of equation (13) is given by 

< 𝑑𝑊(𝑡) > = [𝛾2𝑋2(𝑡) + 𝛽2(1 − 𝑝)2 + 𝜌13𝛾𝛽(1 − 𝜓)]𝑑𝑡.                        (15) 

Other quadratic variations are 

〈𝑑𝑃𝑠(𝑡)〉 = 𝛾2𝑃𝑠
2𝑑𝑡 ,    〈𝑑𝑃𝑠𝑑𝑊(𝑡)〉 = [𝛾2𝑋 + 𝜌13𝛾𝛽(1 − 𝜓)]𝑃𝑠𝑑𝑡 〈𝑑𝑟(𝑡)〉 ≥

𝛿2𝑑𝑡 〈𝑑𝑟(𝑡)𝑑𝑃𝑠(𝑡)〉 ≥ 𝜌23𝛿𝛾𝑝𝑠𝑑𝑡 〈𝑑𝑟(𝑡)𝑑𝑊(𝑡)〉 = [𝜌12𝛿𝛽(1 − 𝜓) + 𝜌23𝛿𝛾𝑋]𝑑𝑡 }. 

                       (16) 

Considering the Arrow–Pratt measure of relative risk aversion (RRA) or the coefficient of 

relative risk aversion for power utility function which is defined as  

𝑅(𝑤) =
−𝑤𝑉"(𝑤) 

𝑉′(𝑤)
,                              (17) 

where 𝑤 is the investment wealth level, we continue our problem investigating the special case 

𝑉(𝑤) =
𝑤1−𝜙

1−𝜙
, 𝜙 ≠ 1,                             (18) 

with 𝜙 as the constant relative risk aversion parameter. 

Theorem 

The insurance company’s optimal investment in the risky asset (stock) is 

𝑃∗
𝑠(𝑡) =

𝜉𝑝𝑠

𝛾2𝜙
+

𝜌23𝛿𝑝𝑠𝐻𝑟

𝛾2𝜙𝐻
+

(1−𝜙)𝛾𝑤𝑝𝑠

𝜙
  

with reinsured portion rate of value 

𝜓∗(𝑡) =
𝜆𝛼𝑤

𝛽2𝜙
+

(1−𝜙)𝜌12𝛿𝑤

𝛽𝜙𝑟
  

when the Brownian motions correlate and 

𝑝𝑠
∗ =

𝑝𝑠

𝜙
[

𝜉

𝛾2 + (1 − 𝜙)𝛾𝑤],         
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as the optimal investment in the risky asset (stock) and the optimized proportional reinsurance 

rate is given as 

𝜓∗ =
𝜆𝛼𝑤

𝛽2𝜙
,  

when the Brownian motions do not correlate.    

Proof:  

We derive the Hamilton–Jacobi–Bellman (HJB) equation beginning with the Bellman 

equation. 

𝑉(𝑡, 𝑟(𝑡), 𝑊(𝑡)) = 𝐸[𝑉(𝑡 + ∆𝑡, )𝑟′(𝑡), 𝑃′
𝑠(𝑡), 𝑊′(𝑡)] ,                                     (20) 

where 𝑊′(𝑡) denotes the insurance company is wealth a time (𝑡 + ∆𝑡). 

Equation (20) can be rewritten as 

𝐸[𝑉(𝑡 + ∆𝑡, )𝑟′(𝑡), 𝑃′
𝑠(𝑡), 𝑊′(𝑡) − 𝑉(𝑡, 𝑟(𝑡), 𝑃𝑠(𝑡), 𝑊(𝑡))] = 0 .                      (21) 

The division of equation (21) by ∆𝑡 and taking limit to zero gives the Bellman equation 

𝐸 [
𝑑𝑉

𝑑𝑡
] = 0 .                             (22) 

The dynamic programming maximum principle states that: 
𝑑2𝑉

𝑑𝑝𝑠
2

(𝑑𝑝𝑠)2 

𝑑𝑉 =
𝜕𝑉

𝜕𝑟
𝑑𝑡 +

𝜕𝑉

𝜕𝑟
𝑑𝑟 +

𝜕𝑉

𝜕𝑊
𝑑𝑊 +

1

2
{

𝜕2𝑉

𝜕𝑟2
(𝑑𝑟)2 +

𝜕2𝑉

𝜕𝑊2
(𝑑𝑊)2} +  

          
𝜕𝑉

𝜕𝑃𝑠
𝑑𝑃𝑠

𝜕2𝑉

𝜕𝑟𝜕𝑊
(𝑑𝑟𝑑𝑊) +

𝜕2𝑉

𝜕𝑟𝜕𝑃𝑠
(𝑑𝑟𝑑𝑃𝑠) +

𝜕2𝑉

𝜕𝑃𝑠𝜕𝑊
(𝑑𝑃𝑠𝑑𝑊).                       (23) 

The application of equations (6), (7), (13), (15) and (16) in (23) gives 

𝑑𝑉 = 𝑉𝑡 + 𝑉𝑟[𝛼(𝜇 − 𝑟)𝑑𝑡 + 𝛿𝑑𝑍2] + 𝑉𝑤{[(𝜉 − 𝑟)𝑥 + 𝑤𝑟 + (𝜃 − 𝑋𝜓)𝛼]𝑑𝑡 + 𝛾𝑥𝑑𝑍3 +
𝛽(1 − 𝜓)𝑑𝑍1} + 𝑉𝑝𝑠[𝑝𝑠(𝜉𝑑𝑡 + 𝛾𝑑𝑍3)] + 𝑉𝑟𝑤[𝜌12𝛿𝛽(1 − 𝜓) + 𝜌23𝛿𝛾𝑋]𝑑𝑡 +

𝑉𝑟𝑝𝑠[𝜌23𝛿𝛾𝑝𝑠𝑑𝑡] + 𝑉𝑤𝑝𝑠[𝛾2𝑝𝑠𝑥𝑑𝑡] +
1

2
{𝑉𝑟𝑟(𝛿2𝑑𝑡) + 𝑉𝑤𝑤(𝛾2𝑥2 + 𝛽2(1 − 𝜓)2)𝑑𝑡 +

𝑉𝑝𝑠𝑝𝑠(𝛾2𝑝𝑠
2𝑑𝑡)}.                               (24)  

Substituting for 𝑑𝑉 in equation (22) using equation (24) and taking expectation yields 

𝑉𝑡 + 𝑉𝑟[𝛼(𝜇 − 𝑟)] + 𝑉𝑤{[(𝜉 − 𝑟)𝑥 + 𝑤𝑟 + (𝜃 − 𝑋𝜓)𝛼]} + 𝑉𝑝𝑠[𝜉𝑝𝑠] + 𝑉𝑟𝑤[𝜌12𝛿𝛽(1 − 𝜓) +

𝜌23𝛿𝛾𝑋] + 𝑉𝑟𝑝𝑠[𝜌23𝛿𝛾𝑝𝑠] + 𝑉𝑝𝑠𝑤[𝛾2𝑝𝑠𝑥] +
1

2
{𝑉𝑟𝑟(𝛿2) + 𝑉𝑤𝑤(𝛾2𝑥2 + 𝛽2(1 − 𝜓)2) +

𝑉𝑝𝑠𝑝𝑠(𝛾2𝑝𝑠
2)} = 0.                              (25) 

Equation (25) is the Hamilton–Jacob–Bellman (HJB) equation. 

Differentiating equation (25) with respect to 𝑝𝑠 gives 

𝜉𝑉𝑝𝑠
+ 𝛿𝛾𝑉𝑟𝑝𝑠

+ 𝛾2
𝑝𝑠

𝑥𝑉𝑤𝑝𝑠
+ 𝑝𝑠𝛾2𝑉𝑝𝑠𝑝𝑠

= 0,                          (26) 
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that modifies to 

𝑝𝑠
∗ = − [

𝜉𝑉𝑝𝑠+𝜌23𝛿𝛾𝑉𝑟𝑝𝑠+𝛾2𝑋𝑉𝑤𝑝𝑠

𝛾2𝑉𝑝𝑠𝑝𝑠

].                            (27) 

Equation (27) is the optimal investment in the risky asset (stock) 

Also, differentiation (25) with respect to 𝜓(𝑡) yields 

−𝜆𝛼𝑉𝑤 − 𝛽2𝜓𝑉𝑤𝑤 − 𝜌12𝛿𝛽𝑉𝑟𝑤 = 0,                           (28) 

which on simplification becomes 

𝛽2𝜓𝑉𝑤𝑤 = −𝜌12𝛿𝛽𝑉𝑟𝑤 − 𝜆𝛼𝑉𝑤 , 

from which obtain 

𝜓∗ =
−[𝜆𝛼𝑉𝑤+𝜌12𝛿𝛽𝑉𝑟𝑤]

𝛽2𝑉𝑤𝑤
.                              (29) 

Equation (29) is the optimal proportional reinsurance rate. 

Equations (27) and (29) contain first and second partial differentials, 𝑉𝑤, 𝑉𝑝𝑠
, 𝑉𝑟𝑝𝑠

, 𝑉𝑤𝑝𝑠
, 𝑉𝑝𝑠𝑝𝑠

, 

and 𝑉𝑤𝑤 that are to be eliminated.   

Therefore, we adopt a solution structure of the form 

𝑉(𝑡, 𝑟, 𝑝𝑠, 𝑤) =
𝑤1−𝜑

1−𝜑
𝐺(𝑡, 𝑟, 𝑝𝑠),                            (30) 

such that at the terminal time 𝑇 

𝐺(𝑇, 𝑟, 𝑝𝑠) = 1.                              (31) 

This conjectured will help in eliminating the dependency on 𝑤.  So, we obtain 

𝑉𝑟𝑝𝑠
=

𝑤1−𝜙

1−𝜙
𝐺𝑟𝑝𝑠

, 𝑉𝑟𝑤 = 𝑤−𝜙𝐺𝑟 , 𝑉𝑝𝑠
=

𝑤1−𝜑

1−𝜑
𝐺𝑝𝑠

, 𝑉𝑝𝑠𝑝𝑠
=

𝑤1−𝜙

1−𝜙
𝐺𝑝𝑠𝑝𝑠

, 𝑉𝑟𝑟 =
𝑤1−𝜙

1−𝜙
𝐺𝑟𝑟 , 𝑉𝑤 =

𝑤−𝜙𝐺, 𝑉𝑤𝑤 = −𝜙𝑤−𝜙−1𝐺, 𝑉𝑤𝑝𝑠
= 𝑤−𝜙𝐺𝑝𝑠

 } .                      (32) 

Applying (30) and (32) in (27) and (29) respectively, we get 

𝑝𝑠
∗ = − [

𝜉
𝑤1−𝜑

1−𝜑
𝐺𝑝𝑠+𝜌23𝛿𝛾

𝑤1−𝜙

1−𝜙
𝐺𝑟𝑝𝑠+𝛾2𝑥𝑤−𝜙𝐺𝑝𝑠

𝛾2𝑤1−𝜙

1−𝜙
𝐺𝑝𝑠𝑝𝑠

].   

       = − [
𝜉𝐺𝑝𝑠

𝛾2𝐺𝑝𝑠𝑝𝑠

+
𝜌23𝛿𝐺𝑟𝑝𝑠

𝛾𝐺𝑝𝑠𝑝𝑠

+
(1−𝜙)𝑥𝑤𝐺𝑝𝑠

𝐺𝑝𝑠𝑝𝑠

],                                (33) 

for the investment in the risky asset and 

𝜓∗ =
−[𝜆𝛼𝑤−𝜙𝐺+𝜌12𝛿𝛽𝑤−𝜙𝐺𝑟]

−𝛽2𝜙𝑤−𝜙−1𝐺
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        =
𝜆𝛼𝑤

𝛽2𝜙
+

𝜌12𝛿𝑤𝐺𝑟

𝛽𝜙𝐺
 ,                             (34) 

for the optimal proportional reinsurance rate. 

Equation (33) and (34) have the first and second partial derivatives, 𝐺𝑝𝑠
, 𝐺𝑟𝑝𝑠

, and 𝐺𝑝𝑠𝑝𝑠
, so we 

conjecture a solution structure of the form 

𝐺(𝑡, 𝑟, 𝑝𝑠) =
𝑝𝑠

1−𝜙

1−𝜙
𝐻(𝑡, 𝑟),                             (35)  

such that at the terminal time, 𝑇 

𝐻(𝑇, 𝑟) =
1−𝜙

𝑝𝑠
1−𝜙

.                              (36)  

We get from Equation (35), that 

𝐺𝑝𝑠
= 𝑝𝑠

−𝜙𝐻, 𝐺𝑝𝑠𝑝𝑠
= −𝜙𝑝𝑠

−𝜙−1𝐻, 𝐺𝑟 =
𝑝𝑠

1−𝜙

1−𝜙
𝐻𝑟 𝐺𝑟𝑝𝑠

= 𝑝𝑠
−𝜙𝐻𝑟  }.                          

(37) 

Applying (35) and (36) in (33), we get 

𝑝𝑠
∗ = − [

𝜉𝑝𝑠
−𝜙𝐻

𝛾2(−𝜙𝑝𝑠
−𝜙−1)𝐻

+
𝜌23𝛿𝑝𝑠

−𝜙𝐻𝑟

𝛾(−𝜙𝑝𝑠
−𝜙−1)𝐻

+
(1−𝜙)𝑥𝑤𝑝𝑠

−𝜙𝐻

(−𝜙𝑝𝑠
−𝜙−1)𝐻

]    

          =
𝜉𝑝𝑠

𝛾2𝜙
+

𝜌23𝛿𝑝𝑠𝐻𝑟

𝛾2𝜙𝐻
+

(1−𝜙)𝛾𝑤𝑝𝑠

𝜙
.                            (38) 

for the optimal investment in the risky asset. 

The optimal proportional reinsurance rate now becomes 

𝜓∗ =
𝜆𝛼𝑤

𝛽2𝜙
+

𝜌12𝛿𝑤
𝑝𝑠

1−𝜙

1−𝜙
𝐻𝑟

𝛽𝜙
𝑝𝑠

1−𝜙

1−𝜙
𝐻

 ,                             (39) 

And simplifies to 

𝜓∗ =
𝜆𝛼𝑤

𝛽2𝜙
+

𝜌12𝛿𝑤𝐻𝑟

𝛽𝜙𝐻
 .                              (40) 

Further equation (38) and (40) contain 𝐻𝑟, a first partial derivative.  Therefore to eliminate the 

dependency on 𝑟  we conjecture that 

𝐻(𝑡, 𝑟) =
𝑟1−𝜙

1−𝜙
𝐾(𝑡) ,                             (41) 

such that 

𝐾(𝑇) =
1−𝜙

𝑟1−𝜙 ,                              (42) 

at the terminal time 𝑇.  
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We obtain from (41) that 

𝐻𝑟 = 𝑟−𝜙𝐾.                             (43)  

Using (39) and (41) in (38) we get 

𝑝𝑠
∗ =

𝜉𝑝𝑠

𝛾2𝜙
+

𝜌23𝛿𝑝𝑠𝑟−𝜙𝐾(𝑡)

𝛾𝜙
𝑟1−𝜙

1−𝜙
𝐾(𝑡)

+
(1−𝜙)𝛾𝑤𝑝𝑠

𝜙
  

      =
𝑝𝑠

𝜙
[

𝜉

𝛾2 +
(1−𝜙)𝜌23𝑝𝑠𝛿

𝛾𝜙𝑟
+ (1 − 𝜙)𝛾𝑤].                          (44)  

This is the optimized amount for investment in the risky asset (stock) which is a function of 

the total amount of money available for investment, the price of the risky asset. 

For the optimal proportional reinsurance rate, we have 

𝜓∗ =
𝑤

𝜙𝛽
[

𝜆𝛼

𝛽
+

(1−𝜙)𝜌12𝛿

𝜙𝑟
] ,                            (45) 

which is a fraction of the total amount of money available for investment in both assets. 

In the case where the Brownian motions do not correlate we have 

𝑝𝑠
∗ =

𝑝𝑠

𝜙
[

𝜉

𝛾2 + (1 − 𝜙)𝛾𝑤],                            (46) 

as the optimal amount of money available for investment in the risky asset (stock). Also the 

optimized proportional reinsurance rate is given as 

𝜓∗ =
𝜆𝛼𝑤

𝛽2𝜙
.                             (47) 

 

FINDINGS 

1. The case of investment strategies: we found the investment strategy in the risky asset is of 

the fraction available for investment in the risky asset and is also dependent on the correlation 

coefficient of second and third Brownian motions.  

2. The reinsurance proportion rate is a function of the amount of money available for 

investment in both assets. 
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CONCLUSION 

The optimal investment problem for an insurer who takes insurance cover is investigated by 

this work. The insurer makes investments in two assets: a risk-free (bond) asset and a risky 

(stock) asset aims at obtaining an optimal investment strategy and optimal proportion rate of 

reinsurance considering the correlation and none correlation of the Brownian motions, when 

power utility preference is adopted 

The application of the maximum principle of dynamic programming led to obtaining the 

required Hamilton-Jacobi-Bellman Equations (HJB). Suitable conjectures towards eliminating 

dependency on variables based on the homogeneity of the objective function, the restriction 

and the terminal condition helped us to find the closed-form solutions to the optimal investment 

strategy and optimal proportional reinsurance rate. 

We found that       𝑝𝑠
∗ =

𝑝𝑠

𝜙
[

𝜉

𝛾2 +
(1−𝜙)𝜌23𝑝𝑠𝛿

𝛾𝜙𝑟
+ (1 − 𝜙)𝛾𝑤].     

   

This is the optimized amount for investment in the risky asset (stock) which is a function of 

the total amount of money available for investment, the price of the risky asset. 

For the optimal proportional reinsurance rate, we have 

𝜓∗ =
𝑤

𝜙𝛽
[

𝜆𝛼

𝛽
+

(1−𝜙)𝜌12𝛿

𝜙𝑟
] ,        

which is a fraction of the total amount of money available for investment in both assets. 

In the case where the Brownian motions do not correlate we have 

𝑝𝑠
∗ =

𝑝𝑠

𝜙
[

𝜉

𝛾2 + (1 − 𝜙)𝛾𝑤],         

as the optimal amount of money available for investment in the risky asset (stock). Also the 

optimized proportional reinsurance rate is given as 

𝜓∗ =
𝜆𝛼𝑤

𝛽2𝜙
.          
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