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ABSTRACT: The paper reviews creative ways to develop 

continuous probability models playing around the integration 

method and the concept of normalization. It further projects a 

probability distribution realized by combining two symmetric 

probability models that differ in shape, to produce a perfect 

hemisphere or half-sun trend. Normal and arcsine distributions 

are the root distributions used for this development. At some 

values of the parameter, the distribution can be right skewed; 

where other moments-related measures and estimation are studied 

as their properties, alongside simulation. 

KEYWORDS: Normal distribution, Arcsine distribution, 

Division arrangement, Hemisphere trend. 
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INTRODUCTION 

Probability distributions are developed to model various life outcomes, making available the 

various possible simulated data prototypes of such phenomena. Many credits have been given to 

veteran researchers for the great advancement made in the provision of probability models, that 

characterize various shapes including increasing, decreasing, bathtub, inverted bathtub, uniform, 

skewed, and bell-curve shapes. These are various life trends and can be modelled by some 

renowned distributions including exponential, gamma, Weibull, Pareto, beta, Lomax, logistic, 

Burr XII, Gompertz, Gaussian, arcsine, uniform, Kumaraswamy, Lindley, Fréchet, and Gumbel 

distribution for the continuous category. More so, various forms of modifications and 

generalizations of many of these distributions can give weight to these trends expressed as light or 

heavy tail, and or light or heavy skewness, Buckland (1971). 

Krithikadatta (2014) projected Normal distribution, which represents a probability model that 

mirrors a symmetric trend for the variable range  𝑥 ∈ 𝑅. It is also known as the Gaussian 

distribution, which exhibits a bell curve when plotted, and the symmetry is centred about its mean 

with the width of the curve defined as the standard deviation. Its probability density function (pdf) 

is given as  

                                                  𝑓(𝑥) =
1

𝜎√2𝜋
  ⅇ

−
(𝑥−𝜇)2

2𝜎2                                                 (1)                                  

where 𝜇 𝑎𝑛𝑑 𝜎 are the mean and standard deviation. However, the classic distribution has a 

standard form realized at the parameter values  𝜇 = 0 𝑎𝑛𝑑 𝜎 = 1 amidst various parametric 

possibilities. Other symmetric distributions that can be classified as bell-shape include Cauchy, 

student 𝑡 and logistic distribution, to mention a few. These continuous distributions share a similar 

variable range 𝑥 ∈ 𝑅. It is worthy of note that the symmetricity of any probability models does not 

depend on whether the variable range is unbounded or not. Chattamvelli and Shanmugam (2021) 

studied another symmetric distribution with bounded support, the Arcsine distribution, generally 

defined as      

                                                𝑓(𝑥) =
1

𝜋√(𝑥−𝑎)(𝑏−𝑥)
                                                     (2) 

where 𝑥 ∈ [𝑎, 𝑏], and the standard form of the pdf is obtained at  𝑎 = 0 𝑎𝑛𝑑 𝑏 = 1. It is known 

that arcsine distribution is a special case of the Pearson type 1 distribution, where the trend mirrors 

a perfect bathtub U-shape. Another distribution in this similitude is the Beta distribution, 

parametrically valued at  𝑋~𝐵ⅇ𝑡𝑎 (
1

2
,

1

2
). Uniform distribution is another symmetric distribution 

characterized by a straight line shape, which is also different in its own order.  

While we appreciate the development of these symmetric distributions, it is pertinent to admit that 

they do not fit some lifetime symmetric data. Hence, we aim to combine two varying symmetric 

distributions of different shapes to realize a rare symmetric trend in literature, the perfect 

hemisphere shape. This “half-sun” model can suffice in applications where especially the bell-

curve distributions may not be suitable. Other sections of this paper are arranged thus: materials 

and method, normal-arcsine distribution and properties, and simulation respectively. 
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MATERIALS AND METHOD 

In this section, we examine some probability distribution development strategies. Amidst the 

various methods captured in Lai (2013), the mathematical combination of functions will be 

explored, using the integration and the concept of normalizing constant. This universal method of 

probability model development allows us access to exhaustively utilize any possible means to 

achieve convergence of the combined models (functions). It is worthy of note that no limit is placed 

on the mathematical operations to be adopted, with respect to the model combination. The 

selection of the models could be homogeneous, in the sense that a model can be used to form these 

combinations; and on the other hand non-homogeneous, such that different probability models can 

be adopted. More so, the choice of the models for these constructions cuts across either of the 

pdf(s) or the cumulative distribution function cdf(s).  

Homogeneous Combinations include:  

                                        ∎(𝑥) = 𝑝(𝑥) 𝑝(𝑥),       
𝑝(𝑥)

𝑝(𝑥)
,        𝑝(𝑥) ± 𝑝(𝑥)  

                                        ∎(𝑥) = 𝑝(𝑥) 𝑃(𝑥),       
𝑝(𝑥)

𝑃(𝑥)
,        𝑝(𝑥) ± 𝑃(𝑥)  

                                        ∎(𝑥) = 𝑃(𝑥) 𝑃(𝑥),       
𝑃(𝑥)

𝑃(𝑥)
,        𝑃(𝑥) ± 𝑃(𝑥)  

where Non-homogeneous Combinations include:    

                                        ∎(𝑥) = 𝑝(𝑥) 𝑡(𝑥),      
𝑝(𝑥)

𝑡(𝑥)
 ,        𝑝(𝑥) ± 𝑡(𝑥)                                      (3) 

                                        ∎(𝑥) = 𝑝(𝑥) 𝑇(𝑥),     
𝑝(𝑥)

𝑇(𝑥)
 ,       𝑝(𝑥) ± 𝑇(𝑥) 

                                        ∎(𝑥) = 𝑃(𝑥) 𝑇(𝑥),     
𝑃(𝑥)

𝑇(𝑥)
 ,      𝑃(𝑥) ± 𝑇(𝑥) 

where 𝑝(𝑥), 𝑡(𝑥), 𝑃(𝑥) 𝑎𝑛𝑑  𝑇(𝑥) are the pdfs and cdfs of probability models. These 

combinations, although probability models, can be treated like any other arbitrary mathematical 

functions, provided they are integrable. We would run into complex cases where some 

combinations may not converge upon integration application; however, with the idea of upper and 

or lower censoring, such integration difficulties are possibly handled. By censoring we imply the 

adjustment of either the lower or upper bound, or both of them. These are referred to as left, right 

and double censoring  (𝐶𝑟 , 𝐶𝑙  𝑎𝑛𝑑  𝐶𝑑) respectively; where ∫ ∎(𝑥)𝑑𝑥
∞

−∞
 

 

• ∫ ∎(𝑥)𝑑𝑥
𝑥𝑚𝑎𝑥

−∞
→   𝐶𝑟  

• ∫ ∎(𝑥)𝑑𝑥  →    𝐶𝑙
∞

𝑥𝑚𝑖𝑛
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• ∫ ∎(𝑥)𝑑𝑥 →    𝐶𝑑
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
 

Normal-Arcsine Distribution and Properties 

Here, we develop a new model by combining two non-homogeneous probability models; recalling 

equations (1 and 2), where 𝑝(𝑥) ~𝑁(0, 𝜎2) and  𝑡(𝑥) ~ 𝐴𝑟𝑐𝑠𝑖𝑛ⅇ[𝜋]. Of course, these two 

symmetric distributions exhibit different trends; however, their combination stirs curiosity about 

the possible trend(s) they may realize. If we take inference from the combinatorial division 

operation in equation (3), we realize that,  

                                                 ∎(𝑥) =
𝑝(𝑥)

𝑡(𝑥)
=

{𝜋√(1−𝑥)𝑥}  ⅇ
−

𝑥2

2𝜎2

𝜎√2𝜋
                                             (4) 

To form a new distribution from equation (4), we apply integration and subsequently, 

normalization. Since there are two possible support ranges to integrate with, we test-run both to 

see their convergence possibility, which will determine whether we will adopt integration by 

censoring. Using the support range from the normal distribution   −∞ <  𝑥 <  ∞, we obtain a pdf 

𝑁𝐴𝑆𝐷1 =
4ⅈ√2ⅇ

−
𝑥2

2𝑏2𝜋
3
2√(1−𝑥)𝑥

𝑀ⅇⅈ𝑗ⅇ𝑟𝐺[{{−
1

4
,
1

4
},{.}} ,{{−1,−

1

2
,0},{.}},

1

2𝑏2]
  

 

Similarly adopting the support range from Arcsine distribution 0 <  𝑥 <  1, we have 

 

                                                       𝑁𝐴𝑆𝐷2 =
8 ⅇ

−
𝑥2

2𝜎2√(1−𝑥)𝑥

𝜋  ℵ𝑃𝐹𝑄
                                                  (5) 

where ℵ𝑃𝐹𝑄 = ℎ𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟𝑖𝑐𝑃𝐹𝑄 [{
3

4
,

5

4
},   {

3

2
, 2} , − 

1

2𝜎2] is a generalized hyper-geometric 

function and 𝑁𝐴𝑆𝐷 implies Normal-Arcsine Distribution. While we may call both pdfs Normal-

Arcsine distributions, we give preference to the latter for further exploration of pdf properties. This 

is primarily, to ensure relative mathematical efficiency, since we have a complex number   "𝑖" to 

deal with in the former.  
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Figure 1: Graph plots of the 𝑁𝐴𝑆𝐷2  

From Figure 1 we can deduce that 𝑁𝐴𝑆𝐷2 exhibits perfect hemisphere trend and can be right-

skewed as well. 

Remark 

The shapes realized from this combination as clearly shown in Figure 1 are alien to the original 

shapes of the two distributions. This development has increased the modelling options of the 

combo; especially since that perfect hemisphere 𝑁𝐴𝑆𝐷2 can be symmetric, and seems to be rare 

in literature.  

3.1 Moment 

If X is a random variable from a continuous distribution and 𝑔(𝑥) is the density function, then the 

𝑟𝑡ℎ moment about the origin of X is defined by 

                                                            𝐸  𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑔(𝑥)𝑑𝑥
∞

0
= 𝜇′

𝑟.              

Now, for the moments 𝑁𝐴𝑆𝐷2, we recall equation (5) and obtain 

                                             𝐸(𝑋𝑟) =
8

𝜋  ℵPFQ
  ∫ 𝑥𝑟  ⅇ

−
𝑥2

2𝜎2√(1 − 𝑥)𝑥
1

0
,                                                                                    

 =
2−𝑟𝐺𝑎𝑚𝑚𝑎[

3

2
+𝑟]𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟ⅈ𝑐𝑃𝐹𝑄𝑅ⅇ𝑔𝑢𝑙𝑎𝑟ⅈ𝑧ⅇ𝑑[{

1

4
(3+2𝑟),

1

4
(5+2𝑟)},{

3+𝑟

2
,
4+𝑟

2
},−

1

2𝑏2]

𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟ⅈ𝑐𝑃𝐹𝑄[{
3

4
,
5

4
},{

3

2
,2},−

1

2𝑏2]
                               

Of course, the first four 𝑟𝑡ℎ moments of the  𝑁𝐴𝑆𝐷2 are further obtained at 𝑟 = 1,2,3 𝑎𝑛𝑑 4 

   𝜇1
′ =

𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟ⅈ𝑐𝑃𝐹𝑄[{
5

4
,
7

4
},{2,

5

2
},−

1

2𝑏2]

2𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟ⅈ𝑐𝑃𝐹𝑄[{
3

4
,
5

4
},{

3

2
,2},−

1

2𝑏2 ]
=  𝜇,             𝜇2

′ =
5𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟ⅈ𝑐𝑃𝐹𝑄[{

7

4
,
9

4
},{

5

2
,3},−

1

2𝑏2]

16𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟ⅈ𝑐𝑃𝐹𝑄[{
3

4
,
5

4
},{

3

2
,2},−

1

2𝑏2]
 ,                                 

   𝜇3
′ =  

7𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟ⅈ𝑐𝑃𝐹𝑄[{
9

4
,
11

4
},{3,

7

2
},−

1

2𝑏2]

32𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟ⅈ𝑐𝑃𝐹𝑄[{
3

4
,
5

4
},{

3

2
,2},−

1

2𝑏2]
                    𝜇4

′ =    
21𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟ⅈ𝑐𝑃𝐹𝑄[{

11

4
,
13

4
},{

7

2
,4},−

1

2𝑏2]

128𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟ⅈ𝑐𝑃𝐹𝑄[{
3

4
,
5

4
},{

3

2
,2},−

1

2𝑏2]
. 
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Therefore, the variance, skewness and kurtosis of the 𝑁𝐴𝑆𝐷2 can be obtained. 

                  𝑉𝑎𝑟𝑖𝑎𝑛𝑐ⅇ( 𝜇2) =   𝜇2
, − 𝜇2 =  𝜎2         𝑆𝑘ⅇ𝑤𝑛ⅇ𝑠𝑠 (𝑆𝑘) =

𝜇3

(𝜇2)
3
2

=  
𝜇3

, −3𝜇2
, 𝜇 + 2𝜇3

(𝜇2
, −𝜇2)

3
2

,                             

                                           𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝐾𝑠) =
𝜇4

(𝜇2)2 =
𝜇4

, − 4𝜇3
, 𝜇  + 6𝜇2

, 𝜇2−3𝜇4

(𝜇2
, −𝜇2)2                                                              

Estimation  

In this section, we obtain the parameter values of the probability function that maximizes the 

likelihood function. Kinaci et al. (2014) and Fang et al. (2015) studied maximum likelihood 

estimation (MLE) under different data conditions including uncensored data and censoring. 

Censoring is a concept that describes the timing, in which data are recorded during a procedural 

observation; in the sense that truncated events are not treated like exhaustive investigations. In 

general, the likelihood functions for both data conditions are respectively given as: 

 

                                                (𝑥, 𝜃) = ∏ [𝑔(𝑥ⅈ)]𝑛
ⅈ=1   

                                                𝐿(𝑥, 𝜃) =
𝑛!

(𝑁−𝑛)!
{∏ 𝑔(𝑥ⅈ)

𝑛
ⅈ=1 }{1 − 𝐺(𝑥𝑇)}𝑁−𝑛                        (6) 

where 𝑔(𝑥ⅈ) 𝑎𝑛𝑑 𝐺(𝑥ⅈ) are the PDF and CDF of a distribution with independent random 

observations 𝑥ⅈ , 𝑖 = 1, 2, … , 𝑛; N is the number of specimens being investigated or the number of 

trials. Now, if the fixed time or cycle or count to an event (say failure time) is  𝑥0, then for Type 1 

censoring according to equation (6), the time of termination  𝑥𝑇 =  𝑥0; and 𝑥𝑇 = 𝑥𝑛 for Type 2 

case. However, for this study, we have our emphasis only on the complete or uncensored 

investigations.  Let 𝑥ⅈ, 𝑖 = 1,2, … , 𝑛 be a vector of observations from   𝑁𝐴𝑆𝐷2, and then the log-

likelihood for the complete data is defined by:   

 

                                                (𝑥, 𝜎) = log𝐿(𝑥, 𝜎) = ∑ log{𝑓(𝑥, 𝜎)}𝑛
ⅈ=1   

                                                𝑙(𝑥, 𝜎) =  ∑ log {
8 ⅇ

−
𝑦2

2𝜎2√(1−𝑥)𝑥

𝜋  ℵPFQ
 }𝑛

ⅈ=1    

                                =  log [
8

𝜋  ℵPFQ
]

𝑛

+ ∑ log [((1 − 𝑥)𝑥)
1

2] 𝑛
ⅈ=1 −

1

2𝜎2
∑ 𝑥ⅈ

2𝑛
ⅈ=1  

                 = 𝑛log 8 − 𝑛𝑙𝑜𝑔(𝜋) − 𝑛log(ℵPFQ)) + ∑ log [((1 − 𝑥)𝑥)
1

2] −
1

2𝜎2
∑ 𝑥ⅈ

2𝑛
ⅈ=1  𝑛

ⅈ=1         (7) 

The score function for equation (7) is defined by 
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𝜕𝑙

𝜕𝜎
=  

𝑛{ℶ𝑃𝐹𝑄}

ℵPFQ)
+

1

𝜎3
∑ 𝑥ⅈ

2𝑛
ⅈ=1  

                                                     
𝑛{ℶ𝑃𝐹𝑄}

ℵPFQ)
+

1

𝜎3
∑ 𝑥ⅈ

2 = 0𝑛
ⅈ=1   

Where     ℶ𝑃𝐹𝑄 =
5

16ⅇ3
𝐻𝑦𝑝ⅇ𝑟𝑔ⅇ𝑜𝑚ⅇ𝑡𝑟𝑖𝑐𝑃𝐹𝑄 [{

7

4
,

9

4
} , {

5

2
, 3} , −

1

2ⅇ2
]  

A numerical analysis like the Newton-Raphson iterative method, which is a root-finding algorithm, 

can be used to obtain the MLEs of  �̂�. This scheme is given by 

 

                                                 �̂� = 𝜎 −  𝐻−1(𝜎) 𝑆(𝜎)   

where 𝑆(𝜎) is the score function and 𝐻−1(𝜎) is the second derivative of the log-likelihood function 

termed the Hessian matrix, Bayal et al. 2022. Finally, it is expected that the different methods 

show efficiency concerning the selected size of data samples under consideration.  

Simulation Study 

Furthermore, the asymptotic character of the maximum likelihood estimates of the parameters of 

Normal-Arcsine distributions is investigated, through a Monte Carlo simulation study. For 

different sample sizes  𝑛 = 20, 50, 75, 100 & 250, a 10000 times trials are carried out; and the 

steps are given by the algorithm:  

i) Choose a value M (which represents the number of Monte Carlo trials). 

ii) Select the values 𝜎0 within the domain of their parameter supports. 

iii) Simulate a sample of size n from the derived distributions.  

iv) Compute the maximum likelihood estimates �̂�𝑘 𝑜𝑓 𝜎𝑘  

v) Redo steps 3-4 for 𝑁 number of times  

vi) The computations of the following measures are obtained:  

 

                             𝐴𝑣ⅇ𝑟𝑎𝑔ⅇ 𝐵𝑖𝑎𝑠 = [  
1

𝑀
∑ (�̂�ⅈ − 𝜎)𝑀

ⅈ=1 ]  𝑎𝑛𝑑                                           

                                               𝑀𝑆𝐸 = [  
1

𝑀
∑ (�̂�ⅈ − 𝜎)2 𝑀

ⅈ=1 ]    

See Table 2-7 for the Average Bias and MSE of the NASD2 
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Table 1: Average Bias and MSE of the (NASD) Estimator �̂� 

Parameter N Average Bias (𝜎) MSE (𝜎) 

 20 -1.6e-16 0.00899 

 50 -0.3e-16 0.00576 

𝜎 = 0.1 75 -7.8e-16 0.00387 

 100 -8.0e-16 0.00312 

 250 -10.6e-16 0.00125 

 20 -2.6e-15 0.05451 

 50 -2.8e-15 0.04729 

𝜎 = 0.5 75 -3.2e-15 0.04154 

 100 -6.1e-15 0.03215 

 250 -8.2e-15 0.03012 

 20 -3.1e-15 0.06999 

 50 -3.7e-15 0.06865 

𝜎 = 1.5 75 -8.3e-15 0.05824 

 100 -7.9e-15 0.04234 

 250 -9.7e-15 0.01425 

 20 6.2e-15 0.06917 

 50 -2.2e-16 0.05934 

𝜎 = 2.5 75 -3.9e-15 0.05239 

 100 -4.5e-15 0.04236 

 250 -1.2e-15 0.03046 

 

The estimates for the average bias and mean square error are presented in Table 1, and at different 

selected values of the parameter. Apparently, from the Table, we deduce that the estimates of the 

average bias and mean square error decrease as the sample size 𝑛 increases. This simply indicates 

that the estimators of the derived distributions are consistent and asymptotically stable.  

 

CONCLUSION 

The paper presents some methodical approaches to the development of probability models; and a 

rare trend in the theory of probability, which features a perfect hemisphere shape which can also 

be termed the Normal ArcSine Distribution. This development stems from an integrative 

combination of two different symmetric trends, realized over the mathematical principle of 

normalization. The combination is a composite of the Normal distribution with a bell curve shape 

and the arcsine distribution with a U-shape; where the right skewed trend is another shape 

obtainable from the proposed model. Properties like moments and estimation were studied 

alongside simulation, underscoring the behaviour of the parameters. It is recommended that further 

studies be carried out on the application of this development.  
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