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ABSTRACT: In this research work, we developed a predictive 

model for digital currency prices, involving daily closing price as 

a function of time. We used the Geometric Brownian motion 

stochastic differential equation which was solved using inbuild 

functions in Microsoft Excel. While we used the Bitcoin as our 

case study, our model was able to predict the daily closing prices 

of Bitcoin to a reasonable degree of accuracy. We equally observe 

that the time dependent Geometric Brownian motion stochastic 

differential equation cannot give digital currency traders and 

investors a clue on when to trade off their digital assets. Thus, it 

become very risky using our model to make well informed trading 

decisions. We therefore, recommend that for minimum risk, trades 

and investors in digital currencies should consider a combination 

of other signal tools to take more informed and less risky trading 

decisions. 

KEYWORDS: Crypto Currency, Geometric Brownian motion, 

Bitcoin, Stochastic Modelling.  
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INTRODUCTION   

In its early years, Bitcoin was known to a relatively narrow community of cryptography 

enthusiasts. The first time the currency made it into the mainstream media was probably in 

June 2011, when WikiLeaks started accepting donations in Bitcoin from its supporters 

(Halaburda and Sarvary (2015)). WikiLeaks started accepting donations in Bitcoin, while 

highlighting the flexibility of the currency, its anonymity and independence from traditional 

financial providers. By 2013, Bitcoin started appearing to be an increasing speculative 

investment opportunity (Parham (2017)). Its price (i.e. exchange rate to the US dollar) 

increased from under $15 in Jan-2013 to over $1,200 in Dec-2013. During this time, Bitcoin 

also started gaining foothold in electronic commerce, when the Chinese search engine Baidu 

(world’s 5th most visited site at the time) started accepting Bitcoin for payments. However, 

restrictions were put by the US government on digital currencies when it was revealed that 

Bitcoin was being used for payments in the illicit activities like drug trade by illegal websites 

like Silk Road. FBI raided the offices of this website and seized over 26,000 Bitcoins from 

there. Subsequently, the Chinese website Baidu also stopped accepting Bitcoins. In 2011, 

Japan-based Mt. Gox, then the largest Bitcoin exchange, experienced a security breach in 

which 850,000 Bitcoins worth approximately $450 million were stolen. As digital signature of 

a Bitcoin purse is nearly impossible to crack using brute force method, it happened only 

because the digital signature, or the password was known to someone who was involved in the 

incidence (Yermack (2013)).  

Bitcoin started gaining popularity as it was touted as an instantaneous and anonymous way to 

make transactions, defying national boundaries, with no central bank and country as authority. 

Because of its anonymous nature, Bitcoins have been used in past in the criminal money 

laundering and tax evasion schemes (Nabilou (2019). 

Cryptographic currencies represent a growing asset class that has attracted much attention from 

financial communities. Cryptocurrencies are digital cash and payment systems that are 

encrypted in a blockchain system (Hayes 2016). The four main cryptocurrencies currently on 

the market are Bitcoin, Ethereum, Ripple, and Litecoin. The list is constantly changing as 

investors grow. Bitcoin, Etherum, and Litecoin use the same network of computers to store the 

same copies of all transactions. Therefore, the possibility of any anomalies is highly unlikely 

and the network is completely safe (Iwamura, Blomhøj & Kjeldsen, 2019). Bitcoin is currently 

trading at the top of the cryptocurrencies list. Moreover, Bitcoin’s algorithm is used in most 

cryptocurrencies (Gandal & Halaburda, 2016). Each cryptocurrency has its own rules 

concerning the maximum amount of money, currency production, privacy, transaction rates 

added to the blockchain, and the various mechanisms used by miners to compete among each 

other and earn rewards. 

(Indera, Alrasheedi, & Alghamdi. 2017). Bitcoin is a decentralized electronic exchange system 

and represents a major change in the global financial system. Its system is based on peer-to-

peer and cryptographic protocols and is not managed by any government or bank (Vidal 2014). 

It operates on the basis of a collusive and uncertain system in which all transactions are placed 

in an open ledger called blockchain (Guo and Liang 2016). Due to limited resources, low 

transaction costs, and ease of transferring, Bitcoin has gained popularity rapidly in recent years 

across the globe. It has led to cryptocurrencies being recognized as an asset to the economy, 

and its reach extends to markets around the world (Hayes 2016). 
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Stock market prediction is difficult due to its volatile and changeable nature (Kou et al. 2014; 

Kou et al. 2019); however, it has been extensively investigated by researchers. For example, 

Adebiyi et al. (2012) used a neural network to predict stock prices. It presents a hybridized 

approach which combines the use of the variables of technical and fundamental analysis of 

stock market indicators for prediction of future price of stock in order to improve on the existing 

approaches. Alrasheedi and Alghamdi (2012) used a linear discriminant and logit model to 

predict the SABIC (Saudi Basic Industries Corporation) price index, and Sathe et al. (2016) 

investigated share market prediction. More details can be found in other works, such as 

Cocianu and Grigoryan (2015) and Ma et al. (2010). Bitcoin is a fresh market that is still in its 

transition phase; therefore, a lot of fluctuations can still be observed (Briere et al. 2013). Due 

to its unstable nature, cryptocurrency prediction is not an easy task. Interestingly, based on the 

information provided from the website www.coindesk.com, Bitcoin has more than 50% of the 

market share in the cryptocurrency market at the time of this study. Therefore, studying its 

prediction is of great importance and researchers are becoming focused on it. 

Dynamics of Bitcoin 

Satoshi Nakamoto is the creator of Bitcoin (Nakamoto 2008). This name was used for the first 

time in 2008 and it is still unclear if this is a real name or nickname. In 2008, he published an 

article about cryptography on a mailing list of the website “www.metzdowd. com”. The article 

introduced a kind of digital currency that later became Bitcoin. In early 2009, he released 

Bitcoin’s source code, along with binary code compiled on “www.sourceforge.net”. 

In June 2009, Nakamoto launched the peer to peer Bitcoin network (Kaushal 2016) that allows 

individual members of the network to track all transactions, and started to mine Bitcoin. During 

the early days of crypto mining, there were few miners in the network. Therefore, the mining 

difficulty was low (Franco, 2014). These few miners were able to extract huge amounts of 

Bitcoin. Franco’s (2014) study used a Bitcoin data analysis and discovered that Nakamoto 

extracted nearly 1,000,000 Bitcoins. Interestingly, none of these Bitcoins had ever been spent, 

but the reason behind it is unknown. However, it is obvious that as soon as these Bitcoins are 

spent by Nakamoto, his identity will be known in the Blockchain. 

The Concept of Digital Currency  

The introduction of a digital currency would, in an extreme case described by Bindseil (2020), 

lead to a run on retail bank accounts, which would have disastrous effects for the system's 

stability and the ability to finance non-financial industries. Additionally, instantaneous cross-

border transactions are made possible by digital currencies. If both parties are connected to the 

same network, an individual in the United States can, for example, send payments in digital 

currency to counterparty in Singapore. A general word that can be used to characterize various 

forms of currencies that are found in the electronic domain is "digital currency."  Some 

categories of digital currency are: 

Crypto Currency 

Crypto currencies are virtual money that secure and validate network transactions through the 

use of encryption. These currencies are likewise managed and controlled through the use of 

cryptography. Among the crypto currency examples are Ethereum and Bitcoin. The regulation 

of crypto currency may vary based on the jurisdiction. Because they are solely digital and 

unregulated, cryptocurrencies are referred to as virtual currencies. The crypto currency market 
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is extremely hard to understand because of the strong correlation between individual currencies 

and the rather weak correlation between crypto currencies and the equities market. The world's 

first peer-to-peer digital payments system, Bit coin was invented by an unknown developer (or 

group of developers) using the pseudonym Satoshi Nakamoto during the aftermath of the 2017–

2018 financial crisis. It operates entirely without the involvement of a central entity (Nakamoto 

2008,). Since its inception in 2009, Bit coin has consistently maintained its position as the most 

expensive crypto currency (Coingecko 2022). It was the first crypto currency to be created. 

The concept behind Bit coin was that it would operate digitally, just like real money or gold, 

allowing direct transactions between two parties to occur, anonymously and untraceably if 

desired. The fact that bit coin transactions are irreversible and permanent is another crucial 

aspect. 

Stochastic Differential Equation 

According to Herzog (2013) stochastic differential equation (SDE) represents the evolution of 

a stochastic process. Unlike ordinary differential equations (ODEs), which use deterministic 

functions, SDEs include random processes or noise in their formulation.  However, solving 

SDEs often involves techniques from stochastic calculus, such as Itô calculus, to handle the 

differential terms involving the Wiener process. Analytical solutions to SDEs are rare, so 

numerical methods like Monte Carlo simulations or numerical integration techniques (e.g., 

Euler-Maruyama method) are commonly employed to approximate solutions. SDEs have many 

applications in pure mathematics and are used to simulate diverse behaviors of stochastic 

models such as stock prices, random growth models or physical systems that are prone to 

thermal fluctuations (Musiela,  & Rutkowski, 2014). 

Therefore, SDEs have a random differential, which is, at its most basic, random white noise 

calculated as the derivative of a Brownian motion or, more broadly, a semi martingale. Other 

sorts of random behavior are possible, such as Lévy processes or semi martingales with leaps. 

Random differential equations are equivalent to stochastic differential equations. Stochastic 

differential equations can also be extended to differential manifolds (Kesendal, 2013). 

According to (Rogers and Williams, 2020) Stochastic differential equations originated in the 

theory of Brownian motion, specifically in the work of Albert Einstein and Marian 

Smoluchowski in 1905. Though Louis Bachelier was the first person credited with modeling 

Brownian motion in 1900, providing a very early example of a stochastic differential equation 

now known as the Bachelier model. Some of these early examples included linear stochastic 

differential equations, commonly known as Langevin equations after French physicist 

Langevin, which described the motion of a harmonic oscillator subjected to a random force.  

This train of thought will serve as motivation for the following more rigorous analysis. To 

construct probability values, first define values for specific events and then extend them to a 

larger class of events in a consistent manner. This differs from counting state spaces, where 

probability values are first associated with single points. A comprehensive understanding of 

probability and random variables is key to addressing these challenges Arapostathis and Yuksel 

(2023) 

Stochastic Differential Equations (SDEs) are a fundamental component of mathematical 

finance, offering a solid foundation for simulating the randomness inherent in financial 

markets. These equations allow for the measurement of a wide range of financial phenomena, 

from stock price movements to interest rate changes, by including random processes into their 
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structure (Anderland, 2018). The use of SDEs in finance is more than a theoretical exercise; it 

has real-world ramifications for risk management, option pricing, and investment strategy. 

Understanding the stochastic character of financial instruments enables analysts and traders to 

make more educated judgments that take into account market unpredictability and volatility 

(Backhoff-Veraguas, Bartl, Beiglbock, and Eder, 2020). Stochastic Differential Equations 

(SDEs) have become an essential tool for comprehending the complicated and frequently 

unpredictable world of population dynamics and ecology.  

The intrinsic randomness of environmental parameters, like as weather patterns, food 

availability, and predator-prey interactions, can be better described with SDEs than 

deterministic models. This technique helps ecologists to account for the unpredictability and 

uncertainty that are inherent in natural systems (Bar-Shalom and Tse, 2014). Conservationists 

use SDEs to assess the risk of extinction under various conditions, while resource managers 

use them to determine sustainable harvest levels. Theoretical ecology researchers use SDEs to 

investigate the nature of complexity and stability in ecosystems (Vivek and Mrinal, 2018). The 

classic logistic growth model can be extended into an SDE to account for random fluctuations 

in growth rate.  SDEs are also used to model the movement of individuals in space, which is 

crucial for understanding species dispersal and habitat use.   

In the context of stochastic differential equations (SDEs), the gap between Ito and Stratonovich 

calculus is more than just a technicality; it represents various modeling philosophies and 

interpretations of unpredictability in systems. Both calculi offer frameworks for integrating 

SDEs, which are tools for modeling systems affected by random fluctuations Davis and 

Varaiya (2016).. They do, however, differ in their approach to the stochastic integral, which is 

a fundamental notion in SDE theory. Because of its non-anticipative nature, Ito Calculus is the 

most widely utilized in financial mathematics (Dobrushin, 2010). It is assumed that the existing 

state of a system does not predict future stochastic fluctuations. This makes it ideal for 

simulating random processes in markets where the future is intrinsically uncertain. The Ito 

integral is defined in such a way that it may be applied to filtrations, which are mathematical 

constructs that reflect the accumulation of information over time Douc, Fort, Moulines, and 

Soulier (2014).  

Stratonovich SDEs can be solved using methods that are more akin to those used for ordinary 

differential equations (ODEs). 

The physical interpretation of the system being represented, as well as the features of the 

stochastic processes involved, ultimately determine whether Ito or Stratonovich calculus is 

used. While Ito calculus may be more closely related to financial modeling due to its treatment 

of information flow, Stratonovich calculus provides a framework that is more consistent with 

classical calculus and thus more comprehensible in some physical applications (Hogeboom, 

2023). The discussion between these two approaches demonstrates the richness and complexity 

of describing the stochastic environment (Georgiou and Lindquist 2018). 
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MATERIALS AND METHODS 

In this section we present the necessary tools for the stochastic analysis of the dynamics of the 

Crypto currency market.  The data for the analysis was a secondary data collected from 

yahoo.com which can be made available on demand. 

The Concept of Stochastic Modeling 

Stochastic modeling is a form of financial modeling used to make investment decisions. This 

type of modeling predicts the likelihood of different outcomes under different conditions using 

random variables. Stochastic modeling presents data and forecasts outcomes that allow for a 

degree of unpredictability or randomness. Companies in many industries can use stochastic 

modeling to improve their business practices and increase profitability. In the financial services 

sector, planners, analysts, and portfolio managers use stochastic modeling to manage their 

assets and liabilities and optimize their portfolios. 

Crypto Currency Model 

Let ( )P t denote the price of a crypto currency at time t. We setup the model as follows. 

Adapting the original model in Johansen, Ledoit, Sornette, (2000) our starting point is the 

equation 

( ) ( )( ) ( )0exp 1P t X t H t t= − −                                      (2.1) 

where 0t denotes the time of the crash and ( )H t  denotes the Heaviside function depicted in 

figure 2.1  and defined as follows; 

( ) 0

0

0

0            

1         

t t
H t t

t t


− = 


                                                            (2.2) 

 

 Fig. 2.1 The Heaviside function 

When a crash occurs the asset price collapses completely. This follows qualitative features of 

past cryptocurrency crashes (White, 2014). The timing of the crash 0t is assumed to be unknown 

but described by the probability density ( )f t  and CDF. Further, ( )X t satisfies the stochastic 

differential equation 

       ( ) ( ) ( ) ( )dX t t dt t dW t = +                                            (2.3) 
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where ( )W t is symmetric Cauchy noise (Samarodnitskiy and Taqqu, 1994). Set up in this way, 

the model also incorporates empirical evidence of extreme heavy-tails in empirical 

cryptocurrency prices (Gkillas and Katsiampa, 2018). Use of the Cauchy distribution as a 

financial model (Harris, 2017) is also motivated by analytical tractability (Samarodnitskiy and 

Taqqu, 1994), classical financial models (Mandelbrot, 1963) and the study of Black Swans and 

heavy-tailed phenomena (Taleb, 2007). The Cauchy parameters  and 2  also have a 

convenient interpretation as the median and the inter-quartile range respectively (Lee, 1997). 

These are often thought to be more robust summaries of financial risk and return (McNeil, Frey 

and Embrechts 2005) alongside further links to theoretically coherent measures of financial 

risk (Artzner, Delbaen, Eber and Heath, 1999).  

Taking logarithms it follows that prior to the crash we have 

                                  ( ) ( )( ) ( )0ln ln exp ln 1P t X t H t t= + − −                                                (2.4) 

           ( ) ( ) ( )0ln 1X t H t t X t= + − − =                                                (2.5) 

Furthermore ( ) ( )lnX t P t=  satisfies the stochastic differential equation 

( ) ( ) ( ) ( )
( )

( )
0

01

t t
dX t t dt t dW t

H t t


 

−
= + −

− −
                                 (2.6) 

The Geometric Brownian Motion (GBM) 

The GBM has been the simplest model to describe stock- or asset-price dynamics. In this work, 

we model cryptocurrency closing price as a GBM. The essence of this asset price dynamics is 

that the relative price change dS S  can be split into a deterministic and a random component 

(Wilmott et al. 1995), 

       ( ) ( ) ( ) ( ) ( ) ( )dS t S t t dt S t t dW t = +                                   (2.7) 

where μ is the expected rate of return over time,  is the volatility (the amplitude of the noise), 

and ( ) ( ) ( )dW t W t dt W t= + −  is the infinitesimal Wiener Process ( ( ) 0dW t = and 

( )2dW t dt= Defining ( ) ( )lnP t S t  and using Itô’s Lemma (Wilmott et al. 1995; Gardiner 

1985; Itô 1944) one arrives at 

          ( ) ( )dP t dt dW t = +                                                   (2.8) 

with ( ) 21
2

t  = − . Ito’s stochastic calculus yields the exact solution (Wilmott et al. 1995; 

Gardiner 1985; Itô 1944) 

                       ( ) ( ) ( )0P t P t t t = + +                             (2.9) 

where ( )t is a normal random variable with zero mean and unit variance.  
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From Taylor’s formula to Ito’s lemma 

Let  𝑓: ℝ2 → ℝ be a twice differentiable function; the Taylor’s series expansion of f at  ( )0 0,x t  

is written as;  

( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )( ) ( )

2
2

0 0 0 0 0 0 0 0 0 0 02

2 2
2

0 0 0 0 0 0 0 0 02

1
, , , , ,

2

1
                             , , ,

2

f f f
f x t f x t x t x x x t t t x t x x

x t x

f f
x t t t x t x x t t x t

t x t


  
= + − + − + −

  

 
+ − + − − +

  

           (2.10) 

Where 𝜀(𝑥0, 𝑡0) ∼ 𝑜((𝑥 − 𝑥0)2 + (𝑡 − 𝑡0)2). The condition on   shows that 3rd order terms 

are negligible with respect to 1st and 2nd order terms.  

The case of when x is an Ito process which is written as a stochastic integral with respect to a 

Brownian motion. The variation of this process on a time-interval 0t t−  is of order 0t t− . 

Consequently the 2nd order term ( )( )
2

2

0 0 0,
f

x t x x
x t


−

 
cannot be neglected because it is ( )0O t t−

. It has magnitude ( )( )0 0 0,
f

x t t t
t


−


.  

Suppose we set ( ) ( ) ( )0 0 0 0 0, , , ;   df x t f x t f x t t t dt= − − =  and 0x x dx− =  the above equation 

becomes; 

( ) ( ) ( ) ( )( ) ( )( )

( ) ( )

2 2
2 2

0 0 0 0 0 0 0 0 0 02 2

2

0 0 0 0

1 1
, , , , ,

2 2

                             , ,

f f f f
df x t x t dx x t dt x t dx x t dt

x t x t

f
x t dxdt x t

x t


   
= + + +
   


+ +
 

           (2.11) 

Replace x by tX  with X a stochastic process evolving according to the SDE; 

( ) ( ), ,t t t tdX X t dt X t dW = +                                             (2.12) 

Hence from equation (3.34), giving up the arguments of the partial derivatives to simplify 

notations, for becomes, for ( ),tX t ;   Applying now the calculation rules defined previously  

(2.12) allows us to see that the coefficients 
2

2

f

t




 and 

2 f

x t



 
 are negligible (o(dt)). It then follows 

that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

2

2 2
2

2

1
, , , , ,

2

1
                             , , ,

2

t t t t t t t

t t t t

f f f
df X t X t dt X t dW dt X t dt X t dW

x t x

f f
dt X t dt X t dW dt X t

t x t

   

  

  
= + + + +        

 
+ + + +     (2.13)

 

Hence; 
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( ) ( ) ( ) ( ) ( ) ( )
2

2

2

1
, , , , , ,

2
t t t t t t t t

f f f
df X t X t dt X t dW dt X t dt X t dW X t

x t x
    

  
= + + + + +        

with ( )o dt  = .  

We note that the term ( ) ( )
2

, ,t t tX t dt X t dW +   can be expanded to give 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2

, , , , 2 , ,t t t t t t t t tX t dt X t dW X t dt X t dW X t X t dtdW     + = + +       
(2.14)

 

The term ( )
2

dt is ( )
2

O dt and hence negligible. Also the term tdtdW  is negligible because it is 

( )
3

O dt and, finally the term ( )
2

tdW which is ( )O dt and hence not negligible. After the 

necessary simplifications, we arrive at; 

( ) ( ) ( ) ( ) ( )
2

2

2

1
, , , , ,

2
t t t t t t

f f f
df X t X t dt X t dW dt X t dt X t

x t x
   

  
= + + + +    

     
(2.15)

 

with ( ) ( ),tX t o dt  = . 

We can now write the process ( ),tf X t  as a stochastic differential by grouping dt  terms on 

the one hand and tdW on the other hand; 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

2

2
2

2

1
, , , , ,

2

1
               , , , ,

2

t t t t t t

t t t t t

f f f f
df X t X t dt X t dW dt X t dt X t

x x t x

f f f f
X t X t dt X t dW X t

x t x x

   

   

   
= + + + +

   

    
= + + + + 

    

      

(2.16)

 

This brief heuristics gives the intuition of the result, however a rigorous proof of Ito’s lemma 

requires more precautions. Especially the terms ( ),tX t are stochastic and claiming “ is 

negligible with respect to dt ” is not sufficiently precise. However our aim in this thesis is not 

to prove Ito’s lemma but to demonstrate it importance in solving the Brownian Motion SDE. 

We now formally state the Ito’s lemma, which is nothing else than a Taylor formula in a 

specific stochastic environment. 

Proposition 

Let X be an Ito process satisfying the SDE 

( ) ( ), ,t t t tdX X t dt X t dW = +                                                      
(2.17)

 

Furthermore, let 𝑓: ℝ2 → ℝ be a function with continuous partial derivatives up to order 2. The 

process Y defined by ( ),t tY f X t= is an Ito process satisfying the SDE given by 
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 ( ) ( ) ( )
2

2

2

1
, , ,

2
t t t t t

f f f f
dY X t X t dt X t dW

x t x x
  

    
= + + + 

                   (2.18)

 

If we write the SDE of Y  in the following form: 

( ) ( ), ,t Y t Y t tdY Y t dt Y t dW = +
                                              (2.19)

 

We get; 

( ) ( ) ( )
2

2

2

1
, , ,

2
Y t t t

f f f
Y t X t X t

x t x
  

  
= + +
                                        (2.20)

 

( ) ( ), ,Y t t

f
Y t X t

x
 


=

                                                               (2.21) 

 

APPLICATIONS OF THE ITO’S LEMMA 

Let W denote a Wiener process with parameters   and  which are constant for W and Y  the 

process defined by ( ) ( )expt t tY f W W= = . Y is then the transformation of the Brownian motion 

by the exponential function. We observe that t does enter the transformation implying 0
f

t




= . 

The dynamics of Y is obtained by applying Ito’s lemma. 

( ) ( )
2 2 2

2

2

1
, exp

2 2 2
Y t t t

f f f
Y t W Y

x t x

 
    

     
= + + = + = +   
                           (2.22)

 

( ),Y t t

f
Y t Y

x
  


= =

                                                                  (2.23)
 

 Or equivalently: 

                     
2

2

t
t

t

dY
dt dW

Y


 
 

= + + 
                                                            (2.24)

 

Y , which may represent the price of a stock or some other financial instrument, is called a 

geometric Brownian motion. 

Symmetrically, let Y denote a price process satisfying the SDE; 

                                                0 1Y =  

                                               t t t tdY Y dt Y dW = +
                                                     (2.25)
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Let X be defined as ( ) ( )lnt t tX g Y Y= = . In this case, we get; 

( ) ( )
2 2

2 2

2 2

2

1 1
, ,

2 2

                                                      
2

t t t t

g g g g g
Y t Y t Y Y

x t x x x
   




    
+ + = +

    

= −
                            (2.26)

 

                                                                       
t

g
Y

x
 


=

  

These equalities lead to: 

2

2
t tdY dt dW


 
 

= − + 
                                                (2.27) 

 

 Existence and Unicity of Solutions of SDE 

In this section we concern ourselves with the existence and uniqueness of solution of stochastic 

differential equations. In particular we wish to know what assumptions must be imposed on 

the mean   and drift   for the SDE to define a stochastic process having nice properties.  We 

assume that the filtration   on the probability space ( ), , P is the natural filtration of a 

standard Brownian motion W . 

Definition 

A stochastic differential equation is given by a stochastic differential associated with a 

boundary condition, i.e., 

 

                                          0X c=                                                                                (SDE) 

               ( ) ( ), ,t t t tdX X t dt X t dW = +
.                                             (2.28)

 

In the general case c may be a random variable. However in most financial models, c is a 

constant, for example the initial price of a financial asset or the initial short-term rate of interest. 

Definition 

A stochastic process X is a solution of the SDE (2.28) on  0,T  if 

i) X is adapted to   

ii) The functions   and  satisfy respectively; 
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       ( )
0

,
T

tX t dt  +  and ( )2

0
,

T

tX t dt  +                                                (2.29) 

iii) X satisfies; 

                               ( ) ( )0
0 0

, ,
t t

t s s sX X X s ds X s dW = + +                                (2.30) 

The following proposition provides conditions on   and  for a stochastic differential equation 

to have a solution. 

Proposition 

Assuming conditions (i) and (ii) in definition (2.7.2) are satisfied, then equation (2.30) has a 

unique solution (P-a.s), which is a stochastic process X adapted to , with continuous paths, 

satisfying ( )2

0

T

tE X dt  + .  

(a) 0M  such that ∀𝑡 ∈ [0, 𝑇], ∀(𝑥, 𝑦) ∈ ℝ2 

         ( ) ( ) ( ) ( )( )max , , ; , ,x t y t x t y t M x y   − −  −  

                   𝜇(𝑥, 𝑡)2 + 𝜎(𝑥, 𝑡)2 ≤ 𝑀(1 + 𝑥2), ∀(𝑥, 𝑦) ∈ ℝ2 

(b) 0X is square integrable, independent of t for any t . 

A detailed proof of this result may be found in Oksendal (2000), page 66. (Stoch. Processes for 

finance). 

Oksendal, B. (2000); Stochastic Differential Equations: An introduction with applications 5th 

ed., Springer. 

 Remark 

The condition in (a) is called a Lipschitz condition. It limits the slopes of   and  which must 

be finite and bounded by a constant which doesn’t depend on t. The second part of condition 

(a) puts some restrictions on the growth of   and  . As   is the instantaneous expectation of 

X variations, the condition means that the LHS must be of order ( )
1
221 x+ . Thus, we cannot 

have a drift growing out of proportion. If the condition were not satisfied, the drift would grow 

too rapidly with the level reached by the process. This would be the case for example if

( ), .xx t e =  
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ANALYSIS AND RESULTS 

Introduction 

Our setting here is a probability space ( ), , P endowed with a filtration  , 0tF t=  that 

satisfies the usual conditions of right-continuity and completeness. On the given probability 

space, we consider a main market in which heterogeneous agents buy or sell Bitcoin and denote 

by  : 0tS S t=  the price process of the crypto currency. We assume that the Bitcoin price 

dynamics is described by the following geometric Brownian motion stochastic differential 

equation: 

                                          𝑑𝑆𝑡 = 𝜇𝑆𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑆𝑡𝑑𝑊𝑡,     𝑆0 = 𝑠0 ∈ ℝ+                                (3.1)                                  

where𝜇𝑆 ∈ ℝ\{0}, 𝜎𝑆 ∈ ℝrepresent model parameters;  : 0tW W t=  is a standard Brownian 

motion on ( ), , P . We recall that equation (4.1) was introduced in the previous chapter and 

a formal solution provided. 

Solution of the Geometric Brownian Motion SDE 

A key assumption of the Black-Scholes option pricing model is that the instantaneous crypto 

currency price movements can be characterized by the geometric Brownian motion SDE given 

by 

                                             t S t S t tdS S dt S dW = +                                                               (3.2)                                  

Here, tS  is the crypto currency price process, S  and S , are constants, t is time, and tdW  

follows a stochastic process called a Wiener process under which tdW dt=  where   is a 

random number draw from the standardized normal distribution. Equation (3.2) is commonly 

known as geometric Brownian motion (GBM), with S  and S called the drift parameter and 

the volatility parameter, respectively. 

Equation (3.2) can be written 

                                                  t
S S t

t

dS
dt dW

S
 = +                                                                (3.3) 

                                   
2

   ln
2

S
t S S td S dt dW


 
 

 = − + 
 

                                                       (3.4) 

The stochastic process as characterized by equation (4.4) indicates that ln tS  is normally 

distributed. Equivalently, tS  is lognormally distributed. With 0S  and TS  denoted as the crypto 

prices at time 0 and time T respectively, with tdW dt= and integrating both sides equation 

(4.4) leads to 
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2

0 exp
2

S
T S SS S T T


  

  
= − +  

  
                                                  (3.5) 

Furthermore, the expected value and the variance of the crypto price tS  are given by 

                         ( )0 expt SE S S T=  and   ( ) ( )2 2

0 exp 2 expt S SVar S S T T  =     
              (3.6) 

Simulation of daily Bitcoin price movements 

Although geometric Brownian motion is a stochastic process in continuous time, its 

implementation in simulation scenario requires that it be approximated in a discrete time 

setting. We assume for now that a day as a proportion of a year is short enough for such an 

approximation to work well. For simplicity our simulation will be based in MS Excel. It could 

however be implemented in Python or some other software. 

Now in order to simulate the time paths of daily crypto prices, from and initial price to a closing 

price, we need an explicit expression of the crypto price on each day in terms of the crypto 

price a day earlier. Such an expression is a recursive version of equation (3.5). 

Specifically, if we use t and t t+  ; instead of 0 and T > 0; to indicate two successive points in 

time, equation (3.5) can be written as 

                                           

2

0 exp
2

S
t t S SS S t t


  +

  
= −  +   

  
                                           (3.6) 

Now, let n be the number of days in a year. Here, the number can be based on calendar days or 

trading days; however, the latter is more common in practice. The time interval t  between 

two adjacent days is the proportion 1 n  of a year. For notational convenience, let tS  and 1tS +

be the stock prices on two adjacent days, for 0,1, 2,3,t = ; until the closing of the crypto 

trading. Provided that S and S  are stated in annual terms, we can write equation (3.6) 

                                            

2

1

1
exp

2

S S
t t SS S

n n

 
 +

  
= − +  

  
                                               (3.7) 

For a given initial price S0 and given constant values of S and S ; equation (3.7) will enable 

1 2 3, , ,S S S   to be generated. The idea is to use equation (3.7) recursively, starting from day 0; 

for each trading day, we generate a new random draw of   from the standardized normal 

distribution for the equation to simulate the crypto price of the next day. It is important to note 

that in Excel, Brownian motion can be simulated using the RAND ( ) and NORM.INV( ) 

functions. 
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Remark 

Given the stochastic nature of price movements as characterized by geometric Brownian 

motion, each set of simulated time paths of stock and option prices will inevitably differ from 

any other set as generated repeatedly in simulation runs. From a statistical perspective, we are 

interested in knowing what simulated prices can be expected and how widely dispersed are 

such prices. Equations (3.6) can be used directly to compute the expected crypto price and the 

standard deviation of crypto prices, respectively, on each day until the close of trading. With t 

being a day label, we simply substitute T on the right-hand side of each of the two equations 

with 1 n ; for 0,1, 2,3,t = ; until the close of trading, that is, 

                                                         0 exp S
t

t
E S S

n

 
=  

 
                                                        (3.8) 

and  

   
2

exp S
t t

T
Var S E S

n

  
=   

  
                                                              (3.9) 

 

 

Fig. 4.1 SDE Simulation and ANN Prediction of digital currency prices for 250 days. 
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Above is 250 days prediction of Bitcoin daily closing price using our model. Also shown in 

the chart is ANN prediction of Bitcoin closing price for the same period under review. 

 

 CONCLUSION  

Based on the findings of the study, the following conclusion were consequently reached. The 

study concluded that SDE time dependent model can be used to both predict digital currency 

prices. But it is important to note that our model cannot be use to forecast the future price of 

digital currencies beyond one day due to the high volatility nature of digital currency. The 

above is also in agreement with Stephen, Abhishek, James, Boleslaw, Szymanski, and Korniss 

(2020). 

  

RECOMMENDATION  

Based on the findings of the study the following recommendations were made. 

1. By modeling the underlying stochastic processes, traders can develop predictive models 

to forecast future price movements and identify profitable trading opportunities. Thus, 

we recommend that traders combine our model with other signals tool to make a more 

informed and accurate trading decision. 

2. Stochastic differential equations are essential for modeling the complex and volatile 

nature of digital currency markets. They enhance the understanding of price dynamics, 

improve risk management, facilitate option pricing, support algorithmic trading, and aid 

in portfolio optimization. By incorporating randomness into the models, SDEs provide a 

realistic and robust framework for analyzing and trading digital currencies. We suggest 

that digital currency investors or traders can actually combine SDEs and ANN for a more 

accurate prediction and forecast. 
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