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ABSTRACT: This study investigates the conjugate impacts of 

variable thermal conductivity and thermal radiation on nonlinear 

heat conducting fluid moving vertically through parallel channels. 

The dimensional governing equations were reduced to 

dimensionless partial differential equations and consequently 

transformed to ordinary differential equations. The resulting 

ordinary differential equations were solved using the homotopy 

perturbation method. The study aimed at discovering the possible 

effects of thermal radiation parameter , thermal conductivity 

parameter , temperature difference parameter and 

Magnetic parameter through the help of line graphs. It was 

found that, Velocity and temperature distributions were increasing 

functions of , while Velocity and temperature distributions are 

decreasing functions of  

KEYWORDS: Thermal conductivity, Homotopy perturbation, 

thermal conductivity, electrically conducting fluid,  MHD. 
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INTRODUCTION 

Thermal conductivity is a fundamental property of materials that plays a crucial role in various 

fields of science and engineering. It quantifies the ability of a material to conduct heat. It is useful 

in designing efficient heat exchangers, insulating materials and electronic devices. Thermal 

radiation is the electromagnetic radiation emitted by a body due to its temperature. It is a 

fundamental mode of heat transfer and plays a vital role in various scientific and engineering 

applications. Understanding the principles of thermal radiation is crucial for designing energy-

efficient systems and optimizing heat exchange processes. Virtually all the fluids of industrial and 

engineering applications are useful in energy dissipation in a thermal system, for instance, the 

temperature is known to alter the fluid thermal conductivity significantly, and in control systems, 

it is well known that interference with magnetic fields alters the flow behavior of most electrically 

conducting fluids. This control strategy plays an important role in skin friction and the rate of heat 

transfer. Other important applications are witnessed in many geophysical situations where MHD 

problems arise from the origin of the Earth's magnetic field to the prediction of space weather, the 

damping of turbulent fluctuations in semiconductor melts during crystal growth and even in the 

measurement of the flow rates of beverages in the food industry. Other interesting applications of 

MHD are not limited to spraying in metallurgical engineering, electrochemistry and electroplating 

processing, and other surface occurrences. In view of these wide applications, several researchers 

have worked on various aspects of Magnetohydrodynamic in the boundary layer region. For 

instance, recent studies have explored the complex dynamics of heat in various fluid systems with 

variable thermal conductivity and thermal radiation on heat conducting fluids with implications 

for various engineering and industrial applications. These studies emphasized the importance of 

variable thermal conductivity in enhancing transport phenomena. These investigations contribute 

valuable insights to thermal engineering applications, such as heat exchangers, power generation 

and electronic cooling systems. 

The quality of the final product depends on thermal management of the system and therefore 

cooling procedures have to be controlled. Variable thermal conductivity has been shown to 

increase temperature and thermal boundary layer thickness in Williamson fluid flow over a 

stretching sheet [1]. Unsteady MHD nanofluid flow with variable thermal conductivity, thermal 

radiation and viscous dissipation has been investigated for both Blasius and Sakiadis flows [2]. 

The effects of thermal radiation stratification and Joule heating on MHD Sutter by nanofluid flow 

have been studied, revealing that variable thermal conductivity decreases temperature while 

radiation decreases it [3]. Zubair et al. [4] investigated Williamson hybrid nanofluids with variable 

thermal conductivity and radiation, finding that hybrid nanoparticles enhance energy production 

compared to single nanostructures. Rehman et al. [5] examined combined convection and thermal 

radiation in nanofluids with temperature-dependent viscosity and thermal conductivity, observing 

increased temperature fluctuations with rising thermal conductivity. [6] studied MHD flow of 

Williamson nanofluid over a curved surface with variable thermal conductivity, considering 

factors such as activation energy and radiation. [7] analyzed radiative aspects of MHD flow in 

Williamson nanofluid with variable thickness and thermal conductivity, incorporating melting heat 

flow. 
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A year after, [8] investigated Magneto nanofluid flow over a cylinder, considering thermal 

radiation and variable thermal conductivity; they found that fluid velocity decreases with higher 

Weissenberg number. [9] examined mixed convective-radiative fluid flow in a channel, 

considering temperature-dependent thermal conductivity. They analyzed the effects of various 

parameters on Temperature and Velocity fields. [10] studied the interaction of variable diffusion 

coefficients with electro kinetically modulated peristaltic motion of a radiative Carreau-Yasuda 

nanofluid. They observed that temperature profile increase due to joule heating and manipulation 

of radiation and thermal conductivity parameters can improve thermal efficiency. [11] analyzed 

viscoelastic fluid flow, considering variable thermal conductivity using mathematical models and 

numerical methods. [12] conducted comparative analysis of thermo-physical aspects in 

Magnetized non-Newtonian fluid flow examining the impacts of mixed convection, heat 

generation and thermal radiation. [13] explored second-grade fluid flow with Soret and Dufour 

and thermal radiation. [14] studied a note on hydromagnetic Blasius flow with variable thermal 

conductivity. [15] studied heat transfer of squeezing unsteady nanofluid flow under the effects of 

magnetic field and variable thermal conductivity. [16] studied a similarity solution for natural 

convection flow near a vertical plate with thermal radiation.  

The purpose of the present study is to investigate/examine the conjugate effects of variable thermal 

conductivity and thermal radiation on non-linear electrically conducting fluid. The study will 

contribute to the broader field of materials science, enabling researchers to develop new materials 

with enhanced thermal properties, improving the efficiency of energy conversion and utilization; 

it will also allow engineers and researchers to make more informed decisions in designing a wide 

range of systems and devices by considering the complex interplay between the variable thermal 

conductivity and thermal radiation.   

 

MATHEMATICAL ANALYSIS 

Consider an infinite vertical channel formed by two parallel plates kept h distance apart. The 

channel is filled with an electrically conducting fluid at the expense of radiative heat flux of 

intensity rq which is absorbed by the plates and transferred to the fluid. Assuming negligible 

effects of viscous dissipation and assuming all the physical properties of the fluid are constant 

except for thermal conductivity and thermal radiation. It is also assumed that the flow is at steady-

state such a way that y  is dependent on y . 

The 
'x − axis is taken along the channel in the vertically upward direction being the direction of 

the flow, while the 
'y − axis is taken normal to it. The temperature of the plate kept at 

' 0y =  rise 

to wT and maintained impulsively at uniform velocity 0u = .while the other plate at 
'y h=  
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remains a

 

Figure 1: Diagram of the Problem 
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After necessary analysis, the dimensionless equations reduced to 

Dimensionless Momentum equation 
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Using homotopy perturbation on equation (7), we have  
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Neglecting higher powers of P and substituting Equations (10-14) into Equation (6), we have  
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The corresponding boundary conditions are 
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Now, solving the equations (16-18) and applying the corresponding boundary conditions in (19), 

we have: 

0 1 y = +                                                                                                                                                               (20) 

2 2 3 3 4 4 5 5

1 5 6 7 8( ) ( ) ( ) ( )K y y K y y K y y K y y    = − + − + − + −                                                       (21) 
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RESULT AND DISCUSSION 

The problem of Non-linear heat conducting fluid due to interaction of thermal radiation and linear 

variable thermal conductivity have been considered. The dimensional partial differential equations 

are transformed into a system of ordinary differential equations via a Homotopy perturbation 

technique. The final dimensionless equations are solved analytically and the obtained closed form 

solution was integrated into Matlab. The default values of pertinent parameters embedded in the 

flow are Prandtl number (Pr 0.72)= , thermal radiation ( 0.5)R = , temperature difference parameter

( )TC , Magnetic parameter ( 1.00)M =  and thermal conduction parameter ( 0.10) = . 

Fig. 2 exhibits the impacts of thermal radiation ( )R on temperature distribution. It is observed that 

increase in R gives rise to temperature distribution for both Fig. 2a and Fig. 2b. It is also noted 

that the impact of R is more pronounced in Fig. 2b when thermal conduction is absent; this is 

expected as thermal conduction reduces, the fluid acquires more heat through radiation which in 

turn increases the temperature of the fluid. Fig. 3 portrays the impact of temperature difference 

parameter ( )TC  on temperature distribution, it is evident that the presence of TC  is inversely 

proportional to temperature distribution, it is interesting to note that TC  has no effect on 

temperature when thermal conduction and thermal radiation are absent. 

Fig. 4 depicts the effect of thermal conduction parameter ( )  on the fluid temperature; 

interestingly, thermal boundary layer thickness is retarded and the fluid temperature diminishes 

with a boost in thermal conductivity. The same phenomena is observed in Fig. 5. As thermal 

conduction parameter ( ) increases, the velocity distribution of the flow is decaying and vice-
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versa. While Fig. 6. showcases the role of temperature difference parameter ( )TC  On velocity 

distribution, the fluid velocity near the plate is seen to decrease as the temperature difference gets 

larger, but the velocity far from the plate increases significantly. 

Fig. 7 is prepared to show the role of magnetic parameter ( )M  on velocity distribution, it is noted 

from the Figure that M is directly proportional to the fluid velocity and vice-versa. The same trend 

is observed in Fig. 8. An increase in thermal radiation parameter ( )R lead to more flow formation 

which in turn increases the velocity of the fluid. 

 

Fig. 2: Effects of Radiation Parameter ( )R  on Temperature Profile 

 

Fig. 3: Effects of Temperature Difference Parameter 
( )TC

 on Temperature Profile 
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Fig. 4: Effects of Variable Thermal Conductivity Parameter ( )  on Temperature Profile 

Fig. 5: Effects of Variable Thermal Conductivity Parameter ( )  on Velocity Profile 

 

Fig. 6: Effects of Temperature Difference Parameter 
( )TC

 on Velocity Profile 
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Fig. 7: Effects of Magnetic Parameter ( )M  on Velocity Profile 

 

Fig. 8: Effects of Radiation Parameter ( )R on Velocity Profile 
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 CONCLUSIONS 

From the findings of this study, it could be concluded the following situations holds: 

● Temperature distribution attain a peak value through an increase in thermal radiation 

parameter ( )R  when thermal conduction is absent. 

● The presence of temperature difference parameter ( )TC  retard the temperature distribution 

and velocity distribution at some point. 

● Thermal conduction parameter ( )  decreases the temperature and velocity distributions. 

● Velocity distribution is an increasing function of magnetic ( )M  and thermal radiation 

parameters ( )R
. 
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