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ABSTRACT: In this research work, a dynamically consistent 

non-standard finite difference (NSFD) scheme is developed to 

solve a continuous-time model of malaria transmission with 

herbal medicine as control strategy. We compared results from 

NSFD scheme with the standard finite difference methods (4th 

order Runge-kutta and forward Euler methods). The numerical 

investigation showed that the proposed NSFD method remains 

consistent, preserves the positivity of solutions and converges to 

true equilibrium points of the continuous model independent of 

the step size h.   

KEYWORDS: Non-Standard Finite Difference, Herbal, 

Malaria, Runge-kutta, Uncomplicated. 
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INTRODUCTION 

Malaria is a vector–borne infectious disease which is caused by Plasmodium parasite and it is 

transmitted to humans through bites of infectious female anopheles mosquitoes (World 

Health Organization, 2022; Azuaba et al, 2020). This life–threatening disease is treatable and 

is usually classified into asymptomatic, mild (uncomplicated), and severe (complicated) 

malaria based on clinical symptoms. Asymptomatic malaria describes a case where a person 

harbours the parasite that can transmit the disease but not showing clinical symptoms due to 

naturally acquired immunity that develops slowly with age. Persons with mild 

(uncomplicated) malaria usually have fever and one or more of the following symptoms: 

chills, shivering, headache, vomiting, sweating, fatigue, and anemia but no clinical signs or 

laboratory findings of vital organ dysfunction. On the other hand, severe (complicated) 

malaria is characterized by at least one of the following clinical manifestation(s); coma 

(caused by cerebral malaria), convulsions, hypoglycemia, malarial anemia, metabolic 

acidosis (with difficulty in breathing), high fever, and/or spontaneous bleeding (World Health 

Organization, 2022; Bakary et al., 2018). 

Conventional antimalarial drugs (such as chloroquine, artesunate, quinine, and amodiaquine) 

are used as first-line treatment for uncomplicated (mild) malaria in most malaria-endemic 

countries. However, resistance of Plasmodium parasites to these conventional antimalarial 

drugs has created a need for herbal therapy as alternative treatment for uncomplicated malaria 

infection. According to Collins and Duffy (2022), factors that increase the resistance of 

Plasmodium parasites to conventional antimalarial drugs include incomplete treatments of 

active malaria infections, overuse of antimalarial drugs, and use of counterfeit or substandard 

drugs. Uzor et al (2020) reported that the high cost and the adverse effects associated with 

some of these conventional antimalarial drugs also limit their usefulness in malaria control. 

Traditionally, antimalarial herbal medicine has been used in the control of malaria for 

decades due to their efficacy, lower cost, safety and availability. Indeed, antimalarial herbal 

medicine is gaining popularity in developed as well as developing countries for treatment of 

uncomplicated malaria (Erhirhie et al, 2021; Oladeji et al, 2020; Adebayo & Krettli, 2010). 

In addition to the use of antimalarial herbal medicine, human behaviour (use of insecticides 

treated bed-nets and draining of mosquito breeding sites) and good housing condition have 

also been reported as preventive control measures in curbing the spread of malaria (Bala & 

Gimba, 2019; Oluwafemi & Azuaba, 2022; Witbooi et al, 2021). It is reported that malaria 

constitutes a significant constraint to economic growth; however it has been proven that 

economic development improved significantly in areas where malaria is eradicated. 

Epidemiological models can be described by a system of first order non-linear ordinary 

differential equations (continuous-time model) in which exact solutions are generally difficult 

to obtain, hence the need to discretize the continuous-time model into a discrete scheme for 

numerical simulation. The results of the discrete–time models are more accurate and more 

suitable for describing infectious diseases (Liao & Yang, 2017). However, some 

discretization techniques do not always preserve the essential properties of the continuous-

time models, such as; the positivity of solutions and numerical stability (Ndii et al, 2019). It 

is well known that in mathematical modeling of malaria transmission dynamics, the long-

time behaviour of models converge to the steady state, thus, any numerical scheme used for 

numerical simulation of mathematical model arising from malaria must follow this 

phenomenon. Several discretization methods have been used in literature, including the 
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explicit Euler methods, Runge-Kutta methods, and other Standard Finite Difference (SFD) 

methods. It has been shown that these standard finite difference methods implemented in a 

dynamical system can lead to negative solutions, numerical instabilities or converging to 

wrong equilibrium points. (Ndii et al, 2019; Lambert, 1991)  One of the most important 

breakthroughs in this regard is the research made by Micken (Micken, 2000 & 2007) on the 

use of Non-Standard Finite Difference (NSFD) method which is based on the concept of 

exact difference scheme.  

Therefore, in this research work we applied a non-standard finite difference scheme to a 

mathematical model of malaria with herbal medicine as control. We compared the NSFD 

methods with the SFD scheme and also tested their convergence properties at different step-

lengths. The non-standard finite difference method is well known in literature and has been 

applied to many cases in recent years (Kocabiyik, 2022; Farago & Moslah, 2022; Ndii et al, 

2019; Egbelowo, 2018; Rafiq, 2017).  

MATERIAL AND METHODS 

Elakhe et al., (2023) formulated a mathematical model of malaria transmission with anti-

malaria herbal therapy as control. The model is given by the following non-linear ordinary 

differential equations: 

 

  
𝑑𝑆ℎ

𝑑𝑡
= 𝛬ℎ + 𝜓𝑅ℎ − (

𝑏𝛽ℎ𝐼𝑚

1+𝑒𝐼𝑚
+ 𝜇ℎ) 𝑆ℎ

             
𝑑𝐸ℎ

𝑑𝑡
= (

𝑏𝛽ℎ𝐼𝑚

1+𝑒𝐼𝑚
) 𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ

          
𝑑𝑀ℎ

𝑑𝑡
= 𝛼ℎ𝐸ℎ − (𝜀 + 𝜏 + 𝜇ℎ)𝑀ℎ

         
𝑑𝐶ℎ

𝑑𝑡
=  𝜏𝑀ℎ − (𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ

      
𝑑𝑅ℎ

𝑑𝑡
= 𝜀𝑀ℎ + 𝜃𝐶ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ

  
𝑑𝑆𝑚

𝑑𝑡
= 𝛬𝑚 −  𝑏 (

𝛽1𝑚𝑀ℎ

1+𝑒𝑀ℎ
+
𝛽2𝑚𝐶ℎ

1+𝑒𝐶ℎ
) 𝑆𝑚 − 𝜇𝑚𝑆𝑚

 
𝑑𝐸𝑚

𝑑𝑡
= 𝑏 (

𝛽1𝑚𝑀ℎ

1+𝑒𝑀ℎ
+
𝛽2𝑚𝐶ℎ

1+𝑒𝐶ℎ
) 𝑆𝑚 − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚

                            
𝑑𝐼𝑚

𝑑𝑡
=     𝛼𝑚𝐸𝑚 − 𝜇𝑚𝐼𝑚                         

     

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                  (1)   

with the initial conditions: 

𝑆ℎ(0) = 𝑆0ℎ,  𝐸ℎ(0) = 𝐸0ℎ,  𝑀ℎ(0) = 𝑀0ℎ,  𝐶ℎ(0) = 𝐶0ℎ 

 𝑅ℎ(0) = 𝑅0ℎ  𝑆𝑚(0) = 𝑆0𝑚,  𝐸𝑚(0) = 𝐸0𝑚,  𝐼𝑚(0) = 𝐼0𝑚 

 

The state variables and model parameters are shown below; 
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Table 1:  Description of state variables of our model 

    State variables    Description   

𝑆ℎ(t)     Number of susceptible humans at time t 

𝐸ℎ(t)    Number of exposed humans at time t 

𝑀ℎ(t)  Number of infectious human population with uncomplicated cases of 

malaria infection at time t 

𝐶ℎ(t) Number of infectious human population with complicated cases of 

malaria infection at time t 

𝑅ℎ(t)   Number of humans with partial immunity at time t 

𝑁ℎ(t)   Total number of human population at time t 

𝑆𝑚(t)   Number of mosquitoes susceptible to malaria at time t 

𝐸𝑚(t)   Number of mosquitoes exposed to malaria at time t 

𝐼𝑚(t)   Number of infectious mosquitoes at time t 

 𝑁𝑚(t)   Total number of mosquito population at time t 

 

 

Table 2:  Description of Model Parameters 

     Parameters      Descriptions 

Λℎ   Recruitment term of susceptible humans  

Λ𝑚   Recruitment term of mosquitoes  

𝜇ℎ   Per capita natural mortality rate of humans  

𝜇𝑚   Per capita natural mortality rate of mosquitoes  

𝛿ℎ   Per capita disease–induced mortality rate of humans  

𝑏   Per capita biting rate of mosquitoes    

𝛽ℎ Probability that a bite by an infectious mosquito on a susceptible 

human results in transmission of disease to the susceptible human 

𝛽1𝑚 Probability that a bite by a susceptible mosquito results in transmission 

of disease from a mild/ asymptomatic infectious human to the 

susceptible mosquito 
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𝛽2𝑚 Probability that a bite by a susceptible mosquito results in transmission 

of disease from a complicated infectious human to the susceptible 

mosquito  

𝛼ℎ   Per capita latent period in human  

𝛼𝑚   Per capita latent period in mosquito 

𝜓   Per capita loss of immunity by recovered human  

𝑒 Proportion of human compliance level to behaviour change (the use of 

insecticide treated bed-net, draining of mosquitoes breeding sites) 

𝜀 Proportion of uncomplicated infectious human that recover due to 

antimalarial herbal drugs (𝑔) and/or natural immunity (𝜙) 

𝜏 Per capita rate of progression to infectious complicated human 

compartment  

𝜃 Per capita recovery rate of complicated infection human due to 

treatment  

Existence of Disease – Free Equilibrium Points:  The disease-free equilibrium state of the 

model is given as: 

𝐸0 = (𝑆ℎ
∗ ,   𝐸ℎ

∗ ,   𝑀ℎ
∗ ,   𝐶ℎ

∗,   𝑅ℎ
∗ ,   𝑆𝑚

∗ ,   𝐸𝑚
∗     𝐼𝑚

∗  )  = (
Λℎ

𝜇ℎ
,    0,     0,      0, 0,

Λ𝑚

𝜇𝑚
, 0,    0)      (2) 

which represent the  steady state in which there is no plasmodium parasite in the community. 

Basic Reproduction Number 𝑹𝟎: The reproduction number of the model is given by: 

        𝑅0 = √
𝑏2𝛽ℎ𝛬ℎ𝛬𝑚𝛼ℎ𝛼𝑚[𝛽1𝑚(𝜃 + 𝜇ℎ + 𝛿ℎ) + 𝛽2𝑚𝜏]

𝜇ℎ𝜇𝑚2 (𝛼ℎ + 𝜇ℎ)(𝜀 + 𝜏 + 𝜇ℎ)(𝜃 + 𝜇ℎ + 𝛿ℎ)(𝛼𝑚 + 𝜇𝑚)
                          (3) 

 

The focus of this research work is on the discretization of the continuous-time model (1) into 

discrete scheme employing the non-standard finite difference (NSFD) discretization method. 

however, we constructed some standard finite difference schemes (Forward Euler and 4th 

order Runge-Kutta methods) from the continuous-time model (1) as means of comparison 

with the non-standard finite difference method.   

Forward Euler Scheme 

Let us represent 𝑆ℎ
𝑛, 𝐸ℎ

𝑛, 𝑀ℎ
𝑛, 𝐶ℎ

𝑛, 𝑅ℎ
𝑛, 𝑆𝑚

𝑛 , 𝐸𝑚
𝑛  and 𝐼ℎ

𝑛 respectively as the numerical 

approximations of 𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝑀ℎ(𝑡), 𝐶ℎ(𝑡), 𝑅ℎ(𝑡), 𝑆𝑚(𝑡), 𝐸𝑚(𝑡) and  𝐼𝑚(𝑡) at 𝑡 = 𝑛ℎ, 

𝑛 = 0,1,2, …, where h is the step-size. Then we have the discrete model for system (1) given 

by: 
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𝑆ℎ
𝑛+1 − 𝑆ℎ

𝑛

ℎ
= Λℎ + 𝜓𝑅ℎ

𝑛 − (
𝑏𝛽ℎ𝐼𝑚

𝑛

1 + 𝑒𝐼𝑚
𝑛 + 𝜇ℎ) 𝑆ℎ

𝑛

𝐸ℎ
𝑛+1 − 𝐸ℎ

𝑛

ℎ
= (

𝑏𝛽ℎ𝐼𝑚
𝑛

1 + 𝑒𝐼𝑚
𝑛 ) 𝑆ℎ

𝑛 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ
𝑛

𝑀ℎ
𝑛+1 −𝑀ℎ

𝑛

ℎ
= 𝛼ℎ𝐸ℎ

𝑛 − (𝜀 + 𝜏 + 𝜇ℎ)𝑀ℎ
𝑛

𝐶ℎ
𝑛+1 − 𝐶ℎ

𝑛

ℎ
= 𝜏 𝑀ℎ

𝑛 − (𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ
𝑛

𝑅ℎ
𝑛+1 − 𝑅ℎ

𝑛

ℎ
= 𝜀 𝑀ℎ

𝑛 + 𝜃𝐶ℎ
𝑛 − (𝜓 + 𝜇ℎ)𝑅ℎ

𝑛    

𝑆𝑚
𝑛+1 − 𝑆𝑚

𝑛

ℎ
= Λ𝑚 − (

𝑏𝛽1𝑚𝑀𝑚
𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛 + 𝜇𝑚) 𝑆𝑚

𝑛

𝐸𝑚
𝑛+1 − 𝐸𝑚

𝑛

ℎ
= (

𝑏𝛽1𝑚𝑀𝑚
𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛) 𝑆𝑚

𝑛 − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚
𝑛

𝐼𝑚
𝑛+1 − 𝐼𝑚

𝑛

ℎ
= 𝛼𝑚𝐸𝑚

𝑛 − 𝜇𝑚𝐼𝑚
𝑛                                         }

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

                                               (4) 

where  𝑆ℎ
0 > 0,  𝐸ℎ

0 ≥ 0,  𝑀ℎ
0 ≥ 0,  𝐶ℎ

0 ≥ 0,  𝑅ℎ
0 ≥ 0,  𝑆𝑚

0 > 0,  𝐸𝑚
0 ≥ 0, and  𝐼𝑚

0 ≥ 0 

Rearranging equation (4), we have the forward Euler scheme for the continuous model (1) 

given below: 

𝑆ℎ
𝑛+1 = 𝑆ℎ

𝑛 + ℎ [Λℎ + 𝜓𝑅ℎ
𝑛 − (

𝑏𝛽ℎ𝐼𝑚
𝑛

1 + 𝑒𝐼𝑚
𝑛 + 𝜇ℎ) 𝑆ℎ

𝑛]

𝐸ℎ
𝑛+1 = 𝐸ℎ

𝑛 + ℎ [(
𝑏𝛽ℎ𝐼𝑚

𝑛

1 + 𝑒𝐼𝑚
𝑛 ) 𝑆ℎ

𝑛 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ
𝑛]

𝑀ℎ
𝑛+1 = 𝑀ℎ

𝑛 + ℎ[𝛼ℎ𝐸ℎ
𝑛 − (𝜀 + 𝜏 + 𝜇ℎ)𝑀ℎ

𝑛]

𝐶ℎ
𝑛+1 = 𝐶ℎ

𝑛 + ℎ[ 𝜏 𝑀ℎ
𝑛 − (𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ

𝑛]

𝑅ℎ
𝑛+1 = 𝑅ℎ

𝑛 + ℎ[ 𝜀 𝑀ℎ
𝑛 + 𝜃𝐶ℎ

𝑛 − (𝜓 + 𝜇ℎ)𝑅ℎ
𝑛]    

𝑆𝑚
𝑛+1 = 𝑆𝑚

𝑛 + ℎ [Λ𝑚 − (
𝑏𝛽1𝑚𝑀𝑚

𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛 + 𝜇𝑚) 𝑆𝑚

𝑛 ]

𝐸𝑚
𝑛+1 = 𝐸𝑚

𝑛 + ℎ [(
𝑏𝛽1𝑚𝑀𝑚

𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛 ) 𝑆𝑚

𝑛 − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚
𝑛 ]

𝐼𝑚
𝑛+1 = 𝐼𝑚

𝑛 + ℎ[𝛼𝑚𝐸𝑚
𝑛 − 𝜇𝑚𝐼𝑚

𝑛 ]                                        }
 
 
 
 
 
 

 
 
 
 
 
 

                                                    (5) 

where  𝑆ℎ
0 > 0,  𝐸ℎ

0 ≥ 0,  𝑀ℎ
0 ≥ 0,  𝐶ℎ

0 ≥ 0,  𝑅ℎ
0 ≥ 0,  𝑆𝑚

0 > 0,  𝐸𝑚
0 ≥ 0, and  𝐼𝑚

0 ≥ 0 

Explicit 4th Order Runge-Kutta (RK-4) Method 

In a similar fashion with the Euler Forward method, we develop the RK-4 scheme for the 

system (1) as:  
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𝑆ℎ
𝑛+1 − 𝑆ℎ

𝑛

ℎ
= Λℎ + 𝜓𝑅ℎ

𝑛 − (
𝑏𝛽ℎ𝐼𝑚

𝑛

1 + 𝑒𝐼𝑚
𝑛 + 𝜇ℎ) 𝑆ℎ

𝑛

𝐸ℎ
𝑛+1 − 𝐸ℎ

𝑛

ℎ
= (

𝑏𝛽ℎ𝐼𝑚
𝑛

1 + 𝑒𝐼𝑚
𝑛 ) 𝑆ℎ

𝑛 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ
𝑛

𝑀ℎ
𝑛+1 −𝑀ℎ

𝑛

ℎ
= 𝛼ℎ𝐸ℎ

𝑛 − (𝜀 + 𝜏 + 𝜇ℎ)𝑀ℎ
𝑛

𝐶ℎ
𝑛+1 − 𝐶ℎ

𝑛

ℎ
= 𝜏 𝑀ℎ

𝑛 − (𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ
𝑛

𝑅ℎ
𝑛+1 − 𝑅ℎ

𝑛

ℎ
= 𝜀 𝑀ℎ

𝑛 + 𝜃𝐶ℎ
𝑛 − (𝜓 + 𝜇ℎ)𝑅ℎ

𝑛    

𝑆𝑚
𝑛+1 − 𝑆𝑚

𝑛

ℎ
= Λ𝑚 − (

𝑏𝛽1𝑚𝑀𝑚
𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛 + 𝜇𝑚) 𝑆𝑚

𝑛

𝐸𝑚
𝑛+1 − 𝐸𝑚

𝑛

ℎ
= (

𝑏𝛽1𝑚𝑀𝑚
𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛 ) 𝑆𝑚

𝑛 − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚
𝑛

𝐼𝑚
𝑛+1 − 𝐼𝑚

𝑛

ℎ
= 𝛼𝑚𝐸𝑚

𝑛 − 𝜇𝑚𝐼𝑚
𝑛                                         }

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

                                                       (6) 

Rearranging equation (6), we have; 

𝑆ℎ
𝑛+1 = 𝑆ℎ

𝑛 + ℎ [Λℎ + 𝜓𝑅ℎ
𝑛 − (

𝑏𝛽ℎ𝐼𝑚
𝑛

1 + 𝑒𝐼𝑚
𝑛 + 𝜇ℎ) 𝑆ℎ

𝑛]

𝐸ℎ
𝑛+1 = 𝐸ℎ

𝑛 + ℎ [(
𝑏𝛽ℎ𝐼𝑚

𝑛

1 + 𝑒𝐼𝑚
𝑛 ) 𝑆ℎ

𝑛 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ
𝑛]

𝑀ℎ
𝑛+1 = 𝑀ℎ

𝑛 + ℎ[𝛼ℎ𝐸ℎ
𝑛 − (𝜀 + 𝜏 + 𝜇ℎ)𝑀ℎ

𝑛]

𝐶ℎ
𝑛+1 = 𝐶ℎ

𝑛 + ℎ[ 𝜏 𝑀ℎ
𝑛 − (𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ

𝑛]

𝑅ℎ
𝑛+1 = 𝑅ℎ

𝑛 + ℎ[ 𝜀 𝑀ℎ
𝑛 + 𝜃𝐶ℎ

𝑛 − (𝜓 + 𝜇ℎ)𝑅ℎ
𝑛]    

𝑆𝑚
𝑛+1 = 𝑆𝑚

𝑛 + ℎ [Λ𝑚 − (
𝑏𝛽1𝑚𝑀𝑚

𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛 + 𝜇𝑚) 𝑆𝑚

𝑛 ]

𝐸𝑚
𝑛+1 = 𝐸𝑚

𝑛 + ℎ [(
𝑏𝛽1𝑚𝑀𝑚

𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛 ) 𝑆𝑚

𝑛 − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚
𝑛 ]

𝐼𝑚
𝑛+1 = 𝐼𝑚

𝑛 + ℎ[𝛼𝑚𝐸𝑚
𝑛 − 𝜇𝑚𝐼𝑚

𝑛 ]                                        }
 
 
 
 
 
 

 
 
 
 
 
 

                                              (7) 

 

 

We define, step I: 
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𝑆ℎ1 = ℎ [Λℎ + 𝜓𝑅ℎ
𝑛 − (

𝑏𝛽ℎ𝐼𝑚
𝑛

1 + 𝑒𝐼𝑚
𝑛 + 𝜇ℎ) 𝑆ℎ

𝑛]

𝐸ℎ1 = ℎ [(
𝑏𝛽ℎ𝐼𝑚

𝑛

1 + 𝑒𝐼𝑚
𝑛 ) 𝑆ℎ

𝑛 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ
𝑛]

𝑀ℎ1 = ℎ[𝛼ℎ𝐸ℎ
𝑛 − (𝜀 + 𝜏 + 𝜇ℎ)𝑀ℎ

𝑛]

𝐶ℎ1 = ℎ[ 𝜏 𝑀ℎ
𝑛 − (𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ

𝑛]

𝑅ℎ1 = ℎ[ 𝜀 𝑀ℎ
𝑛 + 𝜃𝐶ℎ

𝑛 − (𝜓 + 𝜇ℎ)𝑅ℎ
𝑛]    

𝑆𝑚1 = ℎ [Λ𝑚 − (
𝑏𝛽1𝑚𝑀𝑚

𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛 + 𝜇𝑚) 𝑆𝑚

𝑛 ]

𝐸𝑚1 = ℎ [(
𝑏𝛽1𝑚𝑀𝑚

𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛) 𝑆𝑚

𝑛 − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚
𝑛 ]

𝐼𝑚1 = ℎ[𝛼𝑚𝐸𝑚
𝑛 − 𝜇𝑚𝐼𝑚

𝑛 ]                                        }
 
 
 
 
 
 

 
 
 
 
 
 

                                                      (8)  

 

Step II: 

𝑆ℎ2 = ℎ [Λℎ + 𝜓(𝑅ℎ
𝑛 +

𝑅ℎ1
2
) − (

𝑏𝛽ℎ (𝐼𝑚
𝑛 +

𝐼𝑚1
2 )

1 + 𝑒 (𝐼𝑚
𝑛 +

𝐼𝑚1
2 )

+ 𝜇ℎ)(𝑆ℎ
𝑛 +

𝑆ℎ1
2
)]

𝐸ℎ2 = ℎ [(
𝑏𝛽ℎ (𝐼𝑚

𝑛 +
𝐼𝑚1
2 ) (𝑆ℎ

𝑛 +
𝑆ℎ1
2 )

1 + 𝑒 (𝐼𝑚
𝑛 +

𝐼𝑚1
2 )

) − (𝛼ℎ + 𝜇ℎ) (𝐸ℎ
𝑛 +

𝐸ℎ1
2
)]

𝑀ℎ2 = ℎ [𝛼ℎ (𝐸ℎ
𝑛 +

𝐸ℎ1
2
) − (𝜀 + 𝜏 + 𝜇ℎ) (𝑀ℎ

𝑛 +
𝑀ℎ1

2
)]

𝐶ℎ2 = ℎ [ 𝜏 (𝑀ℎ
𝑛 +

𝑀ℎ1

2
) − (𝜃 + 𝜇ℎ + 𝛿ℎ) (𝐶ℎ

𝑛 +
𝐶ℎ1
2
)]

𝑅ℎ2 = ℎ [ 𝜀 (𝑀ℎ
𝑛 +

𝑀ℎ1

2
) + 𝜃 (𝐶ℎ

𝑛 +
𝐶ℎ1
2
) − (𝜓 + 𝜇ℎ) (𝑅ℎ

𝑛 +
𝑅ℎ1
2
)]    

𝑆𝑚2 = ℎ [Λ𝑚 − (
𝑏𝛽1𝑚 (𝑀ℎ

𝑛 +
𝑀ℎ1

2 )

1 + 𝑒 (𝑀ℎ
𝑛 +

𝑀ℎ1

2 )
+
𝑏𝛽2𝑚 (𝐶ℎ

𝑛 +
𝐶ℎ1
2 )

1 + 𝑒 (𝐶ℎ
𝑛 +

𝐶ℎ1
2 )

+ 𝜇𝑚)(𝑆𝑚
𝑛 +

𝑆𝑚1
2
)]

𝐸𝑚2 = ℎ [(
𝑏𝛽1𝑚 (𝑀ℎ

𝑛 +
𝑀ℎ1

2 )

1 + 𝑒 (𝑀ℎ
𝑛 +

𝑀ℎ1

2 )
+
𝑏𝛽2𝑚 (𝐶ℎ

𝑛 +
𝐶ℎ1
2 )

1 + 𝑒 (𝐶ℎ
𝑛 +

𝐶ℎ1
2 )

) (𝑆𝑚
𝑛 +

𝑆𝑚1
2
) − (𝛼𝑚 + 𝜇𝑚) (𝐸𝑚

𝑛 +
𝐸𝑚1
2
)]

𝐼𝑚1 = ℎ [𝛼𝑚 (𝐸𝑚
𝑛 +

𝐸𝑚1
2
) − 𝜇𝑚 (𝐼𝑚

𝑛 +
𝐼𝑚1
2
)]                                        

 

}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  (9)  

Step III: 
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𝑆ℎ3 = ℎ [Λℎ + 𝜓(𝑅ℎ
𝑛 +

𝑅ℎ2
2
) − (

𝑏𝛽ℎ (𝐼𝑚
𝑛 +

𝐼𝑚2
2 )

1 + 𝑒 (𝐼𝑚
𝑛 +

𝐼𝑚2
2 )

+ 𝜇ℎ)(𝑆ℎ
𝑛 +

𝑆ℎ2
2
)]

𝐸ℎ3 = ℎ [(
𝑏𝛽ℎ (𝐼𝑚

𝑛 +
𝐼𝑚2
2 ) (𝑆ℎ

𝑛 +
𝑆ℎ2
2 )

1 + 𝑒 (𝐼𝑚
𝑛 +

𝐼𝑚2
2 )

) − (𝛼ℎ + 𝜇ℎ) (𝐸ℎ
𝑛 +

𝐸ℎ2
2
)]

𝑀ℎ3 = ℎ [𝛼ℎ (𝐸ℎ
𝑛 +

𝐸ℎ2
2
) − (𝜀 + 𝜏 + 𝜇ℎ) (𝑀ℎ

𝑛 +
𝑀ℎ2

2
)]

𝐶ℎ3 = ℎ [ 𝜏 (𝑀ℎ
𝑛 +

𝑀ℎ2

2
) − (𝜃 + 𝜇ℎ + 𝛿ℎ) (𝐶ℎ

𝑛 +
𝐶ℎ2
2
)]

𝑅ℎ3 = ℎ [ 𝜀 (𝑀ℎ
𝑛 +

𝑀ℎ2

2
) + 𝜃 (𝐶ℎ

𝑛 +
𝐶ℎ2
2
) − (𝜓 + 𝜇ℎ) (𝑅ℎ

𝑛 +
𝑅ℎ2
2
)]    

𝑆𝑚3 = ℎ [Λ𝑚 − (
𝑏𝛽1𝑚 (𝑀ℎ

𝑛 +
𝑀ℎ2

2 )

1 + 𝑒 (𝑀ℎ
𝑛 +

𝑀ℎ2

2 )
+
𝑏𝛽2𝑚 (𝐶ℎ

𝑛 +
𝐶ℎ2
2 )

1 + 𝑒 (𝐶ℎ
𝑛 +

𝐶ℎ2
2 )

+ 𝜇𝑚)(𝑆𝑚
𝑛 +

𝑆𝑚2
2
)]

𝐸𝑚3 = ℎ [(
𝑏𝛽1𝑚 (𝑀ℎ

𝑛 +
𝑀ℎ2

2 )

1 + 𝑒 (𝑀ℎ
𝑛 +

𝑀ℎ2

2 )
+
𝑏𝛽2𝑚 (𝐶ℎ

𝑛 +
𝐶ℎ2
2 )

1 + 𝑒 (𝐶ℎ
𝑛 +

𝐶ℎ2
2 )

) (𝑆𝑚
𝑛 +

𝑆𝑚2
2
) − (𝛼𝑚 + 𝜇𝑚) (𝐸𝑚

𝑛 +
𝐸𝑚2
2
)]

𝐼𝑚3 = ℎ [𝛼𝑚 (𝐸𝑚
𝑛 +

𝐸𝑚2
2
) − 𝜇𝑚 (𝐼𝑚

𝑛 +
𝐼𝑚2
2
)]                                        

 

}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

       (10)  

Step IV: 

𝑆ℎ4 = ℎ [Λℎ + 𝜓(𝑅ℎ
𝑛 + 𝑅ℎ3) − (

𝑏𝛽ℎ(𝐼𝑚
𝑛 + 𝐼𝑚3)

1 + 𝑒(𝐼𝑚
𝑛 + 𝐼𝑚3)

+ 𝜇ℎ) (𝑆ℎ
𝑛 + 𝑆ℎ3)]

𝐸ℎ4 = ℎ [(
𝑏𝛽ℎ(𝐼𝑚

𝑛 + 𝐼𝑚2)(𝑆ℎ
𝑛 + 𝑆ℎ3)

1 + 𝑒(𝐼𝑚
𝑛 + 𝐼𝑚3)

) − (𝛼ℎ + 𝜇ℎ)(𝐸ℎ
𝑛 + 𝐸ℎ3)]

𝑀ℎ4 = ℎ[𝛼ℎ(𝐸ℎ
𝑛 + 𝐸ℎ3) − (𝜀 + 𝜏 + 𝜇ℎ)(𝑀ℎ

𝑛 +𝑀ℎ3)]

𝐶ℎ4 = ℎ[ 𝜏(𝑀ℎ
𝑛 +𝑀ℎ3) − (𝜃 + 𝜇ℎ + 𝛿ℎ)(𝐶ℎ

𝑛 + 𝐶ℎ3)]

𝑅ℎ4 = ℎ[ 𝜀(𝑀ℎ
𝑛 +𝑀ℎ3) + 𝜃(𝐶ℎ

𝑛 + 𝐶ℎ3) − (𝜓 + 𝜇ℎ)(𝑅ℎ
𝑛 + 𝑅ℎ3)]    

𝑆𝑚4 = ℎ [Λ𝑚 − (
𝑏𝛽1𝑚(𝑀ℎ

𝑛 +𝑀ℎ3)

1 + 𝑒(𝑀ℎ
𝑛 +𝑀ℎ3)

+
𝑏𝛽2𝑚(𝐶ℎ

𝑛 + 𝐶ℎ3)

1 + 𝑒(𝐶ℎ
𝑛 + 𝐶ℎ3)

+ 𝜇𝑚) (𝑆𝑚
𝑛 + 𝑆𝑚3)]

𝐸𝑚4 = ℎ [(
𝑏𝛽1𝑚(𝑀ℎ

𝑛 +𝑀ℎ3)

1 + 𝑒(𝑀ℎ
𝑛 +𝑀ℎ3)

+
𝑏𝛽2𝑚(𝐶ℎ

𝑛 + 𝐶ℎ3)

1 + 𝑒(𝐶ℎ
𝑛 + 𝐶ℎ3)

) (𝑆𝑚
𝑛 + 𝑆𝑚3) − (𝛼𝑚 + 𝜇𝑚)(𝐸𝑚

𝑛 + 𝐸𝑚3)]

𝐼𝑚4 = ℎ[𝛼𝑚(𝐸𝑚
𝑛 + 𝐸𝑚3) − 𝜇𝑚(𝐼𝑚

𝑛 + 𝐼𝑚3)]                                        

 

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

       (11)  

 

hence: 
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𝑆ℎ
𝑛+1 = 𝑆ℎ

𝑛 +
1

6
[𝑆ℎ1 + 2𝑆ℎ2 + 2𝑆ℎ3 + 𝑆ℎ4]

𝐸ℎ
𝑛+1 = 𝐸ℎ

𝑛 +
1

6
[𝐸ℎ1 + 2𝐸ℎ2 + 2𝐸ℎ3 + 𝐸ℎ4]

𝑀ℎ
𝑛+1 = 𝑀ℎ

𝑛 +
1

6
[𝑀ℎ1 + 2𝑀ℎ2 + 2𝑀ℎ3 +𝑀ℎ4]

𝐶ℎ
𝑛+1 = 𝐶ℎ

𝑛 +
1

6
[𝐶ℎ1 + 2𝐶ℎ2 + 2𝐶ℎ3 + 𝐶ℎ4]

𝑅ℎ
𝑛+1 = 𝑅ℎ

𝑛 +
1

6
[𝑅ℎ1 + 2𝑅ℎ2 + 2𝑅ℎ3 + 𝑅ℎ4]    

𝑆𝑚
𝑛+1 = 𝑆𝑚

𝑛 +
1

6
[𝑆𝑚1 + 2𝑆𝑚2 + 2𝑆𝑚3 + 𝑆𝑚4]

𝐸𝑚
𝑛+1 = 𝐸𝑚

𝑛 +
1

6
[𝐸𝑚1 + 2𝐸𝑚2 + 2𝐸𝑚3 + 𝐸𝑚4]

𝐼𝑚
𝑛+1 = 𝐼𝑚

𝑛 +
1

6
[𝐼𝑚1 + 2𝐼𝑚2 + 2𝐼𝑚3 + 𝐼𝑚4]                }

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

                                                              (12) 

where  𝑆ℎ
0 > 0,  𝐸ℎ

0 ≥ 0,  𝑀ℎ
0 ≥ 0,  𝐶ℎ

0 ≥ 0,  𝑅ℎ
0 ≥ 0,  𝑆𝑚

0 > 0,  𝐸𝑚
0 ≥ 0, and  𝐼𝑚

0 ≥ 0. 

Non-Standard Finite Difference (NSFD Scheme 

Here, we developed a non-standard finite difference scheme that is dynamically consistent 

with the continuous system in (1). Following the idea of Mickens, (2000 & 2007), we 

discretize model (1) as follows: 

Let 𝑆ℎ
𝑛, 𝐸ℎ

𝑛, 𝑀ℎ
𝑛, 𝐶ℎ

𝑛, 𝑅ℎ
𝑛, 𝑆𝑚

𝑛 , 𝐸𝑚
𝑛  and 𝐼ℎ

𝑛 respectively denote the numerical approximations of 

𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝑀ℎ(𝑡), 𝐶ℎ(𝑡), 𝑅ℎ(𝑡), 𝑆𝑚(𝑡), 𝐸𝑚(𝑡) and  𝐼𝑚(𝑡) at 𝑡 = 𝑛ℎ, 𝑛 = 0,1,2, …, where h 

is the time-step size. Then equation (1) becomes; 

   

𝑆ℎ
𝑛+1 − 𝑆ℎ

𝑛

𝜙1(ℎ)
= Λℎ + 𝜓𝑅ℎ

𝑛 + [
𝑏𝛽ℎ𝐼𝑚

𝑛

1 + 𝑒𝐼𝑚
𝑛 ] 𝑆ℎ

𝑛+1 − 𝜇ℎ𝑆ℎ
𝑛+1

𝐸ℎ
𝑛+1 − 𝐸ℎ

𝑛

𝜙1(ℎ)
= [

𝑏𝛽ℎ𝐼𝑚
𝑛

1 + 𝑒𝐼𝑚
𝑛 ] 𝑆ℎ

𝑛+1 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ
𝑛+1

𝑀ℎ
𝑛+1 −𝑀ℎ

𝑛

𝜙1(ℎ)
= 𝛼ℎ𝐸ℎ

𝑛+1 − (𝜀 + 𝜏 + 𝜇ℎ)𝑀ℎ
𝑛+1

𝐶ℎ
𝑛+1 − 𝐶ℎ

𝑛

𝜙1(ℎ)
= 𝜏𝑀ℎ

𝑛+1 − (𝜃 + 𝜇ℎ + 𝛿ℎ)𝐶ℎ
𝑛+1

𝑅ℎ
𝑛+1 − 𝑅ℎ

𝑛

𝜙1(ℎ)
= 𝜀𝑀ℎ

𝑛+1 + 𝜃𝐶ℎ
𝑛+1 − (𝜓 + 𝜇ℎ)𝑅ℎ

𝑛+1

𝑆𝑚
𝑛+1 − 𝑆𝑚

𝑛

𝜙2(ℎ)
= Λ𝑚 + [

𝑏𝛽1𝑚𝑀𝑚
𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛 ] 𝑆𝑚

𝑛+1 − 𝜇𝑚𝑆𝑚
𝑛+1

𝐸𝑚
𝑛+1 − 𝐸𝑚

𝑛

𝜙2(ℎ)
= [

𝑏𝛽1𝑚𝑀𝑚
𝑛

1 + 𝑒𝑀𝑚
𝑛 +

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛 ] 𝑆𝑚

𝑛+1 − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚
𝑛+1

𝐼𝑚
𝑛+1 − 𝐼𝑚

𝑛

𝜙2(ℎ)
= 𝛼𝑚𝐸𝑚

𝑛+1 − 𝜇𝑚𝐼𝑚
𝑛+1

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

                                      (13) 
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The initial values of the discrete model (13) are assumed to be positive: 𝑆ℎ
0 > 0, 𝐸ℎ

0 ≥ 0, 

𝑀ℎ
0 ≥ 0, 𝐶ℎ

0 ≥ 0, 𝑅ℎ
0 ≥ 0, 𝑆𝑚

0 > 0, 𝐸𝑚
0 ≥ 0, and 𝐼𝑚

0 ≥ 0. 

From the model (13), we have; 

𝑁ℎ
𝑛+1 − 𝑁ℎ

𝑛

𝜙1(ℎ)
= Λℎ − 𝜇ℎ𝑁ℎ

𝑛+1 − 𝛿ℎ𝐶ℎ
𝑛+1                                                                                       (14) 

where 𝑁ℎ
𝑛 = 𝑆ℎ

𝑛 + 𝐸ℎ
𝑛 +𝑀ℎ

𝑛 + 𝐶ℎ
𝑛 + 𝑅ℎ

𝑛 

In the absence of disease, equation (14) simplifies to; 

𝑁ℎ
𝑛+1 − 𝑁ℎ

𝑛

𝜙1(ℎ)
= Λℎ − 𝜇ℎ𝑁ℎ

𝑛+1                                                                                                         (15)   

Solving equation (15) at 𝑡 = 𝑛ℎ yields: 

𝑁ℎ
𝑛+1 =

Λℎ
𝜇ℎ
+ [𝑁ℎ

𝑛 −
Λℎ
𝜇ℎ
] 𝑒−𝜇ℎ(𝑛ℎ)                                                                                               (16) 

By comparing equation (15) and (16), we have; 

𝜙1(ℎ) =
𝑒𝜇ℎ(ℎ) − 1

𝜇ℎ
 

Similarly,  

𝜙2(ℎ) =
𝑒𝜇𝑚(ℎ) − 1

𝜇𝑚
 

The discrete model (13) can be rearranged to get explicit form as shown below: 
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𝑆ℎ
𝑛+1 =

𝑆ℎ
𝑛 + 𝜙1(ℎ)[Λℎ + 𝜓𝑅ℎ

𝑛]

1 + 𝜙1(ℎ)[Φ(𝐼𝑚
𝑛 ) + 𝜇ℎ]

        

𝐸ℎ
𝑛+1 =

𝐸ℎ
𝑛 + 𝜙1(ℎ)Φ(𝐼𝑚

𝑛 )𝑆ℎ
𝑛+1

1 + 𝜙1(ℎ)[𝛼ℎ + 𝜇ℎ]

𝑀ℎ
𝑛+1 =

𝑀ℎ
𝑛 + 𝜙1(ℎ)𝛼ℎ𝐸ℎ

𝑛+1

1 + 𝜙1(ℎ)[𝜀 + 𝜏 + 𝜇ℎ]

𝐶ℎ
𝑛+1 =

𝐶ℎ
𝑛 + 𝜙1(ℎ) 𝜏 𝑀ℎ

𝑛+1

1 + 𝜙1(ℎ)[𝜃 + 𝜇ℎ + 𝛿ℎ]

𝑅ℎ
𝑛+1 =

𝑅ℎ
𝑛 + 𝜙1(ℎ) [𝜀 𝑀ℎ

𝑛+1 + 𝜃𝐶ℎ
𝑛+1]

1 + 𝜙1(ℎ)[𝜓 + 𝜇ℎ]

𝑆𝑚
𝑛+1 =

𝑆𝑚
𝑛 + 𝜙2(ℎ)Λ𝑚

1 + 𝜙2(ℎ)[Φ(𝑀ℎ
𝑛) + Φ(𝐶ℎ

𝑛)+𝜇𝑚]

𝐸𝑚
𝑛+1 =

𝐸𝑚
𝑛 + 𝜙2(ℎ)[Φ(𝑀ℎ

𝑛) + Φ(𝐶ℎ
𝑛)]𝑆𝑚

𝑛+1

1 + 𝜙2(ℎ)[𝛼𝑚 + 𝜇𝑚]

𝐼𝑚
𝑛+1 =

𝐼ℎ
𝑛 + 𝜙2(ℎ)𝛼𝑚𝐸𝑚

𝑛+1

1 + 𝜙2(ℎ)𝜇𝑚

     

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

                                                           (17) 

where    

Φ(𝐼𝑚
𝑛 ) =

𝑏𝛽ℎ𝐼𝑚
𝑛

1 + 𝑒𝐼𝑚
𝑛  

   

 Φ(𝑀ℎ
𝑛) =

𝑏𝛽1𝑚𝑀𝑚
𝑛

1 + 𝑒𝑀𝑚
𝑛  

      

Φ(𝐶ℎ
𝑛) =

𝑏𝛽2𝑚𝐶𝑚
𝑛

1 + 𝑒𝐶𝑚
𝑛  

Hence, since all parameters in system (17) are positive, then the numerical solutions will also 

be positive. 

Comparison of NSFD scheme with SFD (Forward Euler and RK-4 methods) 

Here, we compare the NSFD method with Forward Euler scheme and RK-4 method at 

different values of the step-size, h and study the convergence of each scheme at disease-free 

equilibrium. The numerical experiments presented in this section were performed using 

MATLAB software with the following parameter values in table 3 compatible with malaria.  

Table 3     Model Parameter Values for the convergence analysis at DFE 

       Parameters Values             Parameters         Values 

Λℎ:  0.000215        Λ𝑚:  0.07 

𝜇ℎ:   0.0000548   𝜇𝑚:  1
15⁄  

𝛿ℎ;  0.001    𝑏:  0.12   



African Journal of Mathematics and Statistics Studies 

ISSN: 2689-5323 

Volume 7, Issue 4, 2024 (pp. 226-247) 

238  Article DOI: 10.52589/AJMSS-QRLVVI9E 

  DOI URL: https://doi.org/10.52589/AJMSS-QRLVVI9E 

www.abjournals.org 

𝛽ℎ:  0.032    𝛽1𝑚:  0.048 

𝛽2𝑚:   0.48    𝛼ℎ:  1
17⁄  

𝛼𝑚:  1
18⁄     𝜓:  1

730⁄   

𝑒: 0.25    𝑔:  0.25     

𝜙:  0.05    𝜏:  0.4 

𝜃:  0.05  

Sources:    Olaniyi & Obabiyi, 2013; Otieno et al, 2016; Bala & Gimba, 2019; Aguilar & 

Gutierrez, 2020. 

Figures 1a – 1d and figure 2a – 2d show that the three methods under study (Euler, RK-4 and 

NSFD) all converge to the disease-free equilibrium points for step-size, h = 1 and h = 2 

respectively. 

 

Case 1:   𝒉 = 𝟏 

 

Figure 1a Graph of susceptible human population at ℎ = 1 showing the convergence of 

Euler, Rk-4 and NSFD scheme 
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Figure 1b Graph of exposed human population at ℎ = 1 showing the convergence of 

Euler, Rk-4 and NSFD scheme 

 

Figure 1c Graph of uncomplicated human population at ℎ = 1 showing the convergence 

of Euler, Rk-4 and NSFD scheme 
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Figure 1d Graph of complicated human population at ℎ = 1 showing the convergence of 

Euler, Rk-4 and NSFD scheme 

Case II:  𝒉 = 𝟐 

 

Figure 2a Graph of susceptible human population at ℎ = 2 showing the convergence of 

Euler, Rk-4 and NSFD scheme 

 

 

Figure 2b Graph of exposed human population at ℎ = 2 showing the convergence of 

Euler, Rk-4 and NSFD scheme 
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Figure 2c Graph of uncomplicated human population at ℎ = 2 showing the convergence 

of Euler, Rk-4 and NSFD scheme 

 

Figure 2d Graph of complicated human population at ℎ = 2 showing the convergence of 

Euler, Rk-4 and NSFD scheme 

Case: III: 𝒉 = 𝟑 

However, figure 3a-3d show that for an increase in step-size to h = 3, the Euler method 

diverges and produces negative values while  RK-4 and NSFD scheme converge to true 
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Figure 3a Graph of susceptible human population at ℎ = 3 showing the convergence of 

Euler, Rk-4 and NSFD scheme 

 

 

Figure 3b Graph of exposed human population at ℎ = 3 showing the convergence of 

Euler, Rk-4 and NSFD scheme 
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Figure 3c Graph of uncomplicated human population at ℎ = 3 showing the convergence 

of Euler, Rk-4 and NSFD scheme 

 

 

Figure 3d Graph of complicated human population at ℎ = 3 showing the convergence of 

Euler, Rk-4 and NSFD scheme 

Case IV: 𝒉 = 𝟒 

Further increase in step-size to h = 4 as shown in figure 4a – 4d revealed that RK-4 scheme 

diverges and produces negative solutions while NSFD scheme remains convergent. 

 

Figure 4a Graph of susceptible human population at ℎ = 4 showing the convergence of 

Rk-4 and NSFD scheme 
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Figure 4b Graph of exposed human population at ℎ = 4 showing the convergence of Rk-

4 and NSFD scheme 

 

 

Figure 4c Graph of uncomplicated human population at ℎ = 4 showing the convergence 

of  

Rk-4 and NSFD scheme 
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Figure 4d Graph of complicated human population at ℎ = 4 showing the convergence of 

Rk-4 and NSFD scheme 

Case V: Effect of step-size on NSFD scheme 

Figure 5 affirms that the proposed NSFD scheme preserves positivity property and converges 

to the true equilibrium point of the continuous-time model for large value of the step-size. It 

should be noted that in modeling infectious diseases for a long period of time, large step-size 

reduces time and cost of computations, hence the need for a numerical method that 

convergences at large step-size.   

 

Figure 5: Graph of susceptible human population showing the effects of step-size on the 

convergence NSFD scheme at ℎ = 10, ℎ = 100 and ℎ = 1000 

CONCLUSION AND RECOMMENDATIONS 

The continuous-time model was discretized using the Non-standard Finite difference (NSFD) 

method. The numerical experiments on the proposed NSFD scheme showed that NSFD 

preserves the properties of the continuous-time model, converges unconditionally and 

compares favorably with other standard finite difference methods. We therefore recommend 

the use of non-standard finite difference scheme for discretization of continuous-time models 

as it converges unconditionally and preserves the essential properties of the model. 
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