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ABSTRACT: This study looks at the optimality criteria 

performances on the factorial design of Resolution IV and 

Resolution V. The Comparative studies of Resolution IV and 

Resolution V design were evaluated using the D, G, and I-

optimality criteria.  The FDS plots were also used.  The results 

showed that in all the factors k considered, Resolution V has a 

better factorial design when it comes to D-optimality, G-

optimality and I-optimality, but when the interest is on the spread 

of the scale prediction variance, Resolution IV is preferred. The 

FDS plots for Resolution IV and V design were relatively the same 

for factors k = 6 and k = 10. 

KEYWORDS: Optimality criteria, resolution iv and resolution v, 

factorial designs, D-optimality, I-optimality, G-optimality, Design 

matrix, Fraction of Design Space (FDS) Plots.  
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INTRODUCTION 

Experiments are carried out by researchers, to study and model the effects of variables on the 

responses of interest. The basic idea of response surface methodology (RSM) in any 

experiment is to model and optimize responses. RSM can be expressed as a collection of 

statistical methods that are used for modelling and analysis of issues where the response in 

question is determined by variables and the goal of the analysis is to optimise the response. It 

may also be explained as a technique that uses intricate calculations throughout the 

optimisation process (OP). By using the data from the experiment to create an equation with 

theoretical value, this strategy creates an acceptable experimental design. The equation is the 

result of a well-planned regression study, which focuses mostly on the controlled values of the 

independent variable. 

In statistics and mathematics, the primary motivation behind RSM according to Box and 

Wilson (1951) is to use experimental design to obtain an optimization process (OP).  

RSM has been embraced by many research institutions whose experiments may be thoroughly 

explained and whose results are believed to be statistically valid.  

A small amount of time is required to test all the factors related to the researcher's assessment 

by using RSM in the optimization procedure. Furthermore, estimating parameters makes it 

simple to identify the variables that have the most impact on the model, allowing researchers 

to concentrate on the factors that affect the end product acceptability. Also, in RSM, the 

response surfaces are represented graphically and are used to describe the interaction effects of 

variables and their effects on response. 

In response to surface methodology, choosing an appropriate central composite design for an 

experiment has been centred mostly on the choice of the axial distance or region of operability 

with little or no emphasis on the factorial points of the design as the number of factors increases. 

This study will focus on the choice of factorial point that will help construct a central composite 

design to help increase the optimum precision of the estimated models of a response surface 

design. 

The main aim of this study is to ascertain between Resolution V and Resolution IV, a factorial 

design that will give an optimum prediction variance capability which can be incorporated into 

the central composited design. This can be achieved with the following objectives  

Evaluating the D-, G- and I- optimality criteria values of Resolution V and Resolution IV design 

for factors k = 6 to 10 and comparing the variance performance capabilities of Resolution V 

and Resolution IV design. 
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LITERATURE/THEORETICAL  

Optimal designs (OD) are a kind of designs that are optimal in terms of statistical criterion in 

the design of experiments. It allows parameters to be approximated without bias and with the 

least amount of variance when estimating statistical models. In practice, optimal experiments 

can help to cut down on experimental expenditures (Kirstine Smith, 2001). 

The statistical model determines the optimality of a design, which is evaluated using a 

statistical criterion related to the estimator's variance matrix. 

Chigbu et al. (2008) compared the prediction variances (PV) of different CCDs in spherical 

regions in their study. The results reveal that none of the designs are superior across all three 

comparison criteria, namely the (VDG), I and G optimality criteria, and more. However, it is 

demonstrated that the CCD is at its optimum under the I optimality. (gives the least amount of 

prediction variance) at five centre points and three components (k = 3). For the G optimality, 

the prediction variance (PV) of the CCD grows as the number of centre points (CP) increases. 

Under the I optimality criterion, the Small composite designs (SCD) behave similarly, 

however, under the G optimality criterion, it achieves its least variance by employing two 

centre points. When the number of centre points rises, the variance falls. The Minimum-runs 

resolution V designs (MinRes.V) are at their optimum with five centre points under the I 

optimality and deteriorate similarly with CCD and SCD under the G optimality. 

Oehlert (2002) carried out research on Small efficient, resolution V fractions of 2k designs and 

their Application to Central Composite Designs. The study demonstrates that Resolution V 

column-wise-pairwise (CP) designs offer appealing efficiency when employed as irregular 

fractions as well as the foundation for central composite designs. They can be built for a far 

wider variety of sample sizes than ordinary irregular fractions, providing experimenters with 

greater options in balancing size and the availability of efficient designs.       

For n = 22, K= 6, the CP method produces the same design as D-optimality, however for n = 

64, K= 9 produces a design with slightly lower A-efficiency criteria than the one produced by 

maximizing D-efficiency. 

Iwundu (2016) examined the effectiveness of numerous second-order N-Point spherical 

response surface method designs. In the investigation, equiradial designs were examined in 

modelling second-order response functions as an alternative spherical design to rotatable 

central composite designs (CCDs) and D-optimal precise designs. These designs are 

comparable to traditional second-order response surface approaches. The simple equiradial 

designs appear to have some attractive optimality qualities. An evaluation of the D-efficiency 

numbers demonstrates that equiradial designs are not always inferior. In fact, they seem to be 

more optimum than certain regularly used second-order response surface approach designs. 

Ukaegbu et al. (2020) explored the prediction variance aspects of 3 to 10 element rotatable 

central composite designs (RCCD). They investigated the prediction variance features of the 

CCD with rotatable by recreating the CCD's cube and star components.  The designs were 

assessed using three design optimality criteria: D, G, and V. FDS charts for scaled and unscaled 

prediction variances (PV) are used to analyse the performance characteristics of design 

prediction variances over the design region. According to the findings, cube-replicated CCDs 

are D-efficient for k = 3 to 10 factors and three centre points. 
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None of the design alternatives, cube- and star-replicated, consistently outperformed the others 

in terms of G-efficiency, V-criterion, and FDS plots for any of the k factors tested. 

Nwanya and Dozie (2020) investigated the best Prediction Variance Capabilities (PVC) of 

Inscribed Central Composite Designs (ICCD). They evaluated the effect of replication on the 

factorial and axial sections of an inscribed central composite design (ICCD) using the G-

optimal, I-optimal, and FDS plots. The ICCD with repeated factorial and axial sections, 

according to their findings, has an increased maximum scaled prediction variance (SPV) for 

factors k = 2 to 4. At 5 and 6-factor levels, the Inscribe central composite design with replicated 

factorial portions provides a higher maximum and average SPV. The FDS graphs indicate that 

the ICCD outperforms both the inscribe central composite design (ICCD) and the inscribe 

central composite design (ICCD) with replicated factorial portion and the inscribe central 

composite design (ICCD) with replicated axial portion from 0.0 to 0.5 of the design space, 

while the ICCD with replicated factorial portion is superior to both the inscribe central 

composite design without replicated factorial and axial portion and the inscribe central 

composite design (ICCD) with identical. 

Factorial Design 

A factorial design (FD) is a sort of structured experiment that allows you to investigate the 

impact of several factors on a response. When doing an investigation, instead of adjusting the 

levels of each element one at a time, you may explore the interactions between them by varying 

the levels of all factors at once. In this study, the prediction variance performances of factorial 

design (Resolution IV and Resolution V) were compared using the optimality criteria. 

To execute a 2k-p fractional factorial design, p-independent generators must be chosen, and a 

technique of creating a resolution R design of m -factors in n runs is given. 

Let X be the n by m design matrix, with +1 and -1 denoting high and low values of a factor, 

respectively. A whole 2m-1 factorial design is written down to generate a one-half fraction, 

and then the mth factor is added by identifying its plus and minus levels with the signs of 

GHI...(M - 1).   M= GHI... (M - 1), meaning that I=GHI... M, where G, H, I..., M=x1, x2, x3,..., 

xm, respectively. Generators are produced when more components are introduced to 

interactions. The set of different words created by all conceivable products of any subset of the 

factors involving p 

Generators provide the defining relation, which has 2p terms, including the identity term I.  We 

have IW=WI=W and W2=I for a set of generators W=W1, W2,..., Wp.  

Another method is to divide the runs into two blocks using the highest-order interaction GHI... 

M.    

Resolution IV Designs 

In resolution IV design, 2-factor interactions are typically aliased with one another. That is, 

two-factor interactions are mixed together. The smallest resolution IV design can be produced 

by beginning with a full 23. A 
6 22 −

R.IV design with I = GHIK, I = GHJL and I = IJKL as the 

generators is shown in Table 2.1. 
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Table 2.1: 
6 22IV

−

 Design with I =  GHIK, I = GHJL and I = IJKL as the generators 

Factor G Factor H Factor I Factor J K= GHI L= GHJ Treatment 

combination 

- - - - _ - (1) 

+ - - - + + GKL 

- + - - + +  HKL 

+ + - - - -  GH 

_ - + - + -  IK 

+ - + - - +  GIL 

_ + + - - +  HIL 

+ + + - + -  GHIK 

_ - - + - +  JL 

+ - - + + -  JK 

_ + - + + -  HJK 

+ + - + - +  GHJL 

_ - + + + +  IJKL 

+ - + + - -  GIJ 

_ + + + - -  HIJ 

+ + + + + +  GHIJKL 

 

Resolution V Designs 

In resolution v design, two-factor interactions are aliased using three-factor interactions, but no 

major impact or two-factor interaction is aliased with any other major effect or two-factor 

interaction. The smallest Resolution V design
5 12 −

 may likewise be built in the same way as the 

earlier mentioned Resolution IV design. 

The resolution of a design is often equal to the least number of letters in any term appearing in 

the defining relation (DR). The words in the defining relation (DR) are made up of the initial 

generators and all of their generalized interactions. The entire defining relation (DR) for the 

design described in Table 2.1 is I = GHIK= GHJL = IJKL. 

When fractionating a complete factorial, one issue that may emerge is that two or more effects 

may have the same number. The effects in this scenario are known as aliases, and the researcher 

must ensure that factors thought to be relevant are not aliased with one other. Any factor's 

aliases may be formed by combining it with all of the terms in the defining relation.  

Table 2.2 depicts the alias structure for the Resolution IV design with the defining relation I =     

GHIK, GHJL, IJK 
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Table 2.2: Alias Structure for 
6 22IV

−

Design 

I GHIK GHJF IJKL 

G HIK HJL GIJKL 

H GIK GJL             HIJKL 

I GHK GHIJK JKL 

J GHIJK GHL IKL 

K GHI GHJKL IJL 

L GHIKL GHJ IJK 

GH IK JL GHJKL 

GI HK HIJL GJKL 

GJ   HIJK HL GIKL 

GK HI HJK GIJL 

GL HIKL   HJ GIJK 

IJ GHJK GHIL KL 

 IL GHKL GHIJ JK 

 GIJ HJK HIL GKL 

 GKJ               HIJ HKL ACF GIL 

 

METHODS OF OPTIMALITY CRITERIA 

Optimal designs (OD) are test designs that are created by applying a certain optimality criterion 

to a single statistical model. When fitting second-order models, optimum design approaches 

require a single criterion in order to create designs for RSM. Kiefer (1959) introduced the 

principle of optimal designs. 

An optimum design (OP) maximises or reduces an optimality criterion, which is a measure of 

how excellent a design is. There are several optimality-criteria methodologies for dealing with 

forecast variance. This study will concentrate on the D-, G-, and I- optimality criteria. 

D-optimality (determinant)  

The most commonly utilised optimality criterion for selecting designs is the estimation-

oriented D-optimality criterion, which seeks designs that maximize the information matrix of 

determinants while reducing the volume of the confidence ellipsoid regarding unknown model 

parameters. M = X′X is the information matrix for accurate designs, where X is the np model 

matrix, n is the number of runs, and p is the number of terms in the model. For accurate designs, 

the information matrix is calculated as M = X′X, where X is the np model matrix, n is the 

number of runs and p is the number of terms in the model. 

G-optimality 

The practitioner's objective may be to have a strong prediction at a given location in the design 

space. The scaled prediction variance (SPV) was developed by Box and Hunter (1957).  
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The SPV is defined as 

 
( )

1

2

ˆvar ( )
( ) (x)T T

N y x
Nf x X X f



−

=
                                                                 (2.1) 

where ( )f x  is the coordinate vector of a location in the region of interest extended to model 

form. 

That is
2 2

1 1 1 2 1(x) 1, ,..., , ,..., , ,...,T

k k k kf x x x x x x x x−
 =   , N is the total sample size penalizing the 

larger designs, X is the design matrix and 
2  is the process variance which is assumed to be 

1. At every point in the design space, the SPV offers a measure of the projected response's 

accuracy. The greatest SPV over the experimental design zone is minimised in a G-optimal 

design. This is how it is written:    

   1ˆmax var ( ) min max ( )(X ) ( )T TMin N y x N f x X f x−=
                     (2.2)                

G-optimality shields the experimenter from having to deal with the worst-case scenario. The 

lower restriction for the maximum SPV is equivalent to p, the number of model parameters, 

which is an intriguing and useful conclusion (Myers and Montgomery, 2002). 

I-optimality (integrated) 

The average prediction variance (APV) is minimised via an I-optimal design. 

1( ) M ( )T

R

R

f x f x dx

Average Variance
dx

−

=



       (2.3) 

over the experimental region χ. To calculate this average variance, we exploit the fact that, 

when calculating the trace of a matrix product, we can cyclically permute the matrices. 

Therefore, we can rewrite the formula for the APV as 

11

R

Average Variance tr M B
dx

− =  


                                                                      (2.4) 

Where 

( ) ( )dxT

R

B f x f x= 
                (2.5) 

This matrix is known as the moment matrix because its members are proportional to uniform 

distribution moments on the experimental region χ.  
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Fraction of Design Space (FDS) Plots 

The peculiarities of the design's prediction variance are not entirely reflected by single-number 

criteria like D, A, and G-efficiency, or the I-criterion. However, a design that performs well by 

one optimality criteria (O P) could not be as effective by another. Borkowski (1995) states that 

by reducing a design's attributes to a single value, considerable information about a design's 

potential performance is lost when its qualities are reduced to a single value. 

As an alternative to single-value criteria, the FDS plot presented by Zahran, Anderson-Cook, 

and Myers (2003) overcomes this shortcoming by illustrating the properties of prediction 

variance throughout the whole design space. On a single two-dimensional graph, the graphic 

likewise depicts scaled prediction variance (SPV) properties throughout a multidimensional 

region, at this point using a single curve. The FDS graphic depicts the proportion of the design 

space at or below a particular SPV value. It is generated by collecting a large number of values, 

for n, from all across the design space and computing all of the associated SPV values, which 

are then ordered and plotted against the quantiles (1/n, 2/n, and so on). The x-axis indicates 

design space (DS) from 0 to 1, while the y-axis displays SPV values. We can calculate what 

proportion of the entire design space has SPV values that are equal or lower to the given value 

at a given point on the curve. The FDS plot can be created in a number of ways. The SPV 

values for the graphs were first calculated analytically with the Mathematical software 

application. Design Expert version 13 was the software program utilized in this investigation. 

While this strategy was computationally possible for models up to second order in fewer 

dimensions of up to 5 elements, it became too cumbersome and slow in higher dimensions. As 

a result, additional options were investigated. 

The charted line in an FDS plot should be as low and flat as feasible since this implies that the 

SPVs are as little as possible and that, as the proportion of design space covered grows, the 

SPV does not increase dramatically. 

 

METHODOLOGY 

 Analytical Approach 

To identify the correlation between the response variable and the design variable 1 2, ,..., kx x x  in 

numerous experimental circumstances, an N-run experiment is performed to collect data, which 

is then fitted into a response surface model or a matrix form 

Y X  = +                    (3.1)  

where Y  is an N x 1 response vector, X and is an N x p(square matrix) extended design matrix 

formed using the N x k design matrix D. Each row of D provides an experimental point, and 

each column contains the experimental settings of the K design variables.   Is a vector 

coefficient, and   is the error. 
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Table 3.1. Design matrix of Factorial Design (Resolution iv) for k= 6 

x
0 

x
1 2x   3x   4x   

2

1x   
2

2x   
2

3x   
2

4x   1 2 3x x x  1 2 4x x x  
1 -1 -1 -1 -1 1 1 1 1 -1 -1 

1 +1 -1 -1 -1 1 1 1 1 +1 +1 

1 -1 +1 -1 -1 1 1 1 1 +1 +1 

1 +1 +1 -1 -1 1 1 1 1 -1 -1 

1 -1 -1 +1 -1 1 1 1 1 +1 -1 

1 +1 -1 +1 -1 1 1 1 1 -1 +1 

1 -1 +1 +1 -1 1 1 1 1 -1 +1 

1 +1 +1 +1 -1 1 1 1 1 +1 -1 

1 -1 -1 -1 +1 1 1 1 1 -1 +1 

1 +1 -1 -1 +1 1 1 1 1 +1 -1 

1 -1 +1 -1 +1 1 1 1 1 +1 -1 

1 +1 +1 -1 +1 1 1 1 1 -1 +1 

1 -1 -1 +1 +1 1 1 1 1 +1 +1 

1 +1 -1 +1 +1 1 1 1 1 -1 -1 

1 -1 +1 +1 +1 1 1 1 1 -1 -1 

1 +1 +1 +1 +1 1 1 1 1 +1 +1 

 

The structure of the matrix X in Table 1, 
TX X for a CCD is determined by matrix 

multiplication and the outcome block matrix form is 

0 ( ) 0

0  ( ) 0 0

( ).             0 ( ). 0

0 0    0 ( ).

q

iT

q q q

q q

N f J

diag d
X X

f J f J J

f J J

 
 
 

=  
 
 
                                    (3.2) 

Where 0’s are zero matrices of appropriate sizes, qJ is a q x 1 unit column vector and where 

)( iddiag are diagonal matrices such that id f=   

The first entry N is a scalar quantity and is the total number of runs given as N f=   

D-efficiency

pT

1

100



=

                                                                                      

(3.3) 

G-efficiency = 
2

max
ˆ

100

N

p

                                                                                             (3.4) 
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I- criterion = 
2

aveN                                                                                                   

(3.5) 

Where N is the design size, 
2

ave is the average of ( )
1

( ) ( )T Tf x X X f x
−

over the design space, 

P is the number of model parameters, and 
2

max̂  is the minimum of the maximum of

( )
1

(x) ( )T Tf X X f x
−

 approximated over the set of candidate points. 

 

RESULTS/FINDINGS 

Optimality Criteria Results 

Table 4.1 is the result of the analysis of the factorial design of resolution IV and Resolution V 

Design.  

Table 4.1:  Result of optimality criteria for the factorial design  

Factorial Design  

Resolution V 

 

Resolution IV 

K N D-opt. G-opt. I-opt. N D-opt. G-opt. I-opt. 

 

6 

 

25 

 

33.01 

 

24.91 

 

 

22.02 

 

17 

 

26.1 

 

17.00 

 

14.00 

 

7 

 

33 

 

43.46 

 

33.00 

 

28.94 

 

19 

 

22.31 

 

17.63 

 

14.99 

8 41 55.19 41.00 36.98 21 27.28 20.79 16.99 

9 49 68.85 49.00 45.86 23 35.74 22.29 19.99 

10 59 84.08 59.00 55.99 25 37.45 25.00 20.00 
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From Table 4.1, at factor k = 6, the number of runs for Resolution Vis is 25. The D-, G-, and I- 

optimality criteria are 33.01, 24.91, and 22.02 respectively while the D-optimality, G-

optimality and I-optimality criteria for Resolution IV are 26.1, 17.00 and 14.00 respectively 

with 17 numbers of runs. 

At factor k = 7, the number of runs for Resolution V is 33. The D-optimality, G-optimality and 

I-optimality criteria are 43.46, 33.00, and 28.94 respectively while the D-optimality, G-

optimality and I-optimality criteria for Resolution IV are 22.31, 17.63 and 14.99 respectively 

with 19 number of runs. 

At factor k = 8, the number of runs for Resolution V is 41. The D-optimality, G-optimality and 

I-optimality criteria are 55.19, 41.00, and 36.98 respectively while the D-optimality, G-

optimality and I-optimality criteria for Resolution IV are 27.28, 20.79 and 16.99 respectively 

with 21 number of runs. 

At factor k = 9, the number of runs for Resolution V is 49. The D-optimality, G-optimality and 

I-optimality criteria are 68.85, 49.00, and 45.86 respectively while the D-optimality, G-

optimality and I-optimality criteria for Resolution IV are 35.74, 22.29 and 19.99 respectively 

with 23 numbers of runs. 

At factor k = 10, the number of runs for Resolution V is 59. The D-optimality, G-optimality 

and I-optimality criteria are 84.08, 59.00, and 55.99 respectively while the D-optimality, G-

optimality and I-optimality criteria for Resolution IV are 37.45, 25.00 and 20.00 respectively 

with 25 numbers of runs. 

Fraction of Design Space (FDS) Plots 

The values for the fractional of design space (FDS) were generated using the Design Expert 

software version. The values of each of the k factors were inputted into the software and the 

values generated are in Appendix  
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Figure 4.1: FDS plot of Factorial Design for k = 6 

 Figure 4.1 is the fraction of design space (FDS) Plot for factor k = 6. The figure shows that the 

FDS plot for Resolution V and Resolution IV are relatively the same from 0 to 0.5 in the space 

plot. Also, the convergence rate to one between Resolution IV and V, are relatively the same. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2: FDS plot of Factorial Design for k = 7 

Figure 4.2.  is the fraction of design space (FDS) Plot for factor k = 7. The figure shows that 

the FDS plot for Resolution IV is better than Resolution V in the design space plot. This is 

because Resolution IV has lower FDS values compared to Resolution V. The Resolution V 

design rate converges to one is quicker than Resolution IV. 
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Figure 4.3: FDS Plot of Factorial Design for k = 8 

Figure 4.3 is the fraction of design space (FDS) Plot for factor k = 8. The figure shows that the 

FDS plot for Resolution IV is better than Resolution V in the design space plot because 

Resolution IV has low FDS values compared to Resolution V. The Resolution V design rate 

converges to one is quicker than Resolution IV. 
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Figure 4.4: FDS plot of Factorial Design for k = 9 

Figure 4.4 is the fraction of design space (FDS) Plot for factor k = 9. The figure shows that the 

FDS plot for Resolution IV is better than Resolution V in the design space plot because 

Resolution IV has low FDS values compared to Resolution V. The Resolution V design rate 

converges to one is quicker than Resolution IV. 
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Figure 4.5 is the fraction of design space (FDS) Plot for factor k = 10. The figure shows that 

the FDS plots for Resolution V and Resolution IV are relatively the same from 0 to 0.48 in the 

space plot. Also, the convergence rate to one between Resolution IV and V, are relatively the 

same.  

Comparison of Resolution IV and Resolution V design 

Comparing the Resolution IV and Resolution V designs at factors k = 6, 7, 8, 9, and 10 shows 

that Resolution V has better optimality criteria for D-, G-, and I- optimality. This is because of 

high optimality criteria values. 

On the number of runs for any experiment, Resolution IV provides less number of runs and is 

economical for any design of the experiment. 

On the fraction of design space (FDS), the plots reveal that the resolution IV design has a better-

scaled prediction variance over the resolution v design in most of the factors considered. 

 

DISCUSSION 

This study looks at the prediction variance performances on the factorial design of Resolution 

IV and Resolution V. The Comparative studies of Resolution IV and Resolution V design were 

evaluated using the D-, G-, and I- optimality criteria and the fraction of design space plots. The 

results showed that in all the factors k considered, Resolution V has a better factorial design 

when it comes to D,  I and G- optimality  criteria whereas on the number of runs for any 

experiment, Resolution IV provides less number of runs which proves to be economical for 

any design of experiment 

The FDS Plot for factors k = 6 and 10 shows that Resolution V and Resolution IV are relatively 

the same from 0 to 0.5 in the space plot. Also, the convergence rate between Resolution IV and 

V, are relatively the same. While the FDS Plot for factors k = 7, 8, and 9 follows the same 

pattern, and the convergence rate between Resolution IV and V, are relatively the same. 

 

IMPLICATION TO RESEARCH AND PRACTICE 

For researchers whose interests are on point estimates of the determinant, minimum variance 

and average variance of a design, this work recommends the use of a Resolution V factorial 

design. While Resolution IV factorial design is recommended for researchers whose interest is 

on the spread of the scale prediction variance for factors k = 6 to 10. 

 

CONCLUSION 

This study focuses on the choice of the factorial point that will help construct a central 

composite design to help increase the optimum precision of the estimated models of a response 

surface design. 
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In all the factors k considered, Resolution V has a better factorial design when it comes to D-

optimality, G-optimality and I-optimality, but when the interest is on the spread of the scale 

prediction variance, Resolution IV is preferred.  

The result also shows that Resolution IV has a low fraction of design space (FDS) values when 

compared to Resolution V for factors k = 7, 8, 9 while Resolution IV and V are relatively the 

same for factors k = 6 and 10. 
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